1
|
Lo Vercio LD, Green RM, Dauter A, Barretto EC, Vidal-García M, Devine J, Marchini M, Robertson S, Zhao X, Mahika A, Shakir MB, Guo S, Boughner JC, Szabo-Rogers H, Dean W, Lander AD, Marcucio RS, Forkert ND, Hallgrímsson B. Quantifying the relationship between cell proliferation and morphology during development of the face. Development 2025; 152:dev204511. [PMID: 39989423 PMCID: PMC12045601 DOI: 10.1242/dev.204511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Morphogenesis requires highly coordinated, complex interactions between cellular processes: proliferation, migration and apoptosis, along with physical tissue interactions. How these cellular and tissue dynamics drive morphogenesis remains elusive. Three dimensional (3D) microscopic imaging holds great promise, and generates elegant images, but generating even moderate throughput for quantified images is challenging for many reasons. As a result, the association between morphogenesis and cellular processes in 3D developing tissues has not been fully explored. To address this gap, we have developed an imaging and image analysis pipeline to enable 3D quantification of cellular dynamics along with 3D morphology for the same individual embryo. Specifically, we focus on how 3D distribution of proliferation relates to morphogenesis during mouse facial development. Our method involves imaging with light-sheet microscopy, automated segmentation of cells and tissues using machine learning-based tools, and quantification of external morphology by geometric morphometrics. Applying this framework, we show that changes in proliferation are tightly correlated with changes in morphology over the course of facial morphogenesis. These analyses illustrate the potential of this pipeline to investigate mechanistic relationships between cellular dynamics and morphogenesis during embryonic development.
Collapse
Affiliation(s)
- Lucas D. Lo Vercio
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rebecca M. Green
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Andreas Dauter
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elizabeth C. Barretto
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marta Vidal-García
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jay Devine
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Medical Imaging Research Center, MIRC, UZ Leuven, B-3000 Leuven, Belgium
| | - Marta Marchini
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Samuel Robertson
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Xiang Zhao
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Anandita Mahika
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - M. Bilal Shakir
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sienna Guo
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Julia C. Boughner
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Heather Szabo-Rogers
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Wendy Dean
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Arthur D. Lander
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA 94110, USA
| | - Nils D. Forkert
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
2
|
Mok CH, Hu D, Losa M, Risolino M, Selleri L, Marcucio RS. PBX1 and PBX3 transcription factors regulate SHH expression in the Frontonasal Ectodermal Zone through complementary mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597450. [PMID: 38895322 PMCID: PMC11185640 DOI: 10.1101/2024.06.04.597450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Sonic hedgehog (SHH) signaling from the frontonasal ectodermal zone (FEZ) is a key regulator of craniofacial morphogenesis. Along with SHH, pre-B-cell leukemia homeobox (PBX) transcription factors regulate midfacial development. PBXs act in the epithelium during fusion of facial primordia, but their specific interactions with SHH have not been fully investigated. We hypothesized that PBX1/3 regulate SHH expression in the FEZ by activating or repressing transcription. The hypothesis was tested by manipulating PBX1/3 expression in chick embryos and profiling epigenomic landscapes at early developmental stages. PBX1/3 expression was perturbed in the chick face beginning at stage 10 (HH10) using RCAS viruses, and the resulting SHH expression was assessed at HH22. Overexpressing PBX1 expanded SHH expression, while overexpressing PBX3 decreased SHH expression. Conversely, reducing PBX1 expression decreased SHH expression, but reducing PBX3 induced ectopic SHH expression. We performed ATAC-seq and mapped binding of PBX1 and PBX3 with ChIP-seq on the FEZ at HH22 to assess direct interactions of PBX1/3 with the SHH locus. These multi-omics approaches uncovered a 400 bp PBX1-enriched element within intron 1 of SHH (chr2:8,173,222-8,173,621). Enhancer activity of this element was demonstrated by electroporation of reporter constructs in ovo and luciferase reporter assays in vitro . When bound by PBX1, this element upregulates transcription, while it downregulates transcription when bound by PBX3. The present study identifies a cis- regulatory element, named SFE1, that interacts with PBX1/3 to modulate SHH expression in the FEZ and establishes that PBX1 and PBX3 play complementary roles in SHH regulation during embryonic development.
