1
|
Bisarya A, Dhole S, Kumar A. Efficient net transfer-dehydrogenation of glycerol: NNN pincer-Mn and manganese chloride as a catalyst unlocks the effortless production of lactic acid and isopropanol. Dalton Trans 2024; 53:12698-12709. [PMID: 39015088 DOI: 10.1039/d4dt01731e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Herein, a series of pincer-Mn complexes based on bis(imino)pyridine ligands of the type R2NNN (R = tBu, iPr, Cy and Ph) were synthesized and characterized using various spectroscopic techniques. SCXRD studies revealed a trigonal bipyramidal geometry around the metal center in all the complexes. EPR spectroscopy confirmed the presence of high-spin Mn(II) centers with the consistent observation of sextets in EPR spectra. Additionally, solution magnetic moment measurement exhibited values ranging from 5.8 to 6.2 BM for all the complexes, which are in accordance with the theoretical value of 5.92 BM. HRMS analysis complemented structural characterization, showing fragments corresponding to various solvent adducts and derivatives of the complexes. Subsequently, the synthesized complexes were investigated for their catalytic activity in the transfer dehydrogenation of glycerol to lactic acid in the presence of acetone. Among the considered complexes, the catalyst Ph2NNNMnCl2 was found to be highly efficient. Remarkably, a yield of 92% LA was observed with >99% selectivity at 0.5 mol% loading of Ph2NNNMnCl2 in the presence of 1 equivalent of NaOH at 140 °C in 24 h, surpassing the yield obtained from its precursor MnCl2·4H2O, where a yield of 72% LA was observed with 96% selectivity under similar reaction conditions. This catalytic system was further investigated with a range of acceptors, and good to moderate yields were observed in most cases. Moreover, several control experiments, including reaction with PPh3, CS2 and Hg, highlighted the major involvement of molecular species in the reaction medium. Deuterium labelling studies indicated the involvement of C-H bond activation in the catalytic cycle but not in the rate-determining step (RDS), with a secondary kinetic isotope effect (KIE) of 1.25.
Collapse
Affiliation(s)
- Akshara Bisarya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Sunil Dhole
- ChemDist Group of Companies, Plot No 144 A, Sector 7, PCNTDA, Bhosari, Pune - 411026, Maharashtra, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences & Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
2
|
Jiménez-Martin JM, El Tawil-Lucas M, Montaña M, Linares M, Osatiashtiani A, Vila F, Alonso DM, Moreno J, García A, Iglesias J. Production of Methyl Lactate with Sn-USY and Sn-β: Insights into Real Hemicellulose Valorization. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:2771-2782. [PMID: 38389903 PMCID: PMC10880092 DOI: 10.1021/acssuschemeng.3c07356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Potassium exchanged Sn-β and Sn-USY zeolites have been tested for the transformation of various aldoses (hexoses and pentoses), exhibiting outstanding catalytic activity and selectivity toward methyl lactate. Insights into the transformation pathways using reaction intermediates-dihydroxyacetone and glycolaldehyde-as substrates revealed a very high catalytic proficiency of both zeolites in aldol and retro-aldol reactions, showcasing their ability to convert small sugars into large sugars, and vice versa. This feature makes the studied Sn-zeolites outstanding catalysts for the transformation of a wide variety of sugars into a limited range of commercially valuable alkyl lactates and derivatives. [K]Sn-β proved to be superior to [K]Sn-USY in terms of shape selectivity, exerting tight control on the distribution of produced α-hydroxy methyl esters. This shape selectivity was evident in the transformation of several complex sugar mixtures emulating different hemicelluloses-sugar cane bagasse, Scots pine, and white birch-that, despite showing very different sugar compositions, were almost exclusively converted into methyl lactate and methyl vinyl glycolate in very similar proportions. Moreover, the conversion of a real hemicellulose hydrolysate obtained from Scots pine through a simple GVL-based organosolv process confirmed the high activity and selectivity of [K]Sn-β in the studied transformation, opening new pathways for the chemical valorization of this plentiful, but underutilized, sugar feedstock.
