1
|
Surov OV, Voronova MI. Sulfuric acid solvolysis of cellulose in a butanol-1/benzene mixture for isolating cellulose nanocrystals. Int J Biol Macromol 2024; 280:135606. [PMID: 39276901 DOI: 10.1016/j.ijbiomac.2024.135606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The absence of a universal method for isolating cellulose nanocrystals (CNCs) has prompted researchers to explore alternative approaches to traditional sulfuric acid hydrolysis. In this study, the authors continue their previous research by investigating CNC synthesis through cellulose solvolysis in an alcoholic environment. The CNCs were successfully obtained utilizing controlled sulfuric acid solvolysis of sulfate cellulose in a butanol-1/benzene mixture. The highest CNC yield (over 60 %) was achieved at strictly controlled acid-to-benzene ratios in a butanol-1/benzene/sulfuric acid reaction mixture, with a significant reduction in the optimal acid concentration. The study also analyzes the physicochemical properties of the isolated CNCs. No surface alkylation of the synthesized CNCs was observed during the cellulose solvolysis in the butanol-1/benzene mixture. Besides, the properties of these CNCs closely resembled those obtained through traditional sulfuric acid hydrolysis. The paper also discusses the potential mechanism of cellulose solvolysis in the process of CNC production.
Collapse
Affiliation(s)
- Oleg V Surov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russian Federation.
| | - Marina I Voronova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russian Federation.
| |
Collapse
|
2
|
Zou Z, Yu Z, Guan W, Liu Y, Yao Y, Han Y, Li G, Wang A, Cong Y, Liang X, Zhang T, Li N. Selective production of methylindan and tetralin with xylose or hemicellulose. Nat Commun 2024; 15:3723. [PMID: 38697973 PMCID: PMC11066016 DOI: 10.1038/s41467-024-48101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Indan and tetralin are widely used as fuel additives and the intermediates in the manufacture of thermal-stable jet fuel, many chemicals, medicines, and shockproof agents for rubber industry. Herein, we disclose a two-step route to selectively produce 5-methyl-2,3-dihydro-1H-indene (abbreviated as methylindan) and tetralin with xylose or the hemicelluloses from agricultural or forestry waste. Firstly, cyclopentanone (CPO) was selectively formed with ~60% carbon yield by the direct hydrogenolysis of xylose or hemicelluloses on a non-noble bimetallic Cu-La/SBA-15 catalyst. Subsequently, methylindan and tetralin were selectively produced with CPO via a cascade self-aldol condensation/rearrangement/aromatization reaction catalyzed by a commercial H-ZSM-5 zeolite. When we used cyclohexanone (another lignocellulosic cycloketone) in the second step, the main product switched to dimethyltetralin. This work gives insights into the selective production of bicyclic aromatics with lignocellulose.
Collapse
Affiliation(s)
- Zhufan Zou
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- School of Chemistry, Dalian University of Technology, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenjie Yu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weixiang Guan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yanfang Liu
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yumin Yao
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yang Han
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guangyi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yu Cong
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- School of Chemistry, Dalian University of Technology, Dalian, China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Ning Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
3
|
Zhou Y, Remón J, Pang X, Jiang Z, Liu H, Ding W. Hydrothermal conversion of biomass to fuels, chemicals and materials: A review holistically connecting product properties and marketable applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163920. [PMID: 37156381 DOI: 10.1016/j.scitotenv.2023.163920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Biomass is a renewable and carbon-neutral resource with good features for producing biofuels, biochemicals, and biomaterials. Among the different technologies developed to date to convert biomass into such commodities, hydrothermal conversion (HC) is a very appealing and sustainable option, affording marketable gaseous (primarily containing H2, CO, CH4, and CO2), liquid (biofuels, aqueous phase carbohydrates, and inorganics), and solid products (energy-dense biofuels (up to 30 MJ/kg) with excellent functionality and strength). Given these prospects, this publication first-time puts together essential information on the HC of lignocellulosic and algal biomasses covering all the steps involved. Particularly, this work reports and comments on the most important properties (e.g., physiochemical and fuel properties) of all these products from a holistic and practical perspective. It also gathers vital information addressing selecting and using different downstream/upgrading processes to convert HC reaction products into marketable biofuels (HHV up to 46 MJ/kg), biochemicals (yield >90 %), and biomaterials (great functionality and surface area up to 3600 m2/g). As a result of this practical vision, this work not only comments on and summarizes the most important properties of these products but also analyzes and discusses present and future applications, establishing an invaluable link between product properties and market needs to push HC technologies transition from the laboratory to the industry. Such a practical and pioneering approach paves the way for the future development, commercialization and industrialization of HC technologies to develop holistic and zero-waste biorefinery processes.