Collapse
|
3
|
Singh N, Richtsmeier JT, Reeves RH. Comparative analysis of craniofacial shape in two mouse models of Down syndrome: Ts65Dn and TcMAC21. J Anat 2024; 244:1007-1014. [PMID: 38264931 PMCID: PMC11095296 DOI: 10.1111/joa.14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/25/2024] Open
Abstract
Mouse models are central to studying and understanding the genotypic-to-phenotypic outcomes of Down syndrome (DS), a complex condition caused by an extra copy of the long arm of human chromosome 21. The recently developed TcMAC21-a transchromosomic mouse strain with comparable gene dosage to human chromosome 21 (Hsa21)-includes more Hsa21 genes than any other model of DS. Recent studies on TcMAC21 have provided valuable insight into the molecular, physiological, and neuroanatomical aspects of the model. However, relatively little is known about the craniofacial phenotype of TcMAC21 mice, particularly as it compares to the widely studied Ts65Dn model. Here we conducted a quantitative study of the cranial morphology of TcMAC21 and Ts65Dn mice and their respective unaffected littermates. Our comparative data comprise forty three-dimensional cranial measurements taken on micro-computed tomography scans of the heads of TcMAC21 and Ts65Dn mice. Our results show that TcMAC21 exhibit similar patterns of craniofacial change to Ts65Dn. However, the DS-specific morphology is more pronounced in Ts65Dn mice. Specifically, Ts65Dn present with more medio-lateral broadening and retraction of the snout compared to TcMAC21. Our findings reveal the complexity of potential gene interaction in the production of craniofacial phenotypes.
Collapse
Affiliation(s)
- Nandini Singh
- California State University, Sacramento, California, USA
| | | | - Roger H Reeves
- Physiology and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Pei J, Liao X, Ge L, Liu J, Jiang X. Anterior cerebral falx plane in MR images to estimate the craniofacial midline. Sci Rep 2023; 13:16489. [PMID: 37779134 PMCID: PMC10543626 DOI: 10.1038/s41598-023-42807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
Multiple methods have been proposed for evaluating the symmetry of facial contour by utilizing the median sagittal plane of the skull as a reference and measuring the maxillofacial region. To replace the manual mark point analysis method, we used the anterior cerebral falx plane in MRI images as an indicator of the craniofacial midline. The MRI examination data of 30 individuals were analyzed with a MeVisLab workstation. Two independent examiners performed 15 anthropometric measurements (4 angular, 11 linear) and compared the MRI-based anterior cerebral falx plane with the manual mark point analysis of the craniofacial midline estimation. All measurements were repeated after 3 weeks. Statistical analyses included the repeatability and reproducibility of the 2 methods based on intra-observer and inter-observer correlation coefficients (ICCs), respectively. Precision was estimated by intergroup comparison of the coefficient of variation. The anterior falx plane derived from the MRI data resulted in an intra-observer ICC of 0.869 ± 0.065 (range 0.733-0.936) and inter-observer ICC of 0.876 ± 0.0417 (0.798-0.932) for all measurements, showing significant correlations with the ICC values obtained by the mark point method (p < 0.05). The coefficient of variation showed that the precisions of the 2 methods were statistically comparable. We conclude that, for MRI-based craniofacial midline estimation, measurements made using the anterior cerebral falx plane are as precise, repeatable, and reproducible as those using the manual mark point analysis method. It has a high potential for application in radiation-free 3-dimensional craniofacial analysis.
Collapse
Affiliation(s)
- Jun Pei
- Affiliated Hospital of Chifeng University, Yuanlin Road 98, Chi Feng, 150400, Neimenggu, China
| | - Xu Liao
- Affiliated Hospital of Chifeng University, Yuanlin Road 98, Chi Feng, 150400, Neimenggu, China
| | - Lingling Ge
- Affiliated Hospital of Chifeng University, Yuanlin Road 98, Chi Feng, 150400, Neimenggu, China
| | - Jianwei Liu
- Affiliated Hospital of Chifeng University, Yuanlin Road 98, Chi Feng, 150400, Neimenggu, China
| | - Xiling Jiang
- Affiliated Hospital of Chifeng University, Yuanlin Road 98, Chi Feng, 150400, Neimenggu, China.
| |
Collapse
|
5
|
Qing G, Jia F, Liu J, Jiang X. Anatomical network modules of the human central nervous-craniofacial skeleton system. Front Neurol 2023; 14:1164283. [PMID: 37602256 PMCID: PMC10433180 DOI: 10.3389/fneur.2023.1164283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Anatomical network analysis (AnNA) is a systems biological framework based on network theory that enables anatomical structural analysis by incorporating modularity to model structural complexity. The human brain and facial structures exhibit close structural and functional relationships, suggestive of a co-evolved anatomical network. The present study aimed to analyze the human head as a modular entity that comprises the central nervous system, including the brain, spinal cord, and craniofacial skeleton. An AnNA model was built using 39 anatomical nodes from the brain, spinal cord, and craniofacial skeleton. The linkages were identified using peripheral nerve supply and direct contact between structures. The Spinglass algorithm in the igraph software was applied to construct a network and identify the modules of the central nervous system-craniofacial skeleton anatomical network. Two modules were identified. These comprised an anterior module, which included the forebrain, anterior cranial base, and upper-middle face, and a posterior module, which included the midbrain, hindbrain, mandible, and posterior cranium. These findings may reflect the genetic and signaling networks that drive the mosaic central nervous system and craniofacial development and offer important systems biology perspectives for developmental disorders of craniofacial structures.
Collapse
Affiliation(s)
- Gele Qing
- Affiliated Hospital of Chifeng University, Chifeng, China
| | - Fucang Jia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianwei Liu
- Affiliated Hospital of Chifeng University, Chifeng, China
| | - Xiling Jiang
- Affiliated Hospital of Chifeng University, Chifeng, China
| |
Collapse
|
6
|
Green RM, Lo Vercio LD, Dauter A, Barretto EC, Devine J, Vidal-García M, Marchini M, Robertson S, Zhao X, Mahika A, Shakir MB, Guo S, Boughner JC, Dean W, Lander AD, Marcucio RS, Forkert ND, Hallgrímsson B. Quantifying the relationship between cell proliferation and morphology during development of the face. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540515. [PMID: 37214859 PMCID: PMC10197725 DOI: 10.1101/2023.05.12.540515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Morphogenesis requires highly coordinated, complex interactions between cellular processes: proliferation, migration, and apoptosis, along with physical tissue interactions. How these cellular and tissue dynamics drive morphogenesis remains elusive. Three dimensional (3D) microscopic imaging poses great promise, and generates elegant images. However, generating even moderate through-put quantified images is challenging for many reasons. As a result, the association between morphogenesis and cellular processes in 3D developing tissues has not been fully explored. To address this critical gap, we have developed an imaging and image analysis pipeline to enable 3D quantification of cellular dynamics along with 3D morphology for the same individual embryo. Specifically, we focus on how 3D distribution of proliferation relates to morphogenesis during mouse facial development. Our method involves imaging with light-sheet microscopy, automated segmentation of cells and tissues using machine learning-based tools, and quantification of external morphology via geometric morphometrics. Applying this framework, we show that changes in proliferation are tightly correlated to changes in morphology over the course of facial morphogenesis. These analyses illustrate the potential of this pipeline to investigate mechanistic relationships between cellular dynamics and morphogenesis during embryonic development.
Collapse
Affiliation(s)
- Rebecca M Green
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lucas D Lo Vercio
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| | - Andreas Dauter
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| | - Elizabeth C Barretto
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| | - Jay Devine
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| | - Marta Vidal-García
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| | | | - Samuel Robertson
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Xiang Zhao
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Anandita Mahika
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| | - M Bilal Shakir
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| | - Sienna Guo
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| | - Julia C Boughner
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wendy Dean
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Arthur D Lander
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Nils D Forkert
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- McCaig Bone and Joint Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Smith TD, Ruf I, DeLeon VB. Ontogenetic transformation of the cartilaginous nasal capsule in mammals, a review with new observations on bats. Anat Rec (Hoboken) 2023. [PMID: 36647334 DOI: 10.1002/ar.25152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
The nasal capsule, as the most rostral part of the chondrocranium, is a critical point of connection with the facial skeleton. Its fate may influence facial form, and the varied fates of cartilage may be a vehicle contributing to morphological diversity. Here, we review ontogenetic changes in the cartilaginous nasal capsule of mammals, and make new observations on perinatal specimens of two chiropteran species of different suborders. Our observations reveal some commonalities between Rousettus leschenaultii and Desmodus rotundus, such as perinatal ossification of the first ethmoturbinal. However, in Rousettus, ossification of turbinals is demonstrated as either perichondrial or endochondral. In Desmodus, perichondrial and endochondral ossification of the posterior nasal cupula is observed at birth, a part of the nasal capsule previously shown to persist as cartilage into infancy in Rousettus. Combined with prior findings on cranial cartilages we identify several diverse transformational mechanisms by which cartilage as a tissue type may contribute to morphological diversity of the cranium. First, cartilage differentiates in an iterative fashion to increase nasal complexity, but still retains the capacity for later elaboration via de novo bone emanating outward before or after cartilage ossifies. Second, cartilage acts as a driver of growth at growth centers, or via interstitial growth (e.g., septal cartilage). Finally, cartilage as a tissue may influence the timing of ossification and union of the facial and basicranial skeleton. In particular, cartilage at certain points of ontogeny may "model" via selective resorption, showing some similarity to bone.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Irina Ruf
- Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany
- Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Conith AJ, Hope SA, Albertson RC. Covariation of brain and skull shapes as a model to understand the role of crosstalk in development and evolution. Evol Dev 2023; 25:85-102. [PMID: 36377237 PMCID: PMC9839637 DOI: 10.1111/ede.12421] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/24/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Covariation among discrete phenotypes can arise due to selection for shared functions, and/or shared genetic and developmental underpinnings. The consequences of such phenotypic integration are far-reaching and can act to either facilitate or limit morphological variation. The vertebrate brain is known to act as an "organizer" of craniofacial development, secreting morphogens that can affect the shape of the growing neurocranium, consistent with roles for pleiotropy in brain-neurocranium covariation. Here, we test this hypothesis in cichlid fishes by first examining the degree of shape integration between the brain and the neurocranium using three-dimensional geometric morphometrics in an F5 hybrid population, and then genetically mapping trait covariation using quantitative trait loci (QTL) analysis. We observe shape associations between the brain and the neurocranium, a pattern that holds even when we assess associations between the brain and constituent parts of the neurocranium: the rostrum and braincase. We also recover robust genetic signals for both hard- and soft-tissue traits and identify a genomic region where QTL for the brain and braincase overlap, implicating a role for pleiotropy in patterning trait covariation. Fine mapping of the overlapping genomic region identifies a candidate gene, notch1a, which is known to be involved in patterning skeletal and neural tissues during development. Taken together, these data offer a genetic hypothesis for brain-neurocranium covariation, as well as a potential mechanism by which behavioral shifts may simultaneously drive rapid change in neuroanatomy and craniofacial morphology.
Collapse
Affiliation(s)
- Andrew J. Conith
- Biology DepartmentUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Sylvie A. Hope
- Biology DepartmentUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - R. Craig Albertson
- Biology DepartmentUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| |
Collapse
|
9
|
MINCER ST, NIETHAMER TK, TENG T, BUSH JO, PERCIVAL CJ. Investigating the effects of compound paralogous EPHB receptor mutations on mouse facial development. Dev Dyn 2022; 251:1138-1155. [PMID: 35025117 PMCID: PMC9924224 DOI: 10.1002/dvdy.454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Variation in facial shape may arise from the combinatorial or overlapping actions of paralogous genes. Given its many members, and overlapping expression and functions, the EPH receptor family is a compelling candidate source of craniofacial morphological variation. We performed a detailed morphometric analysis of an allelic series of E14.5 Ephb1-3 receptor mutants to determine the effect of each paralogous receptor gene on craniofacial morphology. RESULTS We found that Ephb1, Ephb2, and Ephb3 genotypes significantly influenced facial shape, but Ephb1 effects were weaker than Ephb2 and Ephb3 effects. Ephb2-/- and Ephb3-/- mutations affected similar aspects of facial morphology, but Ephb3-/- mutants had additional facial shape effects. Craniofacial differences across the allelic series were largely consistent with predicted additive genetic effects. However, we identified a potentially important nonadditive effect where Ephb1 mutants displayed different morphologies depending on the combination of other Ephb paralogs present, where Ephb1+/- , Ephb1-/- , and Ephb1-/- ; Ephb3-/- mutants exhibited a consistent deviation from their predicted facial shapes. CONCLUSIONS This study provides a detailed assessment of the effects of Ephb receptor gene paralogs on E14.5 mouse facial morphology and demonstrates how the loss of specific receptors contributes to facial dysmorphology.
Collapse
Affiliation(s)
- Sarah T. MINCER
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Terren K. NIETHAMER
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America,Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America,Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America,Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Teng TENG
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America,Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America,Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America,Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Jeffrey O. BUSH
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America,Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America,Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America,Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Christopher J. PERCIVAL
- Department of Anthropology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
10
|
Marchini M, Hu D, Lo Vercio L, Young NM, Forkert ND, Hallgrímsson B, Marcucio R. Wnt Signaling Drives Correlated Changes in Facial Morphology and Brain Shape. Front Cell Dev Biol 2021; 9:644099. [PMID: 33855022 PMCID: PMC8039397 DOI: 10.3389/fcell.2021.644099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/08/2021] [Indexed: 11/20/2022] Open
Abstract
Canonical Wnt signaling plays multiple roles critical to normal craniofacial development while its dysregulation is known to be involved in structural birth defects of the face. However, when and how Wnt signaling influences phenotypic variation, including those associated with disease, remains unclear. One potential mechanism is via Wnt signaling’s role in the patterning of an early facial signaling center, the frontonasal ectodermal zone (FEZ), and its subsequent regulation of early facial morphogenesis. For example, Wnt signaling may directly alter the shape and/or magnitude of expression of the sonic hedgehog (SHH) domain in the FEZ. To test this idea, we used a replication-competent avian sarcoma retrovirus (RCAS) encoding Wnt3a to modulate its expression in the facial mesenchyme. We then quantified and compared ontogenetic changes in treated to untreated embryos in the three-dimensional (3D) shape of both the SHH expression domain of the FEZ, and the morphology of the facial primordia and brain using iodine-contrast microcomputed tomography imaging and 3D geometric morphometrics (3DGM). We found that increased Wnt3a expression in early stages of head development produces correlated variation in shape between both structural and signaling levels of analysis. In addition, altered Wnt3a activation disrupted the integration between the forebrain and other neural tube derivatives. These results show that activation of Wnt signaling influences facial shape through its impact on the forebrain and SHH expression in the FEZ, and highlights the close relationship between morphogenesis of the forebrain and midface.
Collapse
Affiliation(s)
- Marta Marchini
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Diane Hu
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Lucas Lo Vercio
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Nathan M Young
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Nils D Forkert
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Benedikt Hallgrímsson
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
11
|
Katsube M, Yamada S, Utsunomiya N, Yamaguchi Y, Takakuwa T, Yamamoto A, Imai H, Saito A, Vora SR, Morimoto N. A 3D analysis of growth trajectory and integration during early human prenatal facial growth. Sci Rep 2021; 11:6867. [PMID: 33767268 PMCID: PMC7994314 DOI: 10.1038/s41598-021-85543-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/26/2021] [Indexed: 01/03/2023] Open
Abstract
Significant shape changes in the human facial skeleton occur in the early prenatal period, and understanding this process is critical for studying a myriad of congenital facial anomalies. However, quantifying and visualizing human fetal facial growth has been challenging. Here, we applied quantitative geometric morphometrics (GM) to high-resolution magnetic resonance images of human embryo and fetuses, to comprehensively analyze facial growth. We utilized non-linear growth estimation and GM methods to assess integrated epigenetic growth between masticatory muscles and associated bones. Our results show that the growth trajectory of the human face in the early prenatal period follows a curved line with three flexion points. Significant antero-posterior development occurs early, resulting in a shift from a mandibular prognathic to relatively orthognathic appearance, followed by expansion in the lateral direction. Furthermore, during this time, the development of the zygoma and the mandibular ramus is closely integrated with the masseter muscle.
Collapse
Affiliation(s)
- Motoki Katsube
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Human Health Sciences, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Natsuko Utsunomiya
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yutaka Yamaguchi
- Human Health Sciences, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tetsuya Takakuwa
- Human Health Sciences, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Yamamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hirohiko Imai
- Department of Systems Science, Kyoto University Graduate School of Informatics, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Atsushi Saito
- Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Siddharth R Vora
- Oral Health Sciences, University of British Columbia, JBM 372-2199 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Naoki Morimoto
- Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
12
|
Hong L, Sun H, Amendt BA. MicroRNA function in craniofacial bone formation, regeneration and repair. Bone 2021; 144:115789. [PMID: 33309989 PMCID: PMC7869528 DOI: 10.1016/j.bone.2020.115789] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Bone formation in the craniofacial complex is regulated by cranial neural crest (CNC) and mesoderm-derived cells. Different elements of the developing skull, face, mandible, maxilla (jaws) and nasal bones are regulated by an array of transcription factors, signaling molecules and microRNAs (miRs). miRs are molecular modulators of these factors and act to restrict their expression in a temporal-spatial mechanism. miRs control the different genetic pathways that form the craniofacial complex. By understanding how miRs function in vivo during development they can be adapted to regenerate and repair craniofacial genetic anomalies as well as bone diseases and defects due to traumatic injuries. This review will highlight some of the new miR technologies and functions that form new bone or inhibit bone regeneration.
Collapse
Affiliation(s)
- Liu Hong
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, USA
| | - Hongli Sun
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, USA
| | - Brad A Amendt
- Iowa Institute for Oral Health Research, The University of Iowa, Iowa City, IA, USA; The University of Iowa, Department of Anatomy and Cell Biology, Iowa City, IA, USA; Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
13
|
Urošević A, Ajduković M, Arntzen JW, Ivanović A. Morphological integration and serial homology: A case study of the cranium and anterior vertebrae in salamanders. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Aleksandar Urošević
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković” National Institute of Republic of Serbia University of Belgrade Belgrade Serbia
| | - Maja Ajduković
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković” National Institute of Republic of Serbia University of Belgrade Belgrade Serbia
| | | | - Ana Ivanović
- Naturalis Biodiversity Center Leiden The Netherlands
- Institute of Zoology Faculty of Biology University of Belgrade Belgrade Serbia
| |
Collapse
|
14
|
Niethamer TK, Teng T, Franco M, Du YX, Percival CJ, Bush JO. Aberrant cell segregation in the craniofacial primordium and the emergence of facial dysmorphology in craniofrontonasal syndrome. PLoS Genet 2020; 16:e1008300. [PMID: 32092051 PMCID: PMC7058351 DOI: 10.1371/journal.pgen.1008300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/05/2020] [Accepted: 12/29/2019] [Indexed: 11/18/2022] Open
Abstract
Craniofrontonasal syndrome (CFNS) is a rare X-linked disorder characterized by craniofacial, skeletal, and neurological anomalies and is caused by mutations in EFNB1. Heterozygous females are more severely affected by CFNS than hemizygous males, a phenomenon called cellular interference that results from EPHRIN-B1 mosaicism. In Efnb1 heterozygous mice, mosaicism for EPHRIN-B1 results in cell sorting and more severe phenotypes than Efnb1 hemizygous males, but how craniofacial dysmorphology arises from cell segregation is unknown and CFNS etiology therefore remains poorly understood. Here, we couple geometric morphometric techniques with temporal and spatial interrogation of embryonic cell segregation in mouse mutant models to elucidate mechanisms underlying CFNS pathogenesis. By generating EPHRIN-B1 mosaicism at different developmental timepoints and in specific cell populations, we find that EPHRIN-B1 regulates cell segregation independently in early neural development and later in craniofacial development, correlating with the emergence of quantitative differences in face shape. Whereas specific craniofacial shape changes are qualitatively similar in Efnb1 heterozygous and hemizygous mutant embryos, heterozygous embryos are quantitatively more severely affected, indicating that Efnb1 mosaicism exacerbates loss of function phenotypes rather than having a neomorphic effect. Notably, neural tissue-specific disruption of Efnb1 does not appear to contribute to CFNS craniofacial dysmorphology, but its disruption within neural crest cell-derived mesenchyme results in phenotypes very similar to widespread loss. EPHRIN-B1 can bind and signal with EPHB1, EPHB2, and EPHB3 receptor tyrosine kinases, but the signaling partner(s) relevant to CFNS are unknown. Geometric morphometric analysis of an allelic series of Ephb1; Ephb2; Ephb3 mutant embryos indicates that EPHB2 and EPHB3 are key receptors mediating Efnb1 hemizygous-like phenotypes, but the complete loss of EPHB1-3 does not fully recapitulate the severity of CFNS-like Efnb1 heterozygosity. Finally, by generating Efnb1+/Δ; Ephb1; Ephb2; Ephb3 quadruple knockout mice, we determine how modulating cumulative receptor activity influences cell segregation in craniofacial development and find that while EPHB2 and EPHB3 play an important role in craniofacial cell segregation, EPHB1 is more important for cell segregation in the brain; surprisingly, complete loss of EPHB1-EPHB3 does not completely abrogate cell segregation. Together, these data advance our understanding of the etiology and signaling interactions underlying CFNS dysmorphology.
Collapse
Affiliation(s)
- Terren K. Niethamer
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Teng Teng
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Melanie Franco
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Yu Xin Du
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Christopher J. Percival
- Department of Anthropology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (CJP); (JOB)
| | - Jeffrey O. Bush
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (CJP); (JOB)
| |
Collapse
|
15
|
Jomaa J, Martínez-Vargas J, Essaili S, Haider N, Abramyan J. Disconnect between the developing eye and craniofacial prominences in the avian embryo. Mech Dev 2020; 161:103596. [PMID: 32044294 DOI: 10.1016/j.mod.2020.103596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/21/2019] [Accepted: 01/27/2020] [Indexed: 11/28/2022]
Abstract
In the amniote embryo, the upper jaw and nasal cavities form through coordinated outgrowth and fusion of craniofacial prominences. Adjacent to the embryonic prominences are the developing eyes, which abut the maxillary and lateral nasal prominences. The embryos of extant sauropsids (birds and nonavian reptiles) develop particularly large eyes in comparison to mammals, leading researchers to propose that the developing eye may facilitate outgrowth of prominences towards the midline in order to aid prominence fusion. To test this hypothesis, we performed unilateral and bilateral ablation of the developing eyes in chicken embryos, with the aim of evaluating subsequent prominence formation and fusion. Our analyses revealed minor interaction between the developing craniofacial prominences and the eyes, inconsequential to the fusion of the upper beak. At later developmental stages, the skull exhibited only localized effects from missing eyes, while geometric morphometrics revealed minimal effect on overall shape of the upper jaw when it develops without eyes. Our results indicate that the substantial size of the developing eyes in the chicken embryo exert little influence over the fusion of the craniofacial prominences, despite their effect on the size and shape of maxillary prominences and components of the skull.
Collapse
Affiliation(s)
- Jamil Jomaa
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| | | | - Shadya Essaili
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| | - Nida Haider
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| | - John Abramyan
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA.
| |
Collapse
|
16
|
Woronowicz KC, Schneider RA. Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw. EvoDevo 2019; 10:17. [PMID: 31417668 PMCID: PMC6691539 DOI: 10.1186/s13227-019-0131-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/22/2019] [Indexed: 01/16/2023] Open
Abstract
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA.,2Present Address: Department of Genetics, Harvard Medical School, Orthopaedic Research Laboratories, Children's Hospital Boston, Boston, MA 02115 USA
| | - Richard A Schneider
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA
| |
Collapse
|
17
|
Neaux D, Wroe S, Ledogar JA, Heins Ledogar S, Sansalone G. Morphological integration affects the evolution of midline cranial base, lateral basicranium, and face across primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:37-47. [PMID: 31290149 DOI: 10.1002/ajpa.23899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The basicranium and face are two integrated bony structures displaying great morphological diversity across primates. Previous studies in hominids determined that the basicranium is composed of two independent modules: the midline basicranium, mostly influenced by brain size, and the lateral basicranium, predominantly associated with facial shape. To better assess how morphological integration impacts the evolution of primate cranial shape diversity, we test to determine whether the relationships found in hominids are retained across the order. MATERIALS AND METHODS Three-dimensional landmarks (29) were placed on 143 computed tomography scans of six major clades of extant primate crania. We assessed the covariation between midline basicranium, lateral basicranium, face, and endocranial volume using phylogenetically informed partial least squares analyses and phylogenetic generalized least squares models. RESULTS We found significant integration between lateral basicranium and face and between midline basicranium and face. We also described a significant correlation between midline basicranium and endocranial volume but not between lateral basicranium and endocranial volume. DISCUSSION Our findings demonstrate a significant and pervasive integration in the craniofacial structures across primates, differing from previous results in hominids. The uniqueness of module organization in hominids may explain this distinction. We found that endocranial volume is significantly integrated to the midline basicranium but not to the lateral basicranium. This finding underlines the significant effect of brain size on the shape of the midline structures of the cranial base in primates. With the covariations linking the studied features defined here, we suggest that future studies should focus on determining the causal links between them.
Collapse
Affiliation(s)
- Dimitri Neaux
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements (AASPE), UMR 7209, Muséum national d'Histoire naturelle-CNRS, Paris, France.,Function, Evolution & Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia.,Laboratoire Paléontologie Evolution Paléoécosystèmes Paléoprimatologie (PALEVOPRIM), UMR 7262, Université de Poitiers-CNRS, Poitiers, France
| | - Stephen Wroe
- Function, Evolution & Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Justin A Ledogar
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Sarah Heins Ledogar
- Department of Archaeology & Palaeoanthropology, School of Humanities, University of New England, Armidale, New South Wales, Australia
| | - Gabriele Sansalone
- Function, Evolution & Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia.,Department of Sciences, Roma Tre University, Rome, Italy.,Center for Evolutionary Ecology, Rome, Italy
| |
Collapse
|
18
|
Duclos KK, Hendrikse JL, Jamniczky HA. Investigating the evolution and development of biological complexity under the framework of epigenetics. Evol Dev 2019; 21:247-264. [PMID: 31268245 PMCID: PMC6852014 DOI: 10.1111/ede.12301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biological complexity is a key component of evolvability, yet its study has been hampered by a focus on evolutionary trends of complexification and inconsistent definitions. Here, we demonstrate the utility of bringing complexity into the framework of epigenetics to better investigate its utility as a concept in evolutionary biology. We first analyze the existing metrics of complexity and explore the link between complexity and adaptation. Although recently developed metrics allow for a unified framework, they omit developmental mechanisms. We argue that a better approach to the empirical study of complexity and its evolution includes developmental mechanisms. We then consider epigenetic mechanisms and their role in shaping developmental and evolutionary trajectories, as well as the development and organization of complexity. We argue that epigenetics itself could have emerged from complexity because of a need to self‐regulate. Finally, we explore hybridization complexes and hybrid organisms as potential models for studying the association between epigenetics and complexity. Our goal is not to explain trends in biological complexity but to help develop and elucidate novel questions in the investigation of biological complexity and its evolution. This manuscript argues that biological complexity is better understood under the framework of epigenetics and that the epigenetic interactions emerge from the self‐regulation of complex systems. Hybrids are offered as models to study these properties.
Collapse
Affiliation(s)
- Kevin K Duclos
- Department of Cell Biology and Anatomy, The University of Calgary, Calgary, Alberta, Canada
| | - Jesse L Hendrikse
- Department of Community Health Sciences, The University of Calgary, Calgary, Alberta, Canada
| | - Heather A Jamniczky
- Department of Cell Biology and Anatomy, The University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Katsube M, Yamada S, Yamaguchi Y, Takakuwa T, Yamamoto A, Imai H, Saito A, Shimizu A, Suzuki S. Critical Growth Processes for the Midfacial Morphogenesis in the Early Prenatal Period. Cleft Palate Craniofac J 2019; 56:1026-1037. [PMID: 30773047 DOI: 10.1177/1055665619827189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Congenital midfacial hypoplasia often requires intensive treatments and is a typical condition for the Binder phenotype and syndromic craniosynostosis. The growth trait of the midfacial skeleton during the early fetal period has been assumed to be critical for such an anomaly. However, previous embryological studies using 2-dimensional analyses and specimens during the late fetal period have not been sufficient to reveal it. OBJECTIVE To understand the morphogenesis of the midfacial skeleton in the early fetal period via 3-dimensional quantification of the growth trait and investigation of the developmental association between the growth centers and midface. METHODS Magnetic resonance images were obtained from 60 human fetuses during the early fetal period. Three-dimensional shape changes in the craniofacial skeleton along growth were quantified and visualized using geometric morphometrics. Subsequently, the degree of development was computed. Furthermore, the developmental association between the growth centers and the midfacial skeleton was statistically investigated and visualized. RESULTS The zygoma expanded drastically in the anterolateral dimension, and the lateral part of the maxilla developed forward until approximately 13 weeks of gestation. The growth centers such as the nasal septum and anterior portion of the sphenoid were highly associated with the forward growth of the midfacial skeleton (RV = 0.589; P < .001). CONCLUSIONS The development of the midface, especially of the zygoma, before 13 weeks of gestation played an essential role in the midfacial development. Moreover, the growth centers had a strong association with midfacial forward growth before birth.
Collapse
Affiliation(s)
- Motoki Katsube
- 1 Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,2 Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigehito Yamada
- 2 Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,3 Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yutaka Yamaguchi
- 2 Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Takakuwa
- 3 Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Yamamoto
- 4 Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohiko Imai
- 5 Department of Systems Science, Kyoto University Graduate School of Informatics, Kyoto, Japan
| | - Atsushi Saito
- 6 Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akinobu Shimizu
- 6 Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shigehiko Suzuki
- 1 Department of Plastic and Reconstructive Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
20
|
Sun Z, da Fontoura CSG, Moreno M, Holton NE, Sweat M, Sweat Y, Lee MK, Arbon J, Bidlack FB