1
|
Abstract
Glycans, carbohydrate molecules in the realm of biology, are present as biomedically important glycoconjugates and a characteristic aspect is that their structures in many instances are branched. In determining the primary structure of a glycan, the sugar components including the absolute configuration and ring form, anomeric configuration, linkage(s), sequence, and substituents should be elucidated. Solution state NMR spectroscopy offers a unique opportunity to resolve all these aspects at atomic resolution. During the last two decades, advancement of both NMR experiments and spectrometer hardware have made it possible to unravel carbohydrate structure more efficiently. These developments applicable to glycans include, inter alia, NMR experiments that reduce spectral overlap, use selective excitations, record tilted projections of multidimensional spectra, acquire spectra by multiple receivers, utilize polarization by fast-pulsing techniques, concatenate pulse-sequence modules to acquire several spectra in a single measurement, acquire pure shift correlated spectra devoid of scalar couplings, employ stable isotope labeling to efficiently obtain homo- and/or heteronuclear correlations, as well as those that rely on dipolar cross-correlated interactions for sequential information. Refined computer programs for NMR spin simulation and chemical shift prediction aid the structural elucidation of glycans, which are notorious for their limited spectral dispersion. Hardware developments include cryogenically cold probes and dynamic nuclear polarization techniques, both resulting in enhanced sensitivity as well as ultrahigh field NMR spectrometers with a 1H NMR resonance frequency higher than 1 GHz, thus improving resolution of resonances. Taken together, the developments have made and will in the future make it possible to elucidate carbohydrate structure in great detail, thereby forming the basis for understanding of how glycans interact with other molecules.
Collapse
Affiliation(s)
- Carolina Fontana
- Departamento
de Química del Litoral, CENUR Litoral Norte, Universidad de la República, Paysandú 60000, Uruguay
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Ben-Tal Y, Boaler PJ, Dale HJA, Dooley RE, Fohn NA, Gao Y, García-Domínguez A, Grant KM, Hall AMR, Hayes HLD, Kucharski MM, Wei R, Lloyd-Jones GC. Mechanistic analysis by NMR spectroscopy: A users guide. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 129:28-106. [PMID: 35292133 DOI: 10.1016/j.pnmrs.2022.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
A 'principles and practice' tutorial-style review of the application of solution-phase NMR in the analysis of the mechanisms of homogeneous organic and organometallic reactions and processes. This review of 345 references summarises why solution-phase NMR spectroscopy is uniquely effective in such studies, allowing non-destructive, quantitative analysis of a wide range of nuclei common to organic and organometallic reactions, providing exquisite structural detail, and using instrumentation that is routinely available in most chemistry research facilities. The review is in two parts. The first comprises an introduction to general techniques and equipment, and guidelines for their selection and application. Topics include practical aspects of the reaction itself, reaction monitoring techniques, NMR data acquisition and processing, analysis of temporal concentration data, NMR titrations, DOSY, and the use of isotopes. The second part comprises a series of 15 Case Studies, each selected to illustrate specific techniques and approaches discussed in the first part, including in situ NMR (1/2H, 10/11B, 13C, 15N, 19F, 29Si, 31P), kinetic and equilibrium isotope effects, isotope entrainment, isotope shifts, isotopes at natural abundance, scalar coupling, kinetic analysis (VTNA, RPKA, simulation, steady-state), stopped-flow NMR, flow NMR, rapid injection NMR, pure shift NMR, dynamic nuclear polarisation, 1H/19F DOSY NMR, and in situ illumination NMR.
Collapse
Affiliation(s)
- Yael Ben-Tal
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Patrick J Boaler
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Harvey J A Dale
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ruth E Dooley
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom; Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Nicole A Fohn
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Yuan Gao
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrés García-Domínguez
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Katie M Grant
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrew M R Hall
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Hannah L D Hayes
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Maciej M Kucharski
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ran Wei
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Guy C Lloyd-Jones
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom.
| |
Collapse
|
3
|
Kupče Ē, Yong JRJ, Widmalm G, Claridge TDW. Parallel NMR Supersequences: Ten Spectra in a Single Measurement. JACS AU 2021; 1:1892-1897. [PMID: 34841408 PMCID: PMC8611666 DOI: 10.1021/jacsau.1c00423] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Indexed: 05/05/2023]
Abstract
The principles employed in parallel NMR and MRI are applied to NMR supersequences yielding as many as ten 2D NMR spectra in one measurement. We present a number of examples where two NOAH (NMR by Ordered Acquisition using 1H-detection) supersequences are recorded in parallel, thus dramatically increasing the information content obtained in a single NMR experiment. The two parallel supersequences entangled by time-sharing schemes (IPAP-seHSQC, HSQC-COSY, and HSQC-TOCSY) incorporate also modified (sequential and/or interleaved) conventional pulse schemes (modules), including HMBC, TOCSY, COSY, CLIP-COSY, NOESY, and ROESY. Such parallel supersequences can be tailored for specific applications, for instance, the analysis and characterization of molecular structure of complex organic molecules from a single measurement. In particular, the CASPER software was used to establish the structure of a tetrasaccharide, β-LNnTOMe, with a high degree of confidence from a single measurement involving a parallel NOAH-5 supersequence.
Collapse
Affiliation(s)
- Ēriks Kupče
- Bruker
UK Ltd, R&D, Banner
Lane, Coventry CV4 9GH, United Kingdom
| | - Jonathan R. J. Yong
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Göran Widmalm
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | - Tim D. W. Claridge
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
4
|
Yong JRJ, Hansen AL, Kupče Ē, Claridge TDW. Increasing sensitivity and versatility in NMR supersequences with new HSQC-based modules. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 329:107027. [PMID: 34246882 DOI: 10.1016/j.jmr.2021.107027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 05/22/2023]
Abstract
The sensitivity-enhanced HSQC, as well as HSQC-TOCSY, experiments have been modified for incorporation into NOAH (NMR by Ordered Acquisition using 1H detection) supersequences, adding diversity for 13C and 15N modules. Importantly, these heteronuclear modules have been specifically tailored to preserve the magnetisation required for subsequent acquisition of other heteronuclear or homonuclear modules in a supersequence. In addition, we present protocols for optimally combining HSQC and HSQC-TOCSY elements within the same supersequences, yielding high-quality 2D spectra suitable for structure characterisation but with greatly reduced experiment durations. We further demonstrate that these time savings can translate to increased detection sensitivity per unit time.
Collapse
Affiliation(s)
- Jonathan R J Yong
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Ēriks Kupče
- Bruker UK Ltd., Banner Lane, Coventry CV4 9GH, UK
| | - Tim D W Claridge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
5
|
Kupče Ē, Mote KR, Webb A, Madhu PK, Claridge TDW. Multiplexing experiments in NMR and multi-nuclear MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 124-125:1-56. [PMID: 34479710 DOI: 10.1016/j.pnmrs.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 05/22/2023]
Abstract
Multiplexing NMR experiments by direct detection of multiple free induction decays (FIDs) in a single experiment offers a dramatic increase in the spectral information content and often yields significant improvement in sensitivity per unit time. Experiments with multi-FID detection have been designed with both homonuclear and multinuclear acquisition, and the advent of multiple receivers on commercial spectrometers opens up new possibilities for recording spectra from different nuclear species in parallel. Here we provide an extensive overview of such techniques, designed for applications in liquid- and solid-state NMR as well as in hyperpolarized samples. A brief overview of multinuclear MRI is also provided, to stimulate cross fertilization of ideas between the two areas of research (NMR and MRI). It is shown how such techniques enable the design of experiments that allow structure elucidation of small molecules from a single measurement. Likewise, in biomolecular NMR experiments multi-FID detection allows complete resonance assignment in proteins. Probes with multiple RF microcoils routed to multiple NMR receivers provide an alternative way of increasing the throughput of modern NMR systems, effectively reducing the cost of NMR analysis and increasing the information content at the same time. Solid-state NMR experiments have also benefited immensely from both parallel and sequential multi-FID detection in a variety of multi-dimensional pulse schemes. We are confident that multi-FID detection will become an essential component of future NMR methodologies, effectively increasing the sensitivity and information content of NMR measurements.
Collapse
Affiliation(s)
- Ēriks Kupče
- Bruker UK Ltd., Banner Lane, Coventry CV4 9GH, United Kingdom.
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research-Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Andrew Webb
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Perunthiruthy K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research-Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Tim D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
6
|
Kupče Ē, Frydman L, Webb AG, Yong JRJ, Claridge TDW. Parallel nuclear magnetic resonance spectroscopy. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00024-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
The Application of NMR Spectroscopy and Chemometrics in Authentication of Spices. Molecules 2021; 26:molecules26020382. [PMID: 33450910 PMCID: PMC7828335 DOI: 10.3390/molecules26020382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/23/2022] Open
Abstract
Spices and herbs are among the most commonly adulterated food types. This is because spices are widely used to process food. Spices not only enhance the flavor and taste of food, but they are also sources of numerous bioactive compounds that are significantly beneficial for health. The healing effects of spices are connected with their antimicrobial, anti-inflammatory and carminative properties. However, regular consumption of adulterated spices may cause fatal damage to our system because adulterants in most cases are unhealthy. For that reason, the appropriate analytical methods are necessary for quality assurance and to ensure the authenticity of spices. Spectroscopic methods are gaining interest as they are fast, require little or no sample preparation, and provide rich structural information. This review provides an overview of the application of NMR spectroscopy combined with chemometric analysis to determine the quality and adulteration of spices.
Collapse
|
8
|
Claridge TDW, Mayzel M, Kupče Ē. Triplet NOAH supersequences optimised for small molecule structure characterisation. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:946-952. [PMID: 31066946 DOI: 10.1002/mrc.4887] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 05/22/2023]
Abstract
A series of NMR supersequences are presented for the time-efficient structure characterisation of small molecules in the solution state. These triplet sequences provide HMBC, HSQC, and one homonuclear correlation experiment of choice according to the NMR by Ordered Acquisition using 1 H detection principle. The experiments are demonstrated to be compatible with non-uniform sampling schemes and may be acquired and processed under full automation.
Collapse
Affiliation(s)
- Tim D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Maksim Mayzel
- Application Science CH, MRS Division, Bruker BioSpin AG, Fällanden, Switzerland
| | - Ēriks Kupče
- Advanced Applications Development, Bruker UK Ltd., Coventry, UK
| |
Collapse
|
9
|
Kupče Ē, Claridge TDW. New NOAH modules for structure elucidation at natural isotopic abundance. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 307:106568. [PMID: 31421539 DOI: 10.1016/j.jmr.2019.106568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 05/22/2023]
Abstract
We introduce several new NOAH modules designed for NMR supersequences that allow structure elucidation of small organic molecules from a single measurement. We show that double isotope filters (ZZ-filters) increase the flexibility of module permutation within the NMR supersequences, optimising combinations exploiting 15N and 13C nuclides. The time-shared 2BOB module combined with the ZZ-HMBC module (yielding NOAH-2 BO) provides an example of extending the NMR supersequences with parallel experiments (here 2BOB) that are incompatible with sequential implementation. Finally, the PANSY-COSY module combined with the HSQC sequence (yielding NOAH-2 SC2) provides an example of incorporating multiple receiver experiments into NMR supersequences opening new avenues for designing information rich NMR experiments. The new NOAH supersequences were utilized in computer assisted structure elucidation (CASE) study accomplished using the CMCse software.
Collapse
Affiliation(s)
- Ēriks Kupče
- Bruker UK Limited, Banner Lane, Coventry CV4 9GH, UK.
| | - Tim D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
10
|
Kupče Ē, Mote KR, Madhu PK. Experiments with direct detection of multiple FIDs. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 304:16-34. [PMID: 31077929 DOI: 10.1016/j.jmr.2019.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/26/2019] [Accepted: 04/29/2019] [Indexed: 05/04/2023]
Abstract
Pulse schemes with direct observation of multiple free induction decays (FIDs) offer a dramatic increase in the spectral information content of NMR experiments and often yield substantial improvement in measurement sensitivity per unit time. Availability of multiple receivers on the state-of-the-art commercial spectrometers allows spectra from different nuclear species to be recorded in parallel routinely. Experiments with multi-FID detection have been designed with both, homonuclear and multinuclear acquisition. We provide a brief overview of such techniques designed for applications in liquid- and solid- state NMR as well as in hyperpolarized samples. Here we show how these techniques have led to design of experiments that allow structure elucidation of small molecules and resonance assignment in proteins from a single measurement. Probes with multiple RF micro-coils routed to multiple NMR receivers provide an alternative way of increasing the throughput of modern NMR systems. Solid-state NMR experiments have also benefited immensely from both parallel and simultaneous FID acquisition in a variety of multi-dimensional pulse schemes. We believe that multi-FID detection will become an essential component of the future NMR methodologies effectively increasing the information content of NMR experiments and reducing the cost of NMR analysis.
Collapse
Affiliation(s)
- Ēriks Kupče
- Bruker UK Ltd., Banner Lane, Coventry CV4 9GH, United Kingdom.
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500107, India
| | - Perunthiruthy K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500107, India
| |
Collapse
|