Collapse
Affiliation(s)
- Yingdong Zhou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China; China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Javier Remón
- Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain.
| | - Xiaoyan Pang
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Zhicheng Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Haiteng Liu
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Wei Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China.
| |
Collapse
|
4
|
Yu Z, Zou Z, Wang R, Li G, Wang A, Cong Y, Zhang T, Li N. Synthesis of Cyclopentadiene and Methylcyclopentadiene with Xylose or Extracted Hemicellulose. Angew Chem Int Ed Engl 2023; 62:e202300008. [PMID: 36734176 DOI: 10.1002/anie.202300008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Cyclopentadiene (CPD) and methylcyclopentadiene (MCPD) are important intermediates that have been widely used in the production of high-energy-density rocket fuels, polymers and valuable chemicals. Currently, CPD and MCPD are produced from fossil energies at very low yields, which greatly limits their application. As a solution to this problem, we disclose an alternative two-step bio-route to access CPD and MCPD using xylose or extracted hemicellulose as the feedstock. In the first step, cyclopentanone (CPO) was directly produced by the selective hydrogenolysis of xylose or extracted hemicellulose over a commercial Ru/C catalyst in an acid-free toluene/NaCl aqueous solution biphasic system. In the second step, CPO was selectively converted to CPD by a cascade hydrodeoxygenation/dehydrogenation reaction over zinc molybdate catalysts. When methanol was introduced with CPO and hydrogen, MCPD was selectively obtained by a cascade dehydrogenation/aldol condensation/selective hydrodeoxygenation reaction over zinc molybdate catalysts.
Collapse
Affiliation(s)
- Zhenjie Yu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Zhufan Zou
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China.,Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Ran Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, China.,University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Guangyi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, China
| | - Yu Cong
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, China
| | - Ning Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
5
|
Wu H, Zhang R, Zhai Y, Song X, Xiong J, Li X, Qiao Y, Lu X, Yu Z. Solvent Effects Enable Efficient Tandem Conversion of Cellulose and Its Monosaccharides Towards 5-Hydroxymethylfurfural. CHEMSUSCHEM 2023; 16:e202201809. [PMID: 36289573 DOI: 10.1002/cssc.202201809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The biomass-derived platform compound 5-hydroxymethylfurfural (HMF) has been hailed as the "Sleeping Giant" due to its promising applications, and it occupies a critical spot in the biomass upgrading roadmap. HMF is typically produced from cellulose and its monosaccharides via a complex tandem conversion with multiple steps (i. e., cellulose depolymerization, glucose isomerization, fructose dehydration, etc.). Previous investigations have confirmed the irreplaceable contribution of solvents in regulating the tandem conversion of cellulose and its monosaccharides to HMF. However, the potential effects of solvents in contributing to this multi-step tandem process have not yet been clearly elucidated. In this context, this Review aims to provide in-depth insights into the intrinsic interactions between solvent system and substrate conversion (cellulose and its monosaccharides conversion), reaction regulation (reaction activity and selectivity regulation), as well as product acquisition (humins formation inhibition and product purification). It attempts to elucidate specific solvent effects to promote a more efficient tandem conversion of cellulose and its monosaccharides towards HMF. The insights provided in this Review may contribute to a more sustainable HMF production from biomass feedstocks and a further development of greener solvent systems.
Collapse
Affiliation(s)
- Han Wu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 300384, Tianjin, P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 300384, Tianjin, P. R. China
| | - Yunqi Zhai
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 300384, Tianjin, P. R. China
| | - Xishang Song
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, 300384, Tianjin, P. R. China
| | - Jian Xiong
- School of Science, Tibet University, 850000, Lhasa, P. R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-Sen University, 510275, Guangzhou, Guangdong, P. R. China
| | - Yina Qiao
- School of Environment and Safety Engineering, North University of China, 030051, Taiyuan, P. R. China
| | - Xuebin Lu
- School of Science, Tibet University, 850000, Lhasa, P. R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, 300350, Tianjin, P. R. China
| |
Collapse
|
6
|
Meng X, Wang Y, Conte AJ, Zhang S, Ryu J, Wie JJ, Pu Y, Davison BH, Yoo CG, Ragauskas AJ. Applications of biomass-derived solvents in biomass pretreatment - Strategies, challenges, and prospects. BIORESOURCE TECHNOLOGY 2023; 368:128280. [PMID: 36368492 DOI: 10.1016/j.biortech.2022.128280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Biomass pretreatment is considered a key step in the 2nd generation biofuel production from lignocellulosic biomass. Research on conventional biomass pretreatment solvents has mainly been focused on carbohydrate conversion efficiency, while their hazardousness and/or carbon intensity were not comprehensively considered. Recent sustainability issues request further consideration for eco-friendly and sustainable alternatives like biomass-derived solvents. Carbohydrate and lignin-derived solvents have been proposed and investigated as green alternatives in many biomass processes. In this review, the applications of different types of biomass pretreatment solvents, including organic, ionic liquid, and deep eutectic solvents, are thoroughly discussed. The role of water as a co-solvent in these pretreatment processes is also reviewed. Finally, current research challenges and prospects of utilizing biomass-derived pretreatment solvents for pretreatment are discussed. Given bioethanol's market potential and increasing public awareness about environmental concerns, it will be a priority adopting sustainable and green biomass pretreatment solvents in biorefinery.
Collapse
Affiliation(s)
- Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Yunxuan Wang
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA; Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Austin J Conte
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Shuyang Zhang
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Jiae Ryu
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Jeong Jae Wie
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA; Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea; Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea; Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea; The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
| | - Yunqiao Pu
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Brian H Davison
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA; The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA; Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Department of Forestry, Wildlife and Fisheries, Center of Renewable Carbon, The University of Tennessee, Institute of Agriculture, Knoxville, TN 37996-2200, USA.
| |
Collapse
|
7
|
Dávila I, Diaz E, Labidi J. Acid hydrolysis of almond shells in a biphasic reaction system: Obtaining of purified hemicellulosic monosaccharides in a single step. BIORESOURCE TECHNOLOGY 2021; 336:125311. [PMID: 34049166 DOI: 10.1016/j.biortech.2021.125311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
The aim of this work is to comprehend the biphasic reaction systems through another perspective; the simultaneous purification and production of carbohydrates during the pretreatment of biomass. A dilute acid hydrolysis of almond shells in a 2-Methyltetrahydrofuran/H2O system was optimised to maximise the obtaining of hemicellulose-derived monosaccharides with the minimum formation of degradation products. The optimised conditions of the biphasic reaction system, which produced 205.3 g hemicellulose-derived monosaccharides/Kg almond shells, were replicated in a monophasic reaction system to assess the benefits of the biphasic reaction systems. The latest system allowed the removal of 85.3% of the furans generated during the dilute acid hydrolysis, creating antioxidant extract, together with the catalysis of the hydrolysis of the hemicelluloses in a 20%. Therefore, the proposed process could become a promising method to purify carbohydrates with an environmentally friendly procedure that allowed the obtaining of multiple added-value products in a single step.
Collapse
Affiliation(s)
- Izaskun Dávila
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, San Sebastián 20018, Spain
| | - Estelle Diaz
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, San Sebastián 20018, Spain
| | - Jalel Labidi
- Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, San Sebastián 20018, Spain.
| |
Collapse
|
8
|
Jiang Z, Gao M, Ding W, Huang C, Hu C, Shi B, Tsang DCW. Selective degradation and oxidation of hemicellulose in corncob to oligosaccharides: From biomass into masking agent for sustainable leather tanning. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125425. [PMID: 33626472 DOI: 10.1016/j.jhazmat.2021.125425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/18/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Chrome-free metal tanning agent has been considered as eco-friendly in the leather industry. However, extensive crosslinking reactions of metal species on the leather surface restrain their uniform penetration into the hierarchical nanoscale leather matrix. Thus, masking agents with appropriate coordination ability are needed. Herein, the selective degradation of hemicellulose in corncob was achieved with 92.5% of conversion in an AlCl3-H2O system, obtaining oligosaccharides masking agent with high purity and leaving cellulose and lignin in the solid residue for other valuable use. Subsequently, H2O2 oxidation was performed to introduce -CHO/-COOH into oligosaccharides and reduce their molecular weights, thereby enhancing coordination ability and reducing ligand dimension. The post-oxidized reaction fluids together with additional Zr species were subjected to leather tanning, in which the oligosaccharides could coordinate with Al/Zr species and promote the penetration of metal species into the leather matrix. By controlling the hemicellulose degradation and oligosaccharide oxidation, an appropriate concentration of oligosaccharides with proper -CHO/-COOH contents allowed the efficient masking effect of the oligosaccharides. As a result, a uniform distribution of Al/Zr species was observed on the cross section, and 83.5 °C of shrinkage temperature was obtained for the chrome-free tanned leather.
Collapse
Affiliation(s)
- Zhicheng Jiang
- Department of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China
| | - Mi Gao
- Department of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Wei Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing 100015, PR China
| | - Chenjun Huang
- Department of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, Sichuan University, Chengdu 610065, PR China
| | - Bi Shi
- Department of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, PR China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| |
Collapse
|
9
|
Ma C, Cai B, Zhang L, Feng J, Pan H. Acid-Catalyzed Conversion of Cellulose Into Levulinic Acid With Biphasic Solvent System. FRONTIERS IN PLANT SCIENCE 2021; 12:630807. [PMID: 33815439 PMCID: PMC8010141 DOI: 10.3389/fpls.2021.630807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
In this work, acid-catalyzed conversion of cellulose into levulinic acid in a biphasic solvent system was developed. Compared to a series of catalysts investigated in this study, the Amberlyst-15 as a more efficient acid catalyst was used in the hydrolysis of cellulose and further dehydration of derived intermediates into levulinic acid. Besides, the mechanism of biphasic solvent system in the conversion of cellulose was studied in detail, and the results showed biphasic solvent system can promote the conversion of cellulose and suppress the polymerization of the by-products (such as lactic acid).The reaction conditions, such as temperature, time, and catalyst loading were changed to investigate the effect on the yield of levulinic acid. The results indicated that an appealing LA yield of 59.24% was achieved at 200°C and 180 min with a 2:1 ratio of Amberlyst-15 catalyst and cellulose in GVL/H2O under N2 pressure. The influence of different amounts of NaCl addition to this reaction was also investigated. This study provides an economical and environmental-friendly method for the acid-catalyzed conversion of cellulose and high yield of the value-added chemical.
Collapse
Affiliation(s)
- Changyue Ma
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Bo Cai
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Le Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Junfeng Feng
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Hui Pan
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
10
|
Jiang Z, Ma Y, Guo X, Remón J, Tsang DCW, Hu C, Shi B. Sustainable production of lignin micro-/nano-particles (LMNPs) from biomass: Influence of the type of biomass on their self-assembly capability and physicochemical properties. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123701. [PMID: 33264888 DOI: 10.1016/j.jhazmat.2020.123701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/28/2020] [Accepted: 08/09/2020] [Indexed: 05/13/2023]
Abstract
The production of lignin micro-/nano-particles (LMNPs) has gained growing interest due to their eco-friendly feature and biological compatibility with negligible hazardous impacts. Herein, this work carefully addresses the preparation of LMNPs from different types of biomass, including pine wood, birch wood, pubescens, vinasse, corncob and corncob residue. Firstly, ligno-oligomers were produced from each biomass through a H2O-THF co-solvent system. Then, LMNPs were generated from these effluents. Uniform and spherical LMNPs, consisting of benzene ring-stacked cores and hydrophilic shells, were obtained only from the liquids yielded by the treatment of the corncob residue and pine wood. The characterization of the ligno-oligomers and the LMNPs revealed that the molecular weights of the ligno-oligomers did not exert a significant effect on their self-assembly capability. The presence of guaiacyl units connected by β-O-4 and β-β linkages was beneficial for the π-π stacking of the benzene rings into compact cores, while the existence of β-5 linkages and Cα-oxidized side-chains exerted a negative effect. Stable and spherical LMNPs with an appropriate negative zeta potential and a relatively high thermal stability were obtained from the corncob residue and pine wood, which can serve as functional materials in various application areas.
Collapse
Affiliation(s)
- Zhicheng Jiang
- Department of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, PR China
| | - Ya Ma
- Department of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xingjie Guo
- Department of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Javier Remón
- Instituto de Carboquímica, CSIC, Zaragoza, 50018, Spain.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Bi Shi
- Department of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, PR China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
11
|
Ding W, Pang X, Ding Z, Tsang DCW, Jiang Z, Shi B. Constructing a robust chrome-free leather tanned by biomass-derived polyaldehyde via crosslinking with chitosan derivatives. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122771. [PMID: 32339882 DOI: 10.1016/j.jhazmat.2020.122771] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Tanning leather using green biomass-derived polyaldehyde (BPA) is a promising approach to eliminate the widespread Cr pollution in leather industry, but unsatisfactory thermal stability and mechanical strength of the correlated resultant leather limited its industrial application. Herein, we report a green methodology to strengthen BPA tanned leather via introducing chitosan derivatives to crosslink with free aldehyde groups on dialdehyde carboxymethylcellulose (DCMC) tanned leather. H2O2 was employed for purposely modifying chitosan to prepare low-molecular chitosan (LMC) with lower positive charge. The interactions between chitosan/LMC and DCMC were investigated to elucidate the strengthening mechanism. Owing to the weakened hydrogen bonding network and higher accessibility of amino groups on LMC, LMC could react much easier with aldehyde groups on DCMC. Moreover, LMC could efficiently penetrate into the internal fiber networks of leather for further interlocking, which enhanced the thermal stability and the lubricating degree of crust leather and, as a result, the tensile and tear strengths were significantly improved by 79.3% and 25.3%, respectively. Therefore, the use of LMC can promote the widespread application of BPA tanned leather, benefiting to the complete elimination of hazardous Cr pollution.
Collapse
Affiliation(s)
- Wei Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing, 100015, PR China.
| | - Xiaoyan Pang
- China Leather and Footwear Research Institute Co. Ltd., Beijing, 100015, PR China
| | - Zhiwen Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing, 100015, PR China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Zhicheng Jiang
- Department of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China.
| | - Bi Shi
- Department of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
12
|
Qi T, Si ZB, Liu LJ, Yang HM, Huang Z, Yang HQ, Hu CW. Mechanistic study of cellobiose conversion to 5-hydroxymethylfurfural catalyzed by a Brønsted acid with counteranions in an aqueous solution. Phys Chem Chem Phys 2020; 22:9349-9361. [PMID: 32309835 DOI: 10.1039/c9cp06944e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The fundamental understanding of the cooperativity of a Brønsted acid together with its anion for cellulose conversion in an aqueous solution is limited at present, in which cellobiose has usually been regarded as a bridge that connects monosaccharides and cellulose. The mechanism of β-cellobiose conversion to 5-hydroxymethylfurfural (HMF) catalyzed by a Brønsted acid (H3O+) accompanied by counteranions in an aqueous solution has been studied using quantum chemical calculations at the M06-2X/6-311++G(d,p) level under a polarized continuum model (PCM-SMD). For the formation of the first HMF from cellobiose, there are three reaction pathways, i.e., through cellobiulose and glycosyl-HMF (C/H), through cellobiulose and fructose (C/F/H), and through glucose (C/G/H). For these three reaction pathways, the rate-determining steps are associated with the intramolecular [1,2]-H shift in the aldose-ketose tautomerization. C/H is the thermodynamically predominant pathway, while C/G/H is the kinetically dominant pathway. From cellobiose, the origin of the first HMF results kinetically from a small proportion of both C/H and C/F/H and from a large proportion of C/G/H. For the role of the counteranion in the catalytic activity of H3O+, the halide anions (Cl- and Br-) act as promoters, whereas both NO3- anions and carboxylate-containing anions behave as inhibitors. The roles of these anions in β-cellobiose conversion to HMF can be correlated with their electrostatic potential and atomic number, which may cause a decrease in the relative enthalpy energy and the value of entropy on interacting with the cation moiety. These insights may advance the novel design of sustainable conversion systems for cellulose conversion into HMF.
Collapse
Affiliation(s)
- Ting Qi
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Li J, Zhang W, Xu S, Hu C. The Roles of H 2O/Tetrahydrofuran System in Lignocellulose Valorization. Front Chem 2020; 8:70. [PMID: 32117893 PMCID: PMC7020750 DOI: 10.3389/fchem.2020.00070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Lignocellulosic biomass as a potential alternative to fossil resource for the production of valuable chemicals and fuels has attracted substantial attention, while reducing the recalcitrance of lignocellulosic biomass is still challenging due to the complex and cross-linking structure of biomass. Solvent system plays important roles in the pretreatment of lignocellulose, enabling the transformation of solid biomass to liquid fluid with better mass and heat transfer, as well as in the selective formation of target products. In particular, H2O/tetrahydrofuran (H2O/THF) system has recently been widely applied in lignocellulose valorization, which has been proved to exhibit outstanding efficiency for the conversion of lignocellulose, solubilization of the intermediates and products, and shifting reaction equilibrium, thereby significantly improving the yield and selectivity of target products, as well as the full utilization of lignocellulose. In addition, THF shows low toxicity, and is known as a renewable solvent which can be produced from bio-derived chemicals. Herein, this review concentrates on the advances of H2O/THF system in lignocellulose valorization in recent years. Several aspects relative to the roles of H2O/THF system are discussed as follows: the pretreatment of lignin, conversion of hemicellulose and cellulose components in lignocelluloses, and the promoting formation of valuable chemicals like furfural, 5-hydroxymethyl furfural (HMF), levulinic acid, and so on, as well as the inhibiting role in humins formation. This review might provide useful information for the design of effective solvent system in full utilization of lignocellulosic biomass.
Collapse
Affiliation(s)
| | | | | | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Jiang Z, Zhao P, Hu C. Controlling the cleavage of the inter- and intra-molecular linkages in lignocellulosic biomass for further biorefining: A review. BIORESOURCE TECHNOLOGY 2018; 256:466-477. [PMID: 29478782 DOI: 10.1016/j.biortech.2018.02.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
The abundant intermolecular linkages among cellulose, hemicellulose and lignin significantly limit the utilization of the most promising renewable biomass. Process control with solvents, catalysts and temperature is of significant importance providing ways to break the above linkages, and benefiting to the further conversion of the main biomass components to small molecular products. This article discusses the effect of catalyst under hydrothermal and organosolv treatment emphasizing the cleavage of the intermolecular linkage. Acidic catalysts show good performance on cleaving the linkages between carbohydrates and lignin. Basic catalysts promoted the dissolution of lignin component. Hydrogenolysis assisted conversion of lignin can efficiently break the intermolecular linkages to yield lignin-derived bio-oil, especially in co-solvent reaction system. Besides, the effects of single solvent and co-solvent systems, as well as the cleavage of the intramolecular linkages to yield target chemicals are also included. Several further study strategies are proposed.
Collapse
Affiliation(s)
- Zhicheng Jiang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China
| | - Pingping Zhao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Huang YB, Yang T, Luo YJ, Liu AF, Zhou YH, Pan H, Wang F. Simple and efficient conversion of cellulose to γ-valerolactone through an integrated alcoholysis/transfer hydrogenation system using Ru and aluminium sulfate catalysts. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01971a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The conversion of cellulose to GVL was achieved through a one-pot reaction by integrating the alcoholysis and transfer hydrogen processes under microwave condition.
Collapse
Affiliation(s)
- Yao-Bing Huang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- China
| | - Tao Yang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- China
| | - Yu-Jia Luo
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- China
| | - An-Feng Liu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- China
| | - Yi-Han Zhou
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- China
| | - Hui Pan
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- China
| | - Fei Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- China
| |
Collapse
|