1
|
Luo B, Zhang C, Zhang H, Su K, Jiang B, Cheng J, Jin Y. Lignin Tandem Catalytic Transformation to Phenolic Aryl Acrylic Esters as Plant Growth Regulators. CHEMSUSCHEM 2025; 18:e202402540. [PMID: 39745133 DOI: 10.1002/cssc.202402540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/01/2025] [Indexed: 01/19/2025]
Abstract
Based on the concept "Derived from Agroforestry, belong to (Servicing) Agroforestry", we herein achieved the tandem catalytic transformation of lignin to phenolic aryl acrylic esters, which can work as plant growth regulators. The transformation involves the first catalytic oxidative fractionation (COF) of lignin into aromatic aldehydes, which can further undergo Knoevenagel condensation with acids/esters with active Cα-H to generate the phenolic aryl acrylic esters. For the first lignin transformation, the Cu salt (CuSO4) in a 7.5 wt % NaOH aqueous solution could achieve the selective cleavage of lignin C-C bonds to provide a 25.0 wt % yield of aromatic aldehydes. Subsequently, the unique basic sites of the self-assembled hybrid system of CeO2 and 2-cyanopyridine could overcome the limitations of traditional homogeneous/heterogeneous bases and facilitate the condensation between phenolic-containing aromatic aldehydes and malonic ester to aryl acrylic esters. Furthermore, the lignin-based phenolic aryl acrylic esters showed different plant growth regulation activity based on the various structural groups for peppermint seed cultivation. The above results can expand the high-value utilization of lignin in the agroforestry field.
Collapse
Affiliation(s)
- Bingbing Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Chaofeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Huijun Zhang
- Anhui Bio-Breeding Engineering Research Center for Water Melon and Melon, School of Life Sciences, Huaibei Normal University, Huaibei, 235000, P.R. China
| | - Kaiyi Su
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Bo Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Jinlan Cheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P.R. China
| |
Collapse
|
2
|
Mateo S, Fabbrizi G, Moya AJ. Lignin from Plant-Based Agro-Industrial Biowastes: From Extraction to Sustainable Applications. Polymers (Basel) 2025; 17:952. [PMID: 40219341 PMCID: PMC11991304 DOI: 10.3390/polym17070952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Lignin, the most abundant aromatic polymer in nature, plays a critical role in lignocellulosic biomasses by providing structural support. However, its presence complicates the industrial exploitation of these materials for biofuels, paper production and other high-value compounds. Annually, the industrial extraction of lignin reaches an estimated 225 million tons, yet only a fraction is recovered for reuse, with most incinerated as low-value fuel. The growing interest in lignin potential has sparked research into sustainable recovery methods from lignocellulosic agro-industrial wastes. This review examines the chemical, physical and physicochemical processes for isolating lignin, focusing on innovative, sustainable technologies that align with the principles of a circular economy. Key challenges include lignin structural complexity and heterogeneity, which hinder its efficient extraction and application. Nonetheless, its properties such as high thermal stability, biodegradability and abundant carbon content place lignin as a promising material for diverse industrial applications, including chemical synthesis and energy generation. A structured analysis of advancements in lignin extraction, characterization and valorization offers insights into transforming this undervalued by-product into a vital resource, reducing reliance on non-renewable materials while addressing environmental sustainability.
Collapse
Affiliation(s)
- Soledad Mateo
- Chemical, Environmental and Materials Department, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain;
- Olive Grove and Olive Oil Research Institute, 23071 Jaén, Spain
| | - Giacomo Fabbrizi
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, 06122 Perugia, Italy;
- CIRIAF-CRB (Biomass Research Centre), Department of Engineering, Università degli Studi di Perugia, Via G. Duranti, 67, 06125 Perugia, Italy
| | - Alberto J. Moya
- Chemical, Environmental and Materials Department, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain;
- Olive Grove and Olive Oil Research Institute, 23071 Jaén, Spain
| |
Collapse
|
3
|
Gutierrez-Blanco A, Mejuto C. Understanding Biomass Valorization through Electrocatalysis: Transformation of Glycerol and Furan Derivatives. J Phys Chem Lett 2025; 16:2785-2792. [PMID: 40054856 PMCID: PMC11931528 DOI: 10.1021/acs.jpclett.4c03553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 03/21/2025]
Abstract
Electrochemical conversion of underutilized biomass provides a green approach for their valorization into high-value-added products, which constitutes a mild, safe, and green procedure. Moreover, the use of an electrochemical pathway in contrast to the classical routes (thermo or biochemical) offers several advantages in terms of product selectivity, safety, catalyst stability, and reusability. The highly variable number of tunable conditions in an electrochemical reaction offers a broad space for improvement until the optimum ones are achieved, including substrates, curent and voltage, electrodes, electrolytes, and cell set-up. The present Perspective aims to provide an informative overview into the biomass and waste valorization of furan derivatives and byproducts of biofuel refineries (glycerol) by reviewing the essential aspects of this field. We cover the fundamentals of electrochemical organic transformations, emphasizing the different parameters to consider during these procedures. We highlight the potential of electrochemical methods for biomass valorization and suggest new directions for more sustainable research.
Collapse
Affiliation(s)
- Ana Gutierrez-Blanco
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12006 Castelló, Spain
| | - Carmen Mejuto
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12006 Castelló, Spain
| |
Collapse
|
4
|
Chowdari RK, Ganji P, Likozar B. Solvent-Free Catalytic Hydrotreatment of Lignin to Biobased Aromatics: Current Trends, Industrial Approach, and Future Perspectives. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2025; 39:2943-2985. [PMID: 39967748 PMCID: PMC11831597 DOI: 10.1021/acs.energyfuels.4c05174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 02/20/2025]
Abstract
Lignin is the only naturally occurring, renewable biopolymer and an alternative for the production of six-membered aromatic chemicals. The utilization of lignin can increase the additional revenue of biorefineries and reduce the dependence on crude oil for the production of aromatic chemicals. Therefore, the development of technologies for the production of valuable chemicals from lignin waste in biorefineries is of great importance. Catalytic hydrotreatment of lignin is considered one of the most promising technologies for the production of biobased aromatic chemicals and fuels. Among the various hydrotreatment routes, the solvent-free hydrotreatment approach is advantageous because this process reduces production costs and is similar to petroleum refinery processes such as cracking and heteroatom removal. This review addresses recent developments in solvent-free catalytic hydrotreatment of various lignins such as sulfur-containing, sulfur-free, and pyrolytic lignins to produce low oxygen-containing aromatics such as alkylphenolics in batch, semicontinuous, and continuous reactors. Special emphasis is given to the various noble and non-noble metal catalysts, the best route between single and two-stage processing, key factors in solvent-free depolymerization of lignin, techno-economic evaluation, crude oil vs lignin oil refining, challenges and future prospects, etc.
Collapse
Affiliation(s)
- Ramesh Kumar Chowdari
- Institute
of Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Styria, Austria
- Department
of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova Ulica 19, 1001 Ljubljana, Slovenia
| | - Parameswaram Ganji
- Department
of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova Ulica 19, 1001 Ljubljana, Slovenia
- Jozef
Stefan Institute, Department of Surface
Engineering, Jamova Cesta
39, 1000 Ljubljana, Slovenia
| | - Blaž Likozar
- Department
of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova Ulica 19, 1001 Ljubljana, Slovenia
| |
Collapse
|
5
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
6
|
Zhang L, Su X, Zhou L, Li J, Xiao T, Li J, Zhao F, Cheng H. Reversal Effect of Phosphorus on Catalytic Performances of Supported Nickel Catalysts in Reductive Amination of 1,6-Hexanediol. CHEMSUSCHEM 2024; 17:e202400211. [PMID: 38547358 DOI: 10.1002/cssc.202400211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Indexed: 04/23/2024]
Abstract
The reductive amination of 1,6-hexanediol with ammonia is one of the most promising green routes for synthesis of 1,6-hexanediamine. Herein, we developed a phosphorous modified Ni catalyst of Ni-P/Al2O3. It presented satisfactory improved selectivity to 1,6-hexanediamine in the reductive amination of 1,6-hexanediol compared to the Ni/Al2O3 catalyst. The phosphorous tended to interact with Al2O3 to form AlPOx species, induced Ni nanoparticle to be flatter, and the decrease of strong acid sites, the new-formed Ni-AlPOx-Al2O3 interface and the flatter Ni nanoparticle were the key to switch the dominating product from hexamethyleneimine to 1,6-hexanediamine. This work develops an efficient catalyst for production of 1,6-hexanediamine from the reductive amination of 1,6-hexanediol, and provides a point of view about designing selective non-noble metal catalysts for producing primary diamines via reductive amination of diols.
Collapse
Affiliation(s)
- Liyan Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Xinluona Su
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Leilei Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Jingrong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Tingting Xiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Jian Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Fengyu Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| | - Haiyang Cheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China
| |
Collapse
|
7
|
Pei Z, Liu X, Chen J, Wang H, Li H. Research Progress on Lignin Depolymerization Strategies: A Review. Polymers (Basel) 2024; 16:2388. [PMID: 39274021 PMCID: PMC11397036 DOI: 10.3390/polym16172388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
As the only natural source of aromatic biopolymers, lignin can be converted into value-added chemicals and biofuels, showing great potential in realizing the development of green chemistry. At present, lignin is predominantly used for combustion to generate energy, and the real value of lignin is difficult to maximize. Accordingly, the depolymerization of lignin is of great significance for its high-value utilization. This review discusses the latest progress in the field of lignin depolymerization, including catalytic conversion systems using various thermochemical, chemocatalytic, photocatalytic, electrocatalytic, and biological depolymerization methods, as well as the involved reaction mechanisms and obtained products of various protocols, focusing on green and efficient lignin depolymerization strategies. In addition, the challenges faced by lignin depolymerization are also expounded, putting forward possible directions of developing lignin depolymerization strategies in the future.
Collapse
Affiliation(s)
- Zhengfei Pei
- Key Laboratory of Surveillance and Management, Invasive Alien Species in Guizhou Education Department, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Xiaofang Liu
- Key Laboratory of Surveillance and Management, Invasive Alien Species in Guizhou Education Department, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Jiasheng Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Huan Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Hu Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
8
|
Bai W, Wang X, Xu J, Liu Y, Lou Y, Sun X, Zhou A, Li H, Fu G, Dou S, Yu H. Lattice Strain Engineering on Metal-Organic Frameworks by Ligand Doping to Boost the Electrocatalytic Biomass Valorization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403431. [PMID: 38829272 PMCID: PMC11304310 DOI: 10.1002/advs.202403431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/11/2024] [Indexed: 06/05/2024]
Abstract
As an efficient and environmental-friendly strategy, electrocatalytic oxidation can realize biomass lignin valorization by cleaving its aryl ether bonds to produce value-added chemicals. However, the complex and polymerized structure of lignin presents challenges in terms of reactant adsorption on the catalyst surface, which hinders further refinement. Herein, NiCo-based metal-organic frameworks (MOFs) are employed as the electrocatalyst to enhance the adsorption of reactant molecules through π-π interaction. More importantly, lattice strain is introduced into the MOFs via curved ligand doping, which enables tuning of the d-band center of metal active sites to align with the reaction intermediates, leading to stronger adsorption and higher electrocatalytic activity toward bond cleavage within lignin model compounds and native lignin. When 2'-phenoxyacetophenone is utilized as the model compound, high yields of phenol (76.3%) and acetophenone (21.7%) are achieved, and the conversion rate of the reactants reaches 97%. Following pre-oxidation of extracted poplar lignin, >10 kinds of phenolic compounds are received using the as-designed MOFs electrocatalyst, providing ≈12.48% of the monomer, including guaiacol, vanillin, eugenol, etc., and p-hydroxybenzoic acid dominates all the products. This work presents a promising and deliberately designed electrocatalyst for realizing lignin valorization, making significant strides for the sustainability of this biomass resource.
Collapse
Affiliation(s)
- Wenjing Bai
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Jianing Xu
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Yongzhuang Liu
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Yuhan Lou
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Xinyue Sun
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Ao Zhou
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Hao Li
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980–8577Japan
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Shuo Dou
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
9
|
Porter WN, Turaczy KK, Yu M, Mou H, Chen JG. Transition metal nitride catalysts for selective conversion of oxygen-containing molecules. Chem Sci 2024; 15:6622-6642. [PMID: 38725511 PMCID: PMC11077531 DOI: 10.1039/d4sc01314j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Earth abundant transition metal nitrides (TMNs) are a promising group of catalysts for a wide range of thermocatalytic, electrocatalytic and photocatalytic reactions, with potential to achieve high activity and selectivity while reducing reliance on the use of Pt-group metals. However, current fundamental understanding of the active sites of these materials and the mechanisms by which selective transformations occur is somewhat lacking. Recent investigations of these materials from our group and others have utilized probe molecules, model surfaces, and in situ techniques to elucidate the origin of their activity, strong metal-support interactions, and unique d-band electronic structures. This Perspective discusses three classes of reactions for which TMNs have been used as case studies to highlight how these properties, along with synergistic interactions with metal overlayers, can be exploited to design active, selective and stable TMN catalysts. First, studies of the reactions of C1 molecules will be discussed, specifically highlighting the ability of TMNs to activate CO2. Second, the upgrading of biomass and biomass-derived oxygenates over TMN catalysts will be reviewed. Third, the use of TMNs for H2 production via water electrolysis will be discussed. Finally, we will discuss the challenges and future directions in the study of TMN catalysts, in particular expanding on opportunities to enhance fundamental mechanistic understanding using model surfaces, the elucidation of active centers via in situ techniques, and the development of efficient synthesis methods and design principles.
Collapse
Affiliation(s)
- William N Porter
- Department of Chemical Engineering, Columbia University New York NY 10027 USA
| | - Kevin K Turaczy
- Department of Chemical Engineering, Columbia University New York NY 10027 USA
| | - Marcus Yu
- Department of Chemical Engineering, Columbia University New York NY 10027 USA
| | - Hansen Mou
- Department of Chemical Engineering, Columbia University New York NY 10027 USA
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University New York NY 10027 USA
| |
Collapse
|
10
|
Lindenbeck LM, Barra VC, Dahlhaus S, Brand S, Wende LM, Beele BB, Schebb NH, Rodrigues BVM, Slabon A. Organic Chemicals from Wood: Selective Depolymerization and Dearomatization of Lignin via Aqueous Electrocatalysis. CHEMSUSCHEM 2024; 17:e202301617. [PMID: 38179850 DOI: 10.1002/cssc.202301617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Replacing crude oil as the primary industrial source of carbon-based chemicals has become crucial for both environmental and resource sustainability reasons. In this scenario, wood arises as an excellent candidate, whilst depolymerization approaches have emerged as promising strategies to unlock the lignin potential as a resource in the production of high-value organic chemicals. However, many drawbacks, such as toxic solvents, expensive catalysts, high energy inputs, and poor product selectivity have represented major challenges to this task. Herein, we present an unprecedented approach using electrocatalysis for the simultaneous depolymerization and dearomatization of lignin in aqueous medium under ambient conditions. By employing water/sodium carbonate as a solvent system, we demonstrated a pathway for selectively depolymerizing lignin under reductive electrochemical conditions using carbon as an electrocatalyst. After reductive electrocatalysis, the presence of aromatic compounds was no longer detected via nuclear magnetic resonance (NMR) spectroscopy. Further characterization by NMR, FTIR spectroscopy, and mass spectrometry revealed the major presences of sodium levulinate, sodium 4-hydroxyvalerate, sodium formate, and sodium acetate as products. By achieving a complete dearomatization, valuable aliphatic intermediates with enhanced reactivity were selectively obtained, opening new avenues for further synthesis of many different organic chemicals, and contributing to a more sustainable and circular economy.
Collapse
Affiliation(s)
- Lucie M Lindenbeck
- Faculty of Mathematics and Natural Sciences, Chair of Inorganic Chemistry, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Vanessa C Barra
- Faculty of Mathematics and Natural Sciences, Chair of Inorganic Chemistry, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Sira Dahlhaus
- Faculty of Mathematics and Natural Sciences, Chair of Inorganic Chemistry, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Silas Brand
- Faculty of Mathematics and Natural Sciences, Chair of Inorganic Chemistry, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Luca M Wende
- Faculty of Mathematics and Natural Sciences, Chair of Food Chemistry, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Björn B Beele
- Faculty of Mathematics and Natural Sciences, Chair of Inorganic Chemistry, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Nils H Schebb
- Faculty of Mathematics and Natural Sciences, Chair of Food Chemistry, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Bruno V M Rodrigues
- Faculty of Mathematics and Natural Sciences, Chair of Inorganic Chemistry, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | - Adam Slabon
- Faculty of Mathematics and Natural Sciences, Chair of Inorganic Chemistry, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| |
Collapse
|
11
|
Si D, Teng X, Xiong B, Chen L, Shi J. Electrocatalytic functional group conversion-based carbon resource upgrading. Chem Sci 2024; 15:6269-6284. [PMID: 38699249 PMCID: PMC11062096 DOI: 10.1039/d4sc00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/23/2024] [Indexed: 05/05/2024] Open
Abstract
The conversions of carbon resources, such as alcohols, aldehydes/ketones, and ethers, have been being one of the hottest topics most recently for the goal of carbon neutralization. The emerging electrocatalytic upgrading has been regarded as a promising strategy aiming to convert carbon resources into value-added chemicals. Although exciting progress has been made and reviewed recently in this area by mostly focusing on the explorations of valuable anodic oxidation or cathodic reduction reactions individually, however, the reaction rules of these reactions are still missing, and how to purposely find or rationally design novel but efficient reactions in batches is still challenging. The properties and transformations of key functional groups in substrate molecules play critically important roles in carbon resources conversion reactions, which have been paid more attention to and may offer hidden keys to achieve the above goal. In this review, the properties of functional groups are addressed and discussed in detail, and the reported electrocatalytic upgrading reactions are summarized in four categories based on the types of functional groups of carbon resources. Possible reaction pathways closely related to functional groups will be summarized from the aspects of activation, cleavage and formation of chemical bonds. The current challenges and future opportunities of electrocatalytic upgrading of carbon resources are discussed at the end of this review.
Collapse
Affiliation(s)
- Di Si
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Xue Teng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Bingyan Xiong
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University Shanghai 200072 P. R. China
| | - Lisong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming Shanghai 202162 China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
12
|
Khan I, Al Alwan B, Jery AE, Khan S, Shayan M. Engineering MPC-Assisted Heterojunctional Photo-Oxidation Tailored by Interfacial Design of a P-Modulated C 3N 4 Heterojunction for Improved Aerobic Alcohol Oxidation. Inorg Chem 2024; 63:7019-7033. [PMID: 38557101 DOI: 10.1021/acs.inorgchem.4c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The creation of two-dimensional van der Waals (VDW) heterostructures is a sophisticated approach to enhancing photocatalytic efficiency. However, challenges in electron transfer at the interfaces often arise in these heterostructures due to the varied structures and energy barriers of the components involved. This study presents a novel method for constructing a VDW heterostructure by inserting a phosphate group between copper phthalocyanine (CuPc) and boron-doped, nitrogen-deficient graphitic carbon nitride (BCN), referred to as Cu/PO4-BCN. This phosphate group serves as a charge mediator, enabling effective charge transfer within the heterostructure, thus facilitating electron flow from BCN to CuPc upon activation. As a result, the photogenerated electrons are effectively utilized by the catalytic Cu2+ core in CuPc, achieving a conversion efficiency of 96% for benzyl alcohol (BA) and a selectivity of 98.8% for benzyl aldehyde (BAD) in the presence of oxygen as the sole oxidant and under illumination. Notably, the production rate of BAD is almost 8 times higher than that observed with BCN alone and remains stable over five cycles. The introduction of interfacial mediators to enhance electron transfer represents a pioneering and efficient strategy in the design of photocatalysts, enabling the proficient transformation of BA into valuable derivatives.
Collapse
Affiliation(s)
- Imran Khan
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Basem Al Alwan
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia
| | - Atef El Jery
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia
- Higher Institute of Applied Biology of Medenine, University of Gabes, Route El Jorf-Km 22 5, Medenine 4119, Tunisia
| | - Salman Khan
- Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Harbin 150080, P. R. China
| | - Muhammad Shayan
- Department of Chemistry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| |
Collapse
|
13
|
Zhang H, Xue K, Xu X, Wang X, Wang B, Shao C, Sun R. Green and Low-Cost Alkali-Polyphenol Synergetic Self-Catalysis System Access to Fast Gelation of Self-Healable and Self-Adhesive Conductive Hydrogels for Self-Powered Triboelectric Nanogenerators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305502. [PMID: 37880909 DOI: 10.1002/smll.202305502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Biomass-based hydrogels have attracted great attention in flexible and sustainable self-powered power sources but struggled to fabricate in a green, high-efficiency, and low-cost manner. Herein, a novel and facile alkali-polyphenol synergetic self-catalysis system is originally employed for the fast gelation of self-healable and self-adhesive lignin-based conductive hydrogels, which can be regarded as hydrogel electrodes of flexible triboelectric nanogenerators (TENGs). This synergy self-catalytic system comprises aqueous alkali and polyphenol-containing lignin, in which alkali-activated ammonium persulfate (APS) significantly accelerates the generation of radicals and initiates the polymerization of monomers, while polyphenol acts as a stabilizer to avoid bursting polymerization from inherent radical scavenging ability. Furthermore, multiple hydrogen bonds between lignin biopolymers and polyacrylamide (PAM) chains impart lignin-based hydrogels with exceptional adhesiveness and self-healing properties. Intriguingly, the alkaline conditions not only contribute to the solubility of lignin but also impart superior ionic conductivity of lignin-based hydrogel that is applicable to flexible TENG in self-powered energy-saving stair light strips, which holds great promise for industrial applications of soft electronics.
Collapse
Affiliation(s)
- Hongmei Zhang
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Kai Xue
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Xihang Xu
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Bing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Changyou Shao
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
- State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| |
Collapse
|
14
|
Xu J, Meng J, Hu Y, Liu Y, Lou Y, Bai W, Dou S, Yu H, Wang S. Electrocatalytic Lignin Valorization into Aromatic Products via Oxidative Cleavage of C α-C β Bonds. RESEARCH (WASHINGTON, D.C.) 2023; 6:0288. [PMID: 38111679 PMCID: PMC10726294 DOI: 10.34133/research.0288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Lignin is the most promising candidate for producing aromatic compounds from biomass. However, the challenge lies in the cleavage of C-C bonds between lignin monomers under mild conditions, as these bonds have high dissociation energy. Electrochemical oxidation, which allows for mild cleavage of C-C bonds, is considered an attractive solution. To achieve low-energy consumption in the valorization of lignin, the use of highly efficient electrocatalysts is essential. In this study, a meticulously designed catalyst consisting of cobalt-doped nickel (oxy)hydroxide on molybdenum disulfide heterojunction was developed. The presence of molybdenum in a high valence state promoted the adsorption of tert-butyl hydroperoxide, leading to the formation of critical radical intermediates. In addition, the incorporation of cobalt doping regulated the electronic structure of nickel, resulting in a lower energy barrier. As a result, the heterojunction catalyst demonstrated a selectivity of 85.36% for cleaving the Cα-Cβ bond in lignin model compound, achieving a substrate conversion of 93.69% under ambient conditions. In addition, the electrocatalyst depolymerized 49.82 wt% of soluble fractions from organosolv lignin (OL), resulting in a yield of up to 13 wt% of aromatic monomers. Significantly, the effectiveness of the prepared electrocatalyst was also demonstrated using industrial Kraft lignin (KL). Therefore, this research offers a practical approach for implementing electrocatalytic oxidation in lignin refining.
Collapse
Affiliation(s)
- Jianing Xu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Juan Meng
- School of Resources and Environmental Engineering,
Jiangsu University of Technology, Changzhou 213001, China
| | - Yi Hu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Yongzhuang Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Yuhan Lou
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Wenjing Bai
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Shuo Dou
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin 150040, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering,
Hunan University, Changsha 410082, China
| |
Collapse
|
15
|
Khobragade TP, Giri P, Pagar AD, Patil MD, Sarak S, Joo S, Goh Y, Jung S, Yoon H, Yun S, Kwon Y, Yun H. Dual-function transaminases with hybrid nanoflower for the production of value-added chemicals from biobased levulinic acid. Front Bioeng Biotechnol 2023; 11:1280464. [PMID: 38033815 PMCID: PMC10687574 DOI: 10.3389/fbioe.2023.1280464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The U.S. Department of Energy has listed levulinic acid (LA) as one of the top 12 compounds derived from biomass. LA has gained much attention owing to its conversion into enantiopure 4-aminopentanoic acid through an amination reaction. Herein, we developed a coupled-enzyme recyclable cascade employing two transaminases (TAs) for the synthesis of (S)-4-aminopentanoic acid. TAs were first utilized to convert LA into (S)-4-aminopentanoic acid using (S)-α-Methylbenzylamine [(S)-α-MBA] as an amino donor. The deaminated (S)-α-MBA i.e., acetophenone was recycled back using a second TAs while using isopropyl amine (IPA) amino donor to generate easily removable acetone. Enzymatic reactions were carried out using different systems, with conversions ranging from 30% to 80%. Furthermore, the hybrid nanoflowers (HNF) of the fusion protein were constructed which afforded complete biocatalytic conversion of LA to the desired (S)-4-aminopentanoic acid. The created HNF demonstrated storage stability for over a month and can be reused for up to 7 sequential cycles. A preparative scale reaction (100 mL) achieved the complete conversion with an isolated yield of 62%. Furthermore, the applicability of this recycling system was tested with different β-keto ester substrates, wherein 18%-48% of corresponding β-amino acids were synthesized. Finally, this recycling system was applied for the biosynthesis of pharmaceutical important drug sitagliptin intermediate ((R)-3-amino-4-(2,4,5-triflurophenyl) butanoic acid) with an excellent conversion 82%.
Collapse
Affiliation(s)
- Taresh P. Khobragade
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Pritam Giri
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Amol D. Pagar
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Mahesh D. Patil
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Mohali, Punjab, India
| | - Sharad Sarak
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Sangwoo Joo
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Younghwan Goh
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Seohee Jung
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Hyunseok Yoon
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Subin Yun
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Youkyoung Kwon
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Gawin R, Tracz A, Krajczy P, Kozakiewicz-Piekarz A, Martínez JP, Trzaskowski B. Inhibition of the Decomposition Pathways of Ruthenium Olefin Metathesis Catalysts: Development of Highly Efficient Catalysts for Ethenolysis. J Am Chem Soc 2023. [PMID: 37916946 DOI: 10.1021/jacs.3c10635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Ruthenium-based Hoveyda-type olefin metathesis catalysts bearing novel rigid spirocyclic alkyl amino carbenes (CAACs) have been developed. They are characterized by exceptional stability toward decomposition through β-elimination and bimolecular pathways, thus enabling unprecedented efficiency in the cross-metathesis of seed oil-derived fatty acid esters with ethylene (ethenolysis). Catalyst loading as low as 100 ppb was applied to the ethenolysis of the model substrate methyl oleate, leading to a remarkable turnover number (TON) of 2.6 million, significantly higher than previously reported (TON 340 000 at 1 ppm and 744 000 at 0.5 ppm catalyst loading). Ethenolysis of methyl esters derived from high oleic sunflower oil and rapeseed oil, readily available on an industrial scale, inexpensive, and renewable feedstocks, was for the first time effectively carried out with 0.5 ppm catalyst loading with TON as high as 964 000.
Collapse
Affiliation(s)
- Rafał Gawin
- Apeiron Synthesis SA, Duńska 9, 54-427 Wrocław, Poland
| | - Andrzej Tracz
- Apeiron Synthesis SA, Duńska 9, 54-427 Wrocław, Poland
| | | | | | - Juan Pablo Martínez
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| |
Collapse
|
17
|
Wang Q, Chang L, Wang W, Hu Y, Yue J, Wang Z, Liang C, Qi W. Simultaneous saccharification of hemicellulose and cellulose of corncob in a one-pot system using catalysis of carbon based solid acid from lignosulfonate. RSC Adv 2023; 13:28542-28549. [PMID: 37780742 PMCID: PMC10534078 DOI: 10.1039/d3ra05283d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
The drive towards sustainable chemistry has inspired the development of active solid acids as catalysts and ionic liquids as solvents for an efficient release of sugars from lignocellulosic biomass for future biorefinery practices. Carbon-based solid acid (SI-C-S-H2O2) prepared from sodium lignosulfonate, a waste of the paper industry, was used with water or ionic liquid to hydrolyze corncob in this study. The effects of various reaction parameters were investigated in different solvent systems. The highest xylose yield of 83.4% and hemicellulose removal rate of 90.6% were obtained in an aqueous system at 130 °C for 14 h. After the pretreatment, cellulase was used for the hydrolysis of residue and the enzymatic digestibility of 92.6% was obtained. Following these two hydrolysis steps in the aqueous systems, the highest yield of total reducing sugar (TRS) was obtained at 88.1%. Further, one-step depolymerization and saccharification of corncob hemicellulose and cellulose to reducing sugars in an IL-water system catalyzed by SI-C-S-H2O2 was conducted at 130 °C for 10 h, with a high TRS yield of 75.1% obtained directly. After recycling five times, the solid acid catalyst still showed a high catalytic activity for sugar yield in different systems, providing a green and effective method for lignocellulose degradation.
Collapse
Affiliation(s)
- Qiong Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development Guangzhou Guangdong Province 510640 China
- Institute of Zhejiang University-Quzhou 99 Zheda Road Quzhou Zhejiang Province 324000 China
| | - Longjun Chang
- Institute of Zhejiang University-Quzhou 99 Zheda Road Quzhou Zhejiang Province 324000 China
| | - Wen Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development Guangzhou Guangdong Province 510640 China
| | - Yunzi Hu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development Guangzhou Guangdong Province 510640 China
| | - Jun Yue
- Department of Chemical Engineering, Engineering and Technology Institute of Groningen, University of Groningen 9747 AG Groningen The Netherland
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development Guangzhou Guangdong Province 510640 China
| | - Cuiyi Liang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development Guangzhou Guangdong Province 510640 China
| | - Wei Qi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Key Laboratory of New and Renewable Energy Research and Development Guangzhou Guangdong Province 510640 China
| |
Collapse
|
18
|
Paul M, Pandey NK, Banerjee A, Shroti GK, Tomer P, Gazara RK, Thatoi H, Bhaskar T, Hazra S, Ghosh D. An insight into omics analysis and metabolic pathway engineering of lignin-degrading enzymes for enhanced lignin valorization. BIORESOURCE TECHNOLOGY 2023; 379:129045. [PMID: 37044152 DOI: 10.1016/j.biortech.2023.129045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Lignin, a highly heterogeneous polymer of lignocellulosic biomass, is intricately associated with cellulose and hemicellulose, responsible for its strength and rigidity. Lignin decomposition is carried out through certain enzymes derived from microorganisms to promote the hydrolysis of lignin. Analyzing multi-omics data helps to emphasize the probable value of fungal-produced enzymes to degrade the lignocellulosic material, which provides them an advantage in their ecological niches. This review focuses on lignin biodegrading microorganisms and associated ligninolytic enzymes, including lignin peroxidase, manganese peroxidase, versatile peroxidase, laccase, and dye-decolorizing peroxidase. Further, enzymatic catalysis, lignin biodegradation mechanisms, vital factors responsible for lignin modification and degradation, and the design and selection of practical metabolic pathways are also discussed. Highlights were made on metabolic pathway engineering, different aspects of omics analyses, and its scope and applications to ligninase enzymes. Finally, the advantages and essential steps of successfully applying metabolic engineering and its path forward have been addressed.
Collapse
Affiliation(s)
- Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada, Odisha 757003, India
| | - Niteesh Kumar Pandey
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ayan Banerjee
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - Gireesh Kumar Shroti
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India
| | - Preeti Tomer
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India
| | - Rajesh Kumar Gazara
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada, Odisha 757003, India
| | - Thallada Bhaskar
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| | - Saugata Hazra
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India; Centre for Nanotechnology, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand 247667, India.
| | - Debashish Ghosh
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, Uttarakhand 248005, India; Academy of Scientific and Innovative Research, CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
19
|
Mathison R, Ramos Figueroa AL, Bloomquist C, Modestino MA. Electrochemical Manufacturing Routes for Organic Chemical Commodities. Annu Rev Chem Biomol Eng 2023; 14:85-108. [PMID: 36930876 DOI: 10.1146/annurev-chembioeng-101121-090840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Electrochemical synthesis of organic chemical commodities provides an alternative to conventional thermochemical manufacturing and enables the direct use of renewable electricity to reduce greenhouse gas emissions from the chemical industry. We discuss electrochemical synthesis approaches that use abundant carbon feedstocks for the production of the largest petrochemical precursors and basic organic chemical products: light olefins, olefin oxidation derivatives, aromatics, and methanol. First, we identify feasible routes for the electrochemical production of each commodity while considering the reaction thermodynamics, available feedstocks, and competing thermochemical processes. Next, we summarize successful catalysis and reaction engineering approaches to overcome technological challenges that prevent electrochemical routes from operating at high production rates, selectivity, stability, and energy conversion efficiency. Finally, we provide an outlook on the strategies that must be implemented to achieve large-scale electrochemical manufacturing of major organic chemical commodities.
Collapse
Affiliation(s)
- Ricardo Mathison
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA; , , ,
| | - Alexandra L Ramos Figueroa
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA; , , ,
| | - Casey Bloomquist
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA; , , ,
| | - Miguel A Modestino
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA; , , ,
| |
Collapse
|
20
|
Tabassum Z, Mohan A, Mamidi N, Khosla A, Kumar A, Solanki PR, Malik T, Girdhar M. Recent trends in nanocomposite packaging films utilising waste generated biopolymers: Industrial symbiosis and its implication in sustainability. IET Nanobiotechnol 2023; 17:127-153. [PMID: 36912242 PMCID: PMC10190667 DOI: 10.1049/nbt2.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Uncontrolled waste generation and management difficulties are causing chaos in the ecosystem. Although it is vital to ease environmental pressures, right now there is no such practical strategy available for the treatment or utilisation of waste material. Because the Earth's resources are limited, a long-term, sustainable, and sensible solution is necessary. Currently waste material has drawn a lot of attention as a renewable resource. Utilisation of residual biomass leftovers appears as a green and sustainable approach to lessen the waste burden on Earth while meeting the demand for bio-based goods. Several biopolymers are available from renewable waste sources that have the potential to be used in a variety of industries for a wide range of applications. Natural and synthetic biopolymers have significant advantages over petroleum-based polymers in terms of cost-effectiveness, environmental friendliness, and user-friendliness. Using waste as a raw material through industrial symbiosis should be taken into account as one of the strategies to achieve more economic and environmental value through inter-firm collaboration on the path to a near-zero waste society. This review extensively explores the different biopolymers which can be extracted from several waste material sources and that further have potential applications in food packaging industries to enhance the shelf life of perishables. This review-based study also provides key insights into the different strategies and techniques that have been developed recently to extract biopolymers from different waste byproducts and their feasibility in practical applications for the food packaging business.
Collapse
Affiliation(s)
- Zeba Tabassum
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Anand Mohan
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Narsimha Mamidi
- Department of Chemistry and NanotechnologyThe School of Engineering and ScienceTecnologico de MonterreyMonterreyNuevo LeonMexico
- Wisconsin Center for NanoBioSystmesUniversity of WisconsinMadisonWisconsinUSA
| | - Ajit Khosla
- School of Advanced Materials and NanotechnologyXidian UniversityXi'anChina
| | - Anil Kumar
- Gene Regulation LaboratoryNational Institute of ImmunologyNew DelhiIndia
| | | | - Tabarak Malik
- Department of Biomedical SciencesInstitute of HealthJimma UniversityJimmaEthiopia
| | - Madhuri Girdhar
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| |
Collapse
|
21
|
Centi G, Perathoner S, Genovese C, Arrigo R. Advanced (photo)electrocatalytic approaches to substitute the use of fossil fuels in chemical production. Chem Commun (Camb) 2023; 59:3005-3023. [PMID: 36794323 PMCID: PMC9997108 DOI: 10.1039/d2cc05132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Electrification of the chemical industry for carbon-neutral production requires innovative (photo)electrocatalysis. This study highlights the contribution and discusses recent research projects in this area, which are relevant case examples to explore new directions but characterised by a little background research effort. It is organised into two main sections, where selected examples of innovative directions for electrocatalysis and photoelectrocatalysis are presented. The areas discussed include (i) new approaches to green energy or H2 vectors, (ii) the production of fertilisers directly from the air, (iii) the decoupling of the anodic and cathodic reactions in electrocatalytic or photoelectrocatalytic devices, (iv) the possibilities given by tandem/paired reactions in electrocatalytic devices, including the possibility to form the same product on both cathodic and anodic sides to "double" the efficiency, and (v) exploiting electrocatalytic cells to produce green H2 from biomass. The examples offer hits to expand current areas in electrocatalysis to accelerate the transformation to fossil-free chemical production.
Collapse
Affiliation(s)
- Gabriele Centi
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Siglinda Perathoner
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Chiara Genovese
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Rosa Arrigo
- University of Salford, 336 Peel building, M5 4WT Manchester, UK
| |
Collapse
|
22
|
Zhang J, Suo C, Sun J, Li W, Luo S, Ma C, Liu S. Electrocatalysis Cα-Cβ and Cβ-O bond cleavage of lignin model compound using Ni-Co/C as catalyst electrode in deep eutectic solvent. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
23
|
da Cruz MGA, Onwumere JN, Chen J, Beele B, Yarema M, Budnyk S, Slabon A, Rodrigues BVM. Solvent-free synthesis of photoluminescent carbon nanoparticles from lignin-derived monomers as feedstock. GREEN CHEMISTRY LETTERS AND REVIEWS 2023; 16. [DOI: 10.1080/17518253.2023.2196031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/22/2023] [Indexed: 01/06/2025]
Affiliation(s)
- Márcia G. A. da Cruz
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Joy N. Onwumere
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Jianhong Chen
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Björn Beele
- Chair of Inorganic Chemistry, University of Wuppertal, Wuppertal, Germany
| | - Maksym Yarema
- Department of Information Technology and Electrical Engineering, Institute for Electronics, ETH Zurich, Zurich, Switzerland
| | | | - Adam Slabon
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Chair of Inorganic Chemistry, University of Wuppertal, Wuppertal, Germany
| | - Bruno V. M. Rodrigues
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Chair of Inorganic Chemistry, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
24
|
Ionic liquids enhance the electrocatalysis of lignin model compounds towards generating valuable aromatic molecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Lin F, Xu M, Ramasamy KK, Li Z, Klinger JL, Schaidle JA, Wang H. Catalyst Deactivation and Its Mitigation during Catalytic Conversions of Biomass. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fan Lin
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington99354, United States
| | - Mengze Xu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington99354, United States
| | - Karthikeyan K. Ramasamy
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington99354, United States
| | - Zhenglong Li
- Energy and Transportation Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | | | - Joshua A. Schaidle
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Huamin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington99354, United States
| |
Collapse
|
26
|
Huang J, Jian Y, Zhou M, Wu H. Oxidative C−C bond cleavage of lignin via electrocatalysis. Front Chem 2022; 10:1007707. [PMID: 36186593 PMCID: PMC9522476 DOI: 10.3389/fchem.2022.1007707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Lignin, which is an important component of biomass in nature and is constantly produced in industry, becomes potential raw material for sustainable production of fine chemicals and biofuels. Electrocatalysis has been extensively involved in the activation of simple molecules and cleavage-recasting of complex scaffolds in an elegant environment. As such, electrocatalytic cleavage of C−C(O) in β-O-4 model molecules of lignin to value-added chemicals has received much attention in recent years. This mini-review introduces various anodes (e.g., Pb, Pt, Ni, Co., and Ir) developed for electro-oxidative lignin degradation (EOLD) under mild conditions. Attention was placed to understand the conversion pathways and involved reaction mechanisms during EOLD, with emphasis on the product distribution caused by different electrodes.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Yumei Jian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Min Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang, China
- *Correspondence: Hongguo Wu,
| |
Collapse
|
27
|
Trimetallic Nanoalloy of NiFeCo Embedded in Phosphidated Nitrogen Doped Carbon Catalyst for Efficient Electro-Oxidation of Kraft Lignin. Polymers (Basel) 2022; 14:polym14183781. [PMID: 36145928 PMCID: PMC9503039 DOI: 10.3390/polym14183781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Recently, electro-oxidation of kraft lignin has been reported as a prominent electrochemical reaction to generate hydrogen at lower overpotential in alkaline water electrolysis. However, this reaction is highly limited by the low performance of existing electrocatalysts. Herein, we report a novel yet effective catalyst that comprises nonprecious trimetallic (Ni, Fe, and Co) nanoalloy as a core in a phosphidated nitrogen-doped carbon shell (referred to as sample P-NiFeCo/NC) for efficient electro-oxidation of kraft lignin at different temperatures in alkaline medium. The as-synthesized catalyst electro-oxidizes lignin only at 0.2 V versus Hg/HgO, which is almost three times less positive potential than in the conventional oxygen evolution reaction (0.59 V versus Hg/HgO) at 6.4 mA/cm2 in 1 M KOH. The catalyst demonstrates a turnover frequency (TOF) three to five times greater in lignin containing 1 M KOH than that of pure 1 M KOH. More importantly, the catalyst P-NiFeCo/NC shows theoretical hydrogen production of about 0.37 μmoles/min in the presence of lignin, much higher than that in pure 1 M KOH (0.0078 μ moles/min). Thus, this work verifies the benefit of the NiFeCo nanoalloy incorporated in carbon matrix, providing the way to realize a highly active catalyst for the electro-oxidation of kraft lignin.
Collapse
|
28
|
Huang S, Gong B, Jin Y, Sit PHL, Lam JCH. The Structural Phase Effect of MoS 2 in Controlling the Reaction Selectivity between Electrocatalytic Hydrogenation and Dimerization of Furfural. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuquan Huang
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Bo Gong
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yangxin Jin
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Patrick H.-L. Sit
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| | - Jason Chun-Ho Lam
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 999077, China
| |
Collapse
|
29
|
Hossain MA, Saelee T, Tulaphol S, Rahaman MS, Phung TK, Maihom T, Praserthdam P, Praserthdam S, Yelle DJ, Sathitsuksanoh N. Catalytic hydrogenolysis of lignin into phenolics by internal hydrogen over Ru catalyst. ChemCatChem 2022. [DOI: 10.1002/cctc.202200549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | | | | | - Thanh Khoa Phung
- Vietnam National University Ho Chi Minh City University of Science: University of Science Science and Technology VIET NAM
| | | | | | | | - Daniel J. Yelle
- Department of Agriculture Forest Biopolymer Science and Engineering UNITED STATES
| | - Noppadon Sathitsuksanoh
- University of Louisville chemical engineering 216 eastern parkway 40292 Louisville UNITED STATES
| |
Collapse
|
30
|
Mascitti A, Scioli G, Tonucci L, Canale V, Germani R, Di Profio P, d’Alessandro N. First Evidence of the Double-Bond Formation by Deoxydehydration of Glycerol and 1,2-Propanediol in Ionic Liquids. ACS OMEGA 2022; 7:27980-27990. [PMID: 35990467 PMCID: PMC9386840 DOI: 10.1021/acsomega.2c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deoxydehydration (DODH) reaction of glycerol (GL) and 1,2-propanediol (1,2-PD), in ionic liquids (ILs), catalyzed by methyltrioxorhenium (MTO) and Re2O7, was studied in detail. To better understand the ability of ILs to improve the catalytic performance of the rhenium catalyst, several experiments, employing eight different cations and two different anions, were carried out. Among the anions, bis(trifluoromethylsulfonyl)imide (TFSI) appears to be more appropriate than PF6 -, for its relatively lower volatility of the resulting IL. Regarding the choice of the most appropriate cation, the presence of a single aromatic ring seems to be a necessary requirement for a satisfying and convenient reactivity. With the aim to extend the recyclability of the catalyst, experiments involving the readdition of polyol to the terminal reaction mixture were carried out. Worthy of interest is the fact that the presence of the IL prevents the inertization process of the catalyst, allowing us to obtain the alkene also after a readdition of fresh polyol.
Collapse
Affiliation(s)
- Andrea Mascitti
- Department
of Engineering and Geology, “G. d’Annunzio”
University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Giuseppe Scioli
- Department
of Engineering and Geology, “G. d’Annunzio”
University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Lucia Tonucci
- Department
of Philosophical, Educational and Economic Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Valentino Canale
- Department
of Pharmacy, “G. d’Annunzio”
University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Raimondo Germani
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di sotto, 06123 Perugia, Italy
| | - Pietro Di Profio
- Department
of Pharmacy, “G. d’Annunzio”
University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Nicola d’Alessandro
- Department
of Engineering and Geology, “G. d’Annunzio”
University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
31
|
Gupta NK, Reif P, Palenicek P, Rose M. Toward Renewable Amines: Recent Advances in the Catalytic Amination of Biomass-Derived Oxygenates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Navneet Kumar Gupta
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Phillip Reif
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Phillip Palenicek
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Marcus Rose
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
32
|
da Cruz MGA, Gueret R, Chen J, Piątek J, Beele B, Sipponen MH, Frauscher M, Budnyk S, Rodrigues BVM, Slabon A. Electrochemical Depolymerization of Lignin in a Biomass-based Solvent. CHEMSUSCHEM 2022; 15:e202200718. [PMID: 35608798 PMCID: PMC9545899 DOI: 10.1002/cssc.202200718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Breaking down lignin into smaller units is the key to generate high value-added products. Nevertheless, dissolving this complex plant polyphenol in an environment-friendly way is often a challenge. Levulinic acid, which is formed during the hydrothermal processing of lignocellulosic biomass, has been shown to efficiently dissolve lignin. Herein, levulinic acid was evaluated as a medium for the reductive electrochemical depolymerization of the lignin macromolecule. Copper was chosen as the electrocatalyst due to the economic feasibility and low activity towards the hydrogen evolution reaction. After depolymerization, high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy revealed lignin-derived monomers and dimers. A predominance of aryl ether and phenolic groups was observed. Depolymerized lignin was further evaluated as an anti-corrosion coating, revealing enhancements on the electrochemical stability of the metal. Via a simple depolymerization process of biomass waste in a biomass-based solvent, a straightforward approach to produce high value-added compounds or tailored biobased materials was demonstrated.
Collapse
Affiliation(s)
- Márcia G. A. da Cruz
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16 C10691StockholmSweden
| | - Robin Gueret
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16 C10691StockholmSweden
| | - Jianhong Chen
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16 C10691StockholmSweden
| | - Jędrzej Piątek
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16 C10691StockholmSweden
| | - Björn Beele
- Inorganic ChemistryBergische Universität WuppertalGaußstraße 2042119WuppertalGermany
| | - Mika H. Sipponen
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16 C10691StockholmSweden
| | | | - Serhiy Budnyk
- AC2T research GmbHViktor-Kaplan-Str. 2/c2700Wiener NeustadtAustria
| | - Bruno V. M. Rodrigues
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16 C10691StockholmSweden
- Inorganic ChemistryBergische Universität WuppertalGaußstraße 2042119WuppertalGermany
| | - Adam Slabon
- Department of Materials and Environmental ChemistryStockholm UniversitySvante Arrhenius väg 16 C10691StockholmSweden
- Inorganic ChemistryBergische Universität WuppertalGaußstraße 2042119WuppertalGermany
| |
Collapse
|
33
|
Chen C, Zhou LL, Huang YN, Wang WK, Xu J. Boron regulates catalytic sites of biochar to enhance the formation of surface-confined complex for improved peroxydisulfate activation. CHEMOSPHERE 2022; 301:134690. [PMID: 35489448 DOI: 10.1016/j.chemosphere.2022.134690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Biochar has been developed to activate persulfate for wastewater treatment due to its carbon essence, easily-available and low-cost. Efficiently active sites and interfacial electron transfer are highly desired for peroxydisulfate (PDS) activation. In this study, boronic ester structure and defect degree of boron-doped biochar are confirmed as activate sites to improve PDS activation. The performance of pollutants degradation is proven to have structure-activity relationships with both activate sites. Moreover, boron-doped biochar exhibits higher stability and oxidation potential by forming the surface-confined complex, promoting electron transfer from pollutants to complex. The optimized boron-doped biochar has the advantages of adapting to a broad pH range (2.9-10.0), strong resistance to Cl- and organic matters, a low activation energy of 11.22 kJ mol-1, and achieving the decomposition of practical dyeing wastewater. Our work provides a promising approach to regulating the interfacial catalytic sites of biochar by doping heteroatom for PDS activation in practical wastewater treatment.
Collapse
Affiliation(s)
- Chen Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Lu-Lu Zhou
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu-Nuo Huang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Wei-Kang Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.
| | - Juan Xu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Organic Solid Wastes Biotransformation Engineering Technical Research Center, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
34
|
Borgogna A, Centi G, Iaquaniello G, Perathoner S, Papanikolaou G, Salladini A. Assessment of hydrogen production from municipal solid wastes as competitive route to produce low-carbon H 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154393. [PMID: 35271922 DOI: 10.1016/j.scitotenv.2022.154393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
An economic and CO2 emission impact assessment of the production of H2 from municipal solid waste in the two configurations of retrofitting an existing waste to energy plant with an electrolysis unit (WtE + El) and of hydrogen production via waste gasification (WtH2) is made with respect to reference cases of H2 production by steam reforming of methane (SMR) or of water electrolysis (El). The results are analyzed with reference to two scenarios depending on whether the fate of waste disposal emissions for SMR and El is accounted. The costs of H2 production as a function of waste gate fee and CO2 taxation as well as the CO2 emissions for both scenarios and the four cases of H2 production analyzed are reported. The results show that produce H2 from a WtE plant hybridized with an electrolyzer could be economic only when the plant is free from depreciation costs and no CO2 taxation exists. Conversely, WtH2 solution results preferable when CO2 taxation will be applied to the non-biogenic fraction of waste. Conditions when WtH2 may results competitive to SMR are defined, in terms of both cost of production and CO2 emissions. With respect to El case, WtH2 results more competitive under the assumption made in terms of combined costs and CO2 emissions.
Collapse
Affiliation(s)
| | - Gabriele Centi
- University of Messina, ERIC aisbl and CASPE/INSTM, Dept. ChiBioFarAm, viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Gaetano Iaquaniello
- NextChem/MyreChemical, Via di Vannina 88/94, 00156 Rome, Italy; KT Spa, Via Castello della Magliana 27,00148 Rome, Italy.
| | - Siglinda Perathoner
- University of Messina, ERIC aisbl and CASPE/INSTM, Dept. ChiBioFarAm, viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Georgia Papanikolaou
- University of Messina, ERIC aisbl and CASPE/INSTM, Dept. ChiBioFarAm, viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | | |
Collapse
|
35
|
Cheng Y, Zhao HQ, Ding A, Chen F, Liu J, Fang D, Li C, Huang Y, Lu P. Singlet oxygen-dominated electrocatalytic oxidation treatment for the high-salinity quaternary ammonium compound wastewater with Ti/(Ru xIr y)O 2 anode. ENVIRONMENTAL RESEARCH 2022; 209:112815. [PMID: 35093311 DOI: 10.1016/j.envres.2022.112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
The widespread application of quaternary ammonium compounds (QAC) has posed a serious hazard to the environment and human being, and high concentration of Cl- in QAC wastewater may further increase the difficulty of pollutants elimination. In this study, such a QAC wastewater under high salinity conditions was chosen as the target, the prepared Ti/(RuxIry)O2 anode exhibited favorable catalytic performance for the oxidation and mineralization of QAC under high salinity conditions. Increasing the Ru/Ir ratio of Ti-based electrode coating also slightly promoted the inner catalytic capacity. The combination of electron paramagnetic resonance (EPR) and quenching experiments indicates that 1O2 served as a main reactive specie in the Ti/(RuxIry)O2 electrooxidation system. The increase of pH could decrease the removal efficiency of QAC for the reduced 1O2 yield, and the rise of Cl- concentration could favor the QAC oxidation, and Cl- was a better electrolyte to promote the oxidation of organic contaminants when compared to Na2SO4 or Na2CO3. Additionally, the conversion pathway of the model pollutant was tentatively investigated, the results demonstrated that there were almost no halogenated final products residual by electrocatalytic oxidation with Ti/(RuxIry)O2 anode. This study not only elucidate the reaction mechanism of Ti/(RuxIry)O2 anode electrocatalytic oxidation of high salinity QAC wastewater, but also may provide an efficacious and eco-friendly method for the treatment of high salinity QAC wastewater.
Collapse
Affiliation(s)
- Yong Cheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region 's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Han-Qing Zhao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region 's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Aqiang Ding
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region 's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Fei Chen
- Key Laboratory of Three Gorges Reservoir Region 's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jun Liu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region 's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Dazhi Fang
- Sinopec Chongqing Shale Gas Co., Ltd, Chongqing, 408400, China
| | - Chenglong Li
- Sinopec Chongqing Shale Gas Co., Ltd, Chongqing, 408400, China
| | - Yongkui Huang
- National and Local Joint Engineering Research Center of Shale Gas Exploration and Development, Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing, 401120, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Key Laboratory of Three Gorges Reservoir Region 's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
36
|
Yu H, Zhang F, Li L, Wang H, Sun Y, Jiang E, Xu X. Boosting levoglucosan and furfural production from corn stalks pyrolysis via electro-assisted seawater pretreatment. BIORESOURCE TECHNOLOGY 2022; 346:126478. [PMID: 34910973 DOI: 10.1016/j.biortech.2021.126478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The seawater electrochemical pretreatment (ECP) was employed to upgrade the bio-oil of corn stalk in the paper. The seawater and its simulants were used as electrolytes without additional reagents. Moreover, the effect of seawater ECP under different conditions on the products distribution of pyrolysis bio-oil of pretreated corn stalks was investigated. The results showed that pretreatment effectively deconstructed the lignin and made cellulose exposed. Especially, under the optimum conditions (3.5 wt% NaCl, 15 V and 4 h), most of lignin was destroyed, and cellulose and hemicellulose were remained in residual solids. Furthermore, the levoglucosan and furfural were enriched in the pyrolysis bio-oil of corn stalk after seawater ECP, reaching 23.22 % and 14.14 %, respectively. Overall, this work presented a novel and green pretreatment process to optimize the components and structure of corn stalks as well as upgrade the bio-oil of corn stalk pyrolysis.
Collapse
Affiliation(s)
- Haipeng Yu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wush-an Road, Guangzhou 510642, China
| | - Fan Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wush-an Road, Guangzhou 510642, China
| | - Linghao Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wush-an Road, Guangzhou 510642, China
| | - Hong Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wush-an Road, Guangzhou 510642, China
| | - Yan Sun
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wush-an Road, Guangzhou 510642, China
| | - Enchen Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wush-an Road, Guangzhou 510642, China
| | - Xiwei Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wush-an Road, Guangzhou 510642, China.
| |
Collapse
|
37
|
Sustainable Electrochemical NO Capture and Storage System Based on the Reversible Fe2+/Fe3+-EDTA Redox Reaction. Catalysts 2022. [DOI: 10.3390/catal12010079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The removal of nitric oxide (NO), which is an aggregation agent for fine dust that causes air pollution, from exhaust gas has been considered an important treatment in the context of environmental conservation. Herein, we propose a sustainable electrochemical NO removal system based on the reversible Fe2+/Fe3+-ethylenediamine tetraacetic acid (EDTA) redox reaction, which enables continuous NO capture and storage at ambient temperature without the addition of any sacrificial agents. We have designed a flow-type reaction system in which the NO absorption and emission can be separately conducted in the individual reservoirs of the catholyte and anolyte with the continuous regeneration of Fe2+-EDTA by the electrochemical reduction in Fe3+-EDTA. A continuous flow reaction using a silver cathode and glassy carbon anode showed that the concentrations of Fe2+ and Fe3+-EDTA in the electrolyte were successfully maintained at a 1:1 ratio, which demonstrates that the proposed system can be applied for continuous NO capture and storage.
Collapse
|
38
|
Chen Q, Song B, Li X, Wang R, Wang S, Xu S, Reniers F, Lam CH. Enhancing the Properties of Photocatalysts via Nonthermal Plasma Modification: Recent Advances, Treatment Variables, Mechanisms, and Perspectives. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qianqian Chen
- School of Material Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, China
| | - Bing Song
- Scion, 49 Sala Street, Whakarewarewa, Rotorua 3010, New Zealand
| | - Xiaochen Li
- Department of Medical Imaging, Henan Provincial People’s Hospital & the People’s Hospital of Zhengzhou University, 7 Weiwu Road, Zhengzhou 450003, China
| | - Renjie Wang
- School of Material Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, China
| | - Shun Wang
- School of Material Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, China
| | - Sankui Xu
- School of Material Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, China
| | - François Reniers
- Chemistry of Surfaces, Interfaces, and Nanomaterials and Laboratoire de Chimie des Polymer̀es, Faculté des Sciences, Universite Libre de Bruxelles, ULB Boulevard du Triomphe, Brussels 1050, Belgium
| | - Chun Ho Lam
- School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong
| |
Collapse
|
39
|
Yang C, Chen H, Peng T, Liang B, Zhang Y, Zhao W. Lignin valorization toward value-added chemicals and fuels via electrocatalysis: A perspective. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63839-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Lee DK, Kubota SR, Janes AN, Bender MT, Woo J, Schmidt JR, Choi KS. The Impact of 5-Hydroxymethylfurfural (HMF)-Metal Interactions on the Electrochemical Reduction Pathways of HMF on Various Metal Electrodes. CHEMSUSCHEM 2021; 14:4563-4572. [PMID: 34378355 DOI: 10.1002/cssc.202101037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/07/2021] [Indexed: 06/13/2023]
Abstract
5-Hydroxymethylfurfural (HMF), which can be derived from lignocellulosic biomass, is an important platform molecule that can be used to produce valuable biofuels and polymeric materials. Electrochemical reduction of HMF is of great interest as it uses water as the hydrogen source and achieves desired reduction reactions at room temperature and ambient pressure. Hydrogenation and hydrogenolysis are two important reactions for reductive HMF conversion. Therefore, elucidating key characteristics of electrocatalysts that govern the selectivity for hydrogenation and hydrogenolysis is critical in rationally developing efficient and selective electrocatalysts. In this study, combined experimental and computational investigations are used to demonstrate how the adsorption energy of HMF on metal surfaces and the resulting changes in the intramolecular bond lengths of adsorbed HMF directly impact the reduction pathways of HMF. These results make it possible to rationally understand a general trend in the behaviors observed when using various metal electrodes for HMF reduction.
Collapse
Affiliation(s)
- Dong Ki Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Graduate School of Energy and Environment, Korea University, Seoul, 02841, Republic of Korea
- Division of Energy and Environmental Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Stephen R Kubota
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aurora N Janes
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael T Bender
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jongin Woo
- Graduate School of Energy and Environment, Korea University, Seoul, 02841, Republic of Korea
- National Agenda Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - J R Schmidt
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kyoung-Shin Choi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
41
|
Karimi Estahbanati MR, Kong XY, Eslami A, Soo HS. Current Developments in the Chemical Upcycling of Waste Plastics Using Alternative Energy Sources. CHEMSUSCHEM 2021; 14:4152-4166. [PMID: 34048150 DOI: 10.1002/cssc.202100874] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Indexed: 06/12/2023]
Abstract
The management of plastics waste is one of the most urgent and significant global problems now. Historically, waste plastics have been predominantly discarded, mechanically recycled, or incinerated for energy production. However, these approaches typically relied on thermal processes like conventional pyrolysis, which are energy-intensive and unsustainable. In this Minireview, some of the latest advances and future trends in the chemical upcycling of waste plastics by photocatalytic, electrolytic, and microwave-assisted pyrolysis processes are discussed as more environmentally friendly alternatives to conventional thermal reactions. We highlight how the transformation of different types of plastics waste by exploiting alternative energy sources can generate value-added products such as fuels (H2 and other carbon-containing small molecules), chemical feedstocks, and newly functionalized polymers, which can contribute to a more sustainable and circular economy.
Collapse
Affiliation(s)
- M R Karimi Estahbanati
- Centre Eau Terre Environnement (ETE), Institut National de la recherche scientifique (INRS), 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Xin Ying Kong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Ali Eslami
- Department of Chemical Engineering, Université Laval, Québec, QC G1V 0A6, Canada
| | - Han Sen Soo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
42
|
Darzina M, Lielpetere A, Jirgensons A. Torii‐Type Electrosynthesis of α,β‐Unsaturated Esters from Furfurylated Ethylene Glycols and Amino Alcohols. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Madara Darzina
- Latvian Institute of Organic Synthesis Aizkraukles 21 Riga LV-1006 Latvia
| | - Anna Lielpetere
- Latvian Institute of Organic Synthesis Aizkraukles 21 Riga LV-1006 Latvia
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis Aizkraukles 21 Riga LV-1006 Latvia
| |
Collapse
|
43
|
Sun J, Zhang L, Loh KC. Review and perspectives of enhanced volatile fatty acids production from acidogenic fermentation of lignocellulosic biomass wastes. BIORESOUR BIOPROCESS 2021; 8:68. [PMID: 38650255 PMCID: PMC10992391 DOI: 10.1186/s40643-021-00420-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Lignocellulosic biomass wastes are abundant resources that are usually valorized for methane-rich biogas via anaerobic digestion. Conversion of lignocellulose into volatile fatty acids (VFA) rather than biogas is attracting attention due to the higher value-added products that come with VFA utilization. This review consolidated the latest studies associated with characteristics of lignocellulosic biomass, the effects of process parameters during acidogenic fermentation, and the intensification strategies to accumulate more VFA. The differences between anaerobic digestion technology and acidogenic fermentation technology were discussed. Performance-enhancing strategies surveyed included (1) alkaline fermentation; (2) co-digestion and high solid-state fermentation; (3) pretreatments; (4) use of high loading rate and short retention time; (5) integration with electrochemical technology, and (6) adoption of membrane bioreactors. The recommended operations include: mesophilic temperature (thermophilic for high loading rate fermentation), C/N ratio (20-40), OLR (< 12 g volatile solids (VS)/(L·d)), and the maximum HRT (8-12 days), alkaline fermentation, membrane technology or electrodialysis recovery. Lastly, perspectives were put into place based on critical analysis on status of acidogenic fermentation of lignocellulosic biomass wastes for VFA production.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore
| | - Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Kai-Chee Loh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore.
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore.
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore.
| |
Collapse
|
44
|
Del Sole R, Mele G, Bloise E, Mergola L. Green Aspects in Molecularly Imprinted Polymers by Biomass Waste Utilization. Polymers (Basel) 2021; 13:2430. [PMID: 34372030 PMCID: PMC8348058 DOI: 10.3390/polym13152430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Molecular Imprinting Polymer (MIP) technology is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. In the last decades, MIP technology has gained much attention from the scientific world as summarized in several reviews with this topic. Furthermore, green synthesis in chemistry is nowadays one of the essential aspects to be taken into consideration in the development of novel products. In accordance with this feature, the MIP community more recently devoted considerable research and development efforts on eco-friendly processes. Among other materials, biomass waste, which is a big environmental problem because most of it is discarded, can represent a potential sustainable alternative source in green synthesis, which can be addressed to the production of high-value carbon-based materials with different applications. This review aims to focus and explore in detail the recent progress in the use of biomass waste for imprinted polymers preparation. Specifically, different types of biomass waste in MIP preparation will be exploited: chitosan, cellulose, activated carbon, carbon dots, cyclodextrins, and waste extracts, describing the approaches used in the synthesis of MIPs combined with biomass waste derivatives.
Collapse
Affiliation(s)
- Roberta Del Sole
- Department of Engineering for Innovation, University of Salento, via per Monteroni Km1, 73100 Lecce, Italy; (G.M.); (E.B.); (L.M.)
| | | | | | | |
Collapse
|
45
|
Cui T, Ma L, Wang S, Ye C, Liang X, Zhang Z, Meng G, Zheng L, Hu HS, Zhang J, Duan H, Wang D, Li Y. Atomically Dispersed Pt-N 3C 1 Sites Enabling Efficient and Selective Electrocatalytic C-C Bond Cleavage in Lignin Models under Ambient Conditions. J Am Chem Soc 2021; 143:9429-9439. [PMID: 34138542 DOI: 10.1021/jacs.1c02328] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective cleavage of C-C linkages is the key and a challenge for lignin degradation to harvest value-added aromatic compounds. To this end, electrocatalytic oxidation presents a promising technique by virtue of mild reaction conditions and strong sustainability. However, the existing electrocatalysts (traditional bulk metal and metal oxides) for C-C bond oxidative cleavage suffer from poor selectivity and low product yields. We show for the first time that atomically dispersed Pt-N3C1 sites planted on nitrogen-doped carbon nanotubes (Pt1/N-CNTs), constructed via a stepwise polymerization-carbonization-electrostatic adsorption strategy, are highly active and selective toward Cα-Cβ bond cleavage in β-O-4 model compounds under ambient conditions. Pt1/N-CNTs exhibits 99% substrate conversion with 81% yield of benzaldehyde, which is exceptional and unprecedented compared with previously reported electrocatalysts. Moreover, Pt1/N-CNTs using only 0.41 wt % Pt achieved a much higher benzaldehyde yield than those of the state-of-the-art bulk Pt electrode (100 wt % Pt) and commercial Pt/C catalyst (20 wt % Pt). Systematic experimental investigation together with density functional theory (DFT) calculation suggests that the superior performance of Pt1/N-CNTs arises from the atomically dispersed Pt-N3C1 sites facilitating the formation of a key Cβ radical intermediate, further inducing a radical/radical cross-coupling path to break the Cα-Cβ bond. This work opens up opportunities in lignin valorization via a green and sustainable electrochemical route with ultralow noble metal usage.
Collapse
Affiliation(s)
- Tingting Cui
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lina Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shibin Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chenliang Ye
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ge Meng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Han-Shi Hu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiangwei Zhang
- Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Zhang Q, Zuo J, Wang L, Peng F, Chen S, Liu Z. Non Noble-Metal Copper-Cobalt Bimetallic Catalyst for Efficient Catalysis of the Hydrogenolysis of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran under Mild Conditions. ACS OMEGA 2021; 6:10910-10920. [PMID: 34056244 PMCID: PMC8153901 DOI: 10.1021/acsomega.1c00676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
The efficient catalysis of the hydrogenation of 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) over non noble-metal catalysts has received great attention in recent years. However, the reaction usually requires harsh conditions, such as high reaction temperature and excessively long reaction time, which limits the application of the non noble-metal catalysts. In this work, a bimetallic Co x -Cu@C catalyst was prepared via the pyrolysis of MOFs, and an 85% DMF yield was achieved under a reaction temperature and time of 160 °C and 3 h, respectively. The results of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) mapping, and other characterization techniques showed that the synthesis method in this paper realized the in situ loading of cobalt into the copper catalyst. The reaction mechanism studies revealed that the cobalt doping effectively enhanced the hydrogenation activity of the copper-based catalyst on the C-O bond at a low temperature. Moreover, the bimetallic Co x -Cu@C catalyst exhibited superior reusability without any loss in the activity when subjected to five testing rounds.
Collapse
|
47
|
Banwell MG, Pollard B, Liu X, Connal LA. Exploiting Nature's Most Abundant Polymers: Developing New Pathways for the Conversion of Cellulose, Hemicellulose, Lignin and Chitin into Platform Molecules (and Beyond). Chem Asian J 2021; 16:604-620. [PMID: 33463003 DOI: 10.1002/asia.202001451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/17/2021] [Indexed: 12/16/2022]
Abstract
The four most prominent forms of biomass are cellulose, hemicellulose, lignin and chitin. In efforts to develop sustainable sources of platform molecules there has been an increasing focus on examining how these biopolymers could be exploited as feedstocks that support the chemical supply chain, including in the production of fine chemicals. Many different approaches are possible and some of the ones being developed in the authors' laboratories are emphasised.
Collapse
Affiliation(s)
- Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou/Zhuhai, 510632/519070, P. R. China.,Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Brett Pollard
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Xin Liu
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Luke A Connal
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
48
|
Tang C, Zheng Y, Jaroniec M, Qiao S. Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angew Chem Int Ed Engl 2021; 60:19572-19590. [DOI: 10.1002/anie.202101522] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Cheng Tang
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Yao Zheng
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry Kent State University Kent OH 44242 USA
| | - Shi‐Zhang Qiao
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
49
|
Tang C, Zheng Y, Jaroniec M, Qiao S. Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cheng Tang
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Yao Zheng
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry Kent State University Kent OH 44242 USA
| | - Shi‐Zhang Qiao
- Centre for Materials in Energy and Catalysis School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
50
|
Tu Q, Parvatker A, Garedew M, Harris C, Eckelman M, Zimmerman JB, Anastas PT, Lam CH. Electrocatalysis for Chemical and Fuel Production: Investigating Climate Change Mitigation Potential and Economic Feasibility. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3240-3249. [PMID: 33577303 DOI: 10.1021/acs.est.0c07309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The manufacture of goods from oil, coal, or gas to everyday consumer products comprises in more or less all cases at least one catalytic step. Compared to conventional hydrothermal catalysis, electrocatalysis possesses the advantage of mild operational conditions and high selectivity, yet the potential energy savings and climate change mitigation have rarely been assessed. This study conducted a life cycle assessment (LCA) for the electrocatalytic oxidation of crude glycerol to produce lactic acid, one of the most common platform chemicals. The LCA results demonstrated a 31% reduction in global warming potential (GWP) compared to the benchmark (bio- and chemocatalytic) processes. Additionally, electrocatalysis yielded a synergetic potential to mitigate climate change depending on the scenario. For example, electrocatalysis combined with a low-carbon-intensity grid can reduce GWP by 57% if the process yields lactic acid and lignocellulosic biofuel as compared to a conventional fossil-based system with functionally equivalent products. This illustrates the potential of electrocatalysis as an important contributor to climate change mitigation across multiple industries. A technoeconomic analysis (TEA) for electrocatalytic lactic acid production indicated considerable challenges in economic feasibility due to the significant upfront capital cost. This challenge could be largely addressed by enabling dual redox processing to produce separate streams of renewable chemicals and biofuels simultaneously.
Collapse
Affiliation(s)
- Qingshi Tu
- Department of Wood Science, University of British Columbia, Vancouver, V6T 1Z4 Canada
| | - Abhijeet Parvatker
- College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mahlet Garedew
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511 United States
| | - Cole Harris
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06549, United States
| | - Matthew Eckelman
- College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Julie B Zimmerman
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
- School of Forestry and Environmental Studies, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511 United States
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511 United States
| | - Paul T Anastas
- Centre for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Chun Ho Lam
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China, SAR
| |
Collapse
|