Collapse
Affiliation(s)
- Jose M. Jiménez-Martin
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - Miriam El Tawil-Lucas
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - Maia Montaña
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - María Linares
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - Amin Osatiashtiani
- Energy
& Bioproducts Research Institute (EBRI), College of Engineering
and Physical Sciences, Aston University,
Aston Triangle, Birmingham B4 7ET, United
Kingdom
| | - Francisco Vila
- Energy
and Sustainable Chemistry (EQS) Group, Institute
of Catalysis and Petrochemistry, CSIC, C/Marie Curie 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - David Martín Alonso
- Energy
and Sustainable Chemistry (EQS) Group, Institute
of Catalysis and Petrochemistry, CSIC, C/Marie Curie 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Jovita Moreno
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - Alicia García
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - Jose Iglesias
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
- Instituto
de Tecnologías para la Sostenibilidad. Universidad Rey Juan Carlos. C/Tulipan s/n, 28933. Madrid, Spain
| |
Collapse
|
3
|
Catalytic Conversion of Sugars into Lactic Acid via a RuOx/MoS2 Catalyst. Catalysts 2023. [DOI: 10.3390/catal13030545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
The catalytic transformation of sugars into lactic acid has shown great potential for the scalable utilization of renewable biomass. Herein, RuOx/MoS2 catalysts were synthesized with the assistance of CaO for the one-pot conversion of glucose to lactic acid. Under the reaction conditions of 120 °C and 1MPa O2, a 96.6% glucose conversion and a 54.3% lactic acid yield were realized in the one-pot catalytic reaction, with relatively high stability after four successive cycles. This catalytic system was also effective for the conversion of many other carbohydrate substrates, such as fructose, xylose and cellulose (selectivity 68.9%, 78.2% and 50.6%, respectively). According to catalyst characterizations and conditional experiments, the highly dispersed RuOx species on the surface of MoS2, together with OH−, promoted isomerization, retro-aldol condensation, dehydration and hydration reactions, resulting in a relatively high lactic acid yield for sugar conversions.
Collapse
|
4
|
Yang X, Hu J, Lu T, Zhou L. The important role of weak Brønsted acid site of Sn-β in conversion of sucrose to methyl lactate. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
Low J, Zhang C, Ma J, Murzin DY, Xiong Y. Heterogeneous photocatalysis: what is being overlooked? TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Sivagurunathan P, Raj T, Chauhan PS, Kumari P, Satlewal A, Gupta RP, Kumar R. High-titer lactic acid production from pilot-scale pretreated non-detoxified rice straw hydrolysate at high-solid loading. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Zhang G, Zhao J, Jin X, Qian Y, Zhou M, Jia X, Sun F, Jiang J, Xu W, Sun B. Combined dehydrogenation of glycerol with catalytic transfer hydrogenation of H2 acceptors to chemicals: Opportunities and challenges. Front Chem 2022; 10:962579. [PMID: 36072704 PMCID: PMC9442352 DOI: 10.3389/fchem.2022.962579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Catalytic transformation of low-cost glycerol to value-added lactic acid (LA) is considered as one of the most promising technologies for the upgradation of glycerol into renewable products. Currently, research studies reveal that anaerobic transformation of glycerol to LA could also obtain green H2 with the same yield of LA. However, the combined value-added utilization of released H2 with high selectivity of LA during glycerol conversion under mild conditions still remains a grand challenge. In this perspective, for the first time, we conducted a comprehensive and critical discussion on current strategies for combined one-pot/tandem dehydrogenation of glycerol to LA with catalytic transfer hydrogenation of H2 acceptors (such as CO2) to other chemicals. The aim of this overview was to provide a general guidance on the atomic economic reaction pathway for upgrading low-cost glycerol and CO2 to LA as well as other chemicals.
Collapse
Affiliation(s)
- Guangyu Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
- *Correspondence: Guangyu Zhang,
| | - Jian Zhao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, China
| | - Yanan Qian
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Mingchuan Zhou
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Xuewu Jia
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Feng Sun
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Jie Jiang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Wei Xu
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Bing Sun
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| |
Collapse
|
8
|
Shen Z, Chen W, Zhang W, Gu M, Dong W, Xia M, Si H, Zhang Y. Efficient Catalytic Conversion of Glucose into Lactic Acid over Y-β and Yb-β Zeolites. ACS OMEGA 2022; 7:25200-25209. [PMID: 35910139 PMCID: PMC9330418 DOI: 10.1021/acsomega.2c02051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a new type of modified β zeolites with rare earth elements (ree) was discovered for producing lactic acid from glucose and achieved a good catalytic effect. At first, the catalytic performances of ree-β zeolites, ree oxides, and single-transition-metal-β zeolites were compared, and the result showed that Y-β and Yb-β zeolites had the best catalytic activity under the same reaction conditions. Under the best reaction conditions, the maximum yields of lactic acid with Y-β and Yb-β catalysts were 45.3 and 43.6%, respectively. The acid characterization showed that Y/Yb-β zeolites had a similar number of Lewis acid sites as Sn-β zeolites, and they were also more than other transition-metal-β zeolites. Thus, Y-β and Yb-β zeolites had a higher lactic acid yield than those catalysts. It is interesting to note that Y-β and Yb-β zeolites owned more Brønsted acids but produced fewer byproducts. Combining the decomposition experiment of 5-hydroxymethyl furfural, fewer byproducts were produced with Y-β and Yb-β zeolites because the low amount of Brønsted acid contained could hinder the decomposition of 5-hydroxymethyl furfural, thereby slowing down the side reaction.
Collapse
Affiliation(s)
- Zheng Shen
- State
Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory
of Yangtze River Water Environment of MOE, National Engineering Research
Center of Protected Agriculture, Shanghai Engineering Research Center
of Protected Agriculture, Tongji University, Shanghai 200092, China
| | - Wenbo Chen
- State
Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory
of Yangtze River Water Environment of MOE, National Engineering Research
Center of Protected Agriculture, Shanghai Engineering Research Center
of Protected Agriculture, Tongji University, Shanghai 200092, China
| | - Wei Zhang
- State
Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory
of Yangtze River Water Environment of MOE, National Engineering Research
Center of Protected Agriculture, Shanghai Engineering Research Center
of Protected Agriculture, Tongji University, Shanghai 200092, China
| | - Minyan Gu
- State
Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory
of Yangtze River Water Environment of MOE, National Engineering Research
Center of Protected Agriculture, Shanghai Engineering Research Center
of Protected Agriculture, Tongji University, Shanghai 200092, China
| | - Wenjie Dong
- State
Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory
of Yangtze River Water Environment of MOE, National Engineering Research
Center of Protected Agriculture, Shanghai Engineering Research Center
of Protected Agriculture, Tongji University, Shanghai 200092, China
| | - Meng Xia
- State
Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory
of Yangtze River Water Environment of MOE, National Engineering Research
Center of Protected Agriculture, Shanghai Engineering Research Center
of Protected Agriculture, Tongji University, Shanghai 200092, China
| | - Huiping Si
- State
Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory
of Yangtze River Water Environment of MOE, National Engineering Research
Center of Protected Agriculture, Shanghai Engineering Research Center
of Protected Agriculture, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State
Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory
of Yangtze River Water Environment of MOE, National Engineering Research
Center of Protected Agriculture, Shanghai Engineering Research Center
of Protected Agriculture, Tongji University, Shanghai 200092, China
- Shanghai
Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
9
|
Jimenez-Martin JM, Orozco-Saumell A, Hernando H, Linares M, Mariscal R, López Granados M, García A, Iglesias J. Efficient Conversion of Glucose to Methyl Lactate with Sn-USY: Retro-aldol Activity Promotion by Controlled Ion Exchange. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:8885-8896. [PMID: 35846797 PMCID: PMC9278086 DOI: 10.1021/acssuschemeng.2c01987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sn-USY materials have been prepared through an optimized post-synthetic catalytic metalation procedure. These zeolites displayed, upon ion exchange with alkaline metals, an outstanding activity in the direct transformation of glucose into methyl lactate, yielding more than 70% of the starting glucose as the target product, and an overall combined retro-aldol condensation product yield above 95% in a short reaction time (<4 h). This outstanding catalytic performance is ascribed to the neutralization of Brønsted acid sites, the consequent depression of side reactions, and a higher population of tin open sites in the ion-exchanged Sn-USY zeolites. Reusability tests evidenced some loss of catalytic activity, partially caused by the closing of tin sites, although the use of small amounts of water in the reaction media demonstrated that this deactivation mechanism can be, at least, partially alleviated.
Collapse
Affiliation(s)
- Jose M. Jimenez-Martin
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/ Tulipan
s/n, 28933 Madrid, Spain
| | - Ana Orozco-Saumell
- Energy
and Sustainable Chemistry (EQS) Group, Institute
of Catalysis and Petrochemistry, CSIC, C/ Marie Curie 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Héctor Hernando
- IMDEA
Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| | - María Linares
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/ Tulipan
s/n, 28933 Madrid, Spain
| | - Rafael Mariscal
- Energy
and Sustainable Chemistry (EQS) Group, Institute
of Catalysis and Petrochemistry, CSIC, C/ Marie Curie 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Manuel López Granados
- Energy
and Sustainable Chemistry (EQS) Group, Institute
of Catalysis and Petrochemistry, CSIC, C/ Marie Curie 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Alicia García
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/ Tulipan
s/n, 28933 Madrid, Spain
| | - Jose Iglesias
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/ Tulipan
s/n, 28933 Madrid, Spain
| |
Collapse
|
10
|
Engineered Microbial Cell Factories for Sustainable Production of L-Lactic Acid: A Critical Review. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
With the increasing demand for the biodegradable polymer material polylactic acid and its advantage of being metabolized by the human body, L-lactic acid (L-LA) is becoming increasingly attractive in environmental protection and food industry applications. However, the supply of L-LA is not satisfied, and the price is still high. Compared to enzymatic and chemical synthesis methods, L-LA production by microbial fermentation has the advantages of low cost, large yield, simple operation, and environmental protection. This review summarizes the advances in engineering microbial cell factories to produce L-LA. First, the synthetic pathways and microorganisms for L-LA production are outlined. Then, the metabolic engineering strategies for constructing cell factories to overproduce L-LA are summarized and fermentation modes for L-LA production are also given. Finally, the challenges and prospects of the microbial production of L-LA are discussed. This review provides theoretical guidance for researchers engaged in L-LA production.
Collapse
|
11
|
Ma J, Yang X, Yao S, Guo Y, Sun R. Photocatalytic Biorefinery to Lactic Acid: A Carbon Nitride Framework with O Atoms Replacing the Graphitic N Linkers Shows Fast Migration/Separation of Charge. ChemCatChem 2022. [DOI: 10.1002/cctc.202200097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jiliang Ma
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials College of Light Industry and Chemical Engineering Dalian Polytechnic University Dalian 116034 P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control College of Light Industrial and Food Engineering Guangxi University Nanning 530004 P. R. China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials Fuzhou Fujian 350108 P. R. China
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology Shandong Academy of Sciences Jinan 250353 P. R. China
| | - Xiaopan Yang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials College of Light Industry and Chemical Engineering Dalian Polytechnic University Dalian 116034 P. R. China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control College of Light Industrial and Food Engineering Guangxi University Nanning 530004 P. R. China
| | - Yanzhu Guo
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials College of Light Industry and Chemical Engineering Dalian Polytechnic University Dalian 116034 P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control College of Light Industrial and Food Engineering Guangxi University Nanning 530004 P. R. China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials College of Light Industry and Chemical Engineering Dalian Polytechnic University Dalian 116034 P. R. China
| |
Collapse
|
12
|
Botti L, Navar R, Tolborg S, Martínez-Espín JS, Hammond C. High-Productivity Continuous Conversion of Glucose to α-Hydroxy Esters over Postsynthetic and Hydrothermal Sn-Beta Catalysts. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:4391-4403. [PMID: 35433137 PMCID: PMC9007564 DOI: 10.1021/acssuschemeng.1c06989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The retro-aldol fragmentation of glucose is a complex reaction of industrial relevance, which provides a potentially sustainable route for the production of α-hydroxyester compounds of relevance to the green polymer industry, such as methyl lactate and methyl vinyl glycolate. Although the zeolite catalyst, Sn-Beta, has shown itself to be a promising catalyst for this process, important information concerning the stability of the catalyst during continuous operation is not yet known, and improvements to its yield of retro-aldol products are also essential. Here, we perform detailed spectroscopic studies of a selection of Sn-Beta catalysts and evaluate their performances for the retro-aldol fragmentation of glucose under continuous processing conditions, with the dual aims of developing new structure-activity-lifetime relationships for the reaction and maximizing the productivity and selectivity of the process. Kinetic studies are performed under both established reaction conditions and in the presence of additional promoters, including water and alkali salts. Generally, this study demonstrates that the reaction conditions and choice of catalyst cannot be optimized in isolation, since each catalyst explored in this study responds differently to each particular process perturbation. However, by evaluating each type of the Sn-Beta catalyst under each set of reaction conditions, we reveal that postsynthetic Sn-Beta catalysts exhibit the best levels of performance when activity, selectivity, and stability are taken into account. Specifically, the best levels of performance are obtained with a postsynthetic Sn-Beta catalyst that is preactivated in a flow of methanol prior to reaction, which provides α-hydroxyester yields over 90% at the early stages of continuous operation and operates at high yield and selectivity for over 60 h on stream. Space-time-yields over two orders of magnitude higher than any previously reported for this reaction are achieved, setting a new benchmark in terms of the retro-aldol fragmentation of glucose.
Collapse
Affiliation(s)
- Luca Botti
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Ricardo Navar
- Cardiff
Catalysis Institute, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.
| | - Søren Tolborg
- Biobased
Chemicals R&D, Haldor
Topsøe A/S, Haldor Topsøes Allé 1, 2800 Kgs. Lyngby, Denmark
| | - Juan S. Martínez-Espín
- Biobased
Chemicals R&D, Haldor
Topsøe A/S, Haldor Topsøes Allé 1, 2800 Kgs. Lyngby, Denmark
| | - Ceri Hammond
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| |
Collapse
|
13
|
Abstract
Beta zeolite modified with Sn in the framework (Sn-Beta) was synthesized and introduced as a heterogeneous catalyst for Baeyer–Villiger oxidations about twenty years ago. Since then, both syntheses strategies, characterization and understanding as well as applications with the material have developed significantly. Remarkably, Sn-Beta zeolite has been discovered to exhibit unprecedented high catalytic efficiency for the transformation of glucose to fructose (i.e., aldoses to ketoses) and lactic acid derivatives in both aqueous and alcoholic media, which has inspired an extensive interest to develop more facile and scalable syntheses routes and applications for sugars transformations. This review survey the progress made on both syntheses approaches of Sn-Beta and applications of the material within catalyzed transformations of sugar, including bottom-up and top-down syntheses and catalyzed isomerization, dehydration, and fragmentation of sugars.
Collapse
|
14
|
Rungtaweevoranit B, Chaipojjana K, Junkaew A, Thongratkaew S, Impeng S, Faungnawakij K. Identification of Cooperative Reaction Sites in Metal-Organic Framework Catalysts for High Yielding Lactic Acid Production from d-Xylose. CHEMSUSCHEM 2022; 15:e202102653. [PMID: 34982851 DOI: 10.1002/cssc.202102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Determining the roles of surface functionality of heterogeneous acid catalysts is important for many industrial catalysts. In this study, the decisive structure of metal-organic frameworks (MOFs) is utilized to identify important features for the effective conversion of d-xylose into lactic acid. Several acidic MOFs are tested and the combination of Lewis acidity and adjacent hydroxy sites is found to be critical to attain high lactic acid yields. This hypothesis is corroborated experimentally by modification of the MOF to increase such sites, which affords an enhanced lactic acid yield of 79 %, and investigation of the acidity by using in situ FTIR spectroscopy. Density functional theory calculations disclose the cooperative behavior of Lewis acid sites and hydroxy groups in promoting the Cannizzaro reaction, a key step in the production of lactic acid.
Collapse
Affiliation(s)
- Bunyarat Rungtaweevoranit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kawisa Chaipojjana
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Anchalee Junkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Sutarat Thongratkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Sarawoot Impeng
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| |
Collapse
|
15
|
Ma H, Wen Y, Yu C, Qiao Y, Teng J, Ji H. Catalytic Production of Methyl Lactate from Fructose‐Based Carbohydrates Using Yttrium Modified ZSM‐5 Zeolite. ChemistrySelect 2021. [DOI: 10.1002/slct.202102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hao Ma
- College of Chemistry Guangdong University of Petrochemical Technology Maoming 525000 P. R. China
| | - Yi Wen
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Chenghua Yu
- College of Chemistry Guangdong University of Petrochemical Technology Maoming 525000 P. R. China
| | - Yanhui Qiao
- College of Chemistry Guangdong University of Petrochemical Technology Maoming 525000 P. R. China
| | - Junjiang Teng
- College of Chemistry Guangdong University of Petrochemical Technology Maoming 525000 P. R. China
| | - Hongbing Ji
- College of Chemistry Guangdong University of Petrochemical Technology Maoming 525000 P. R. China
- Fine Chemical Industry Research Institute School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| |
Collapse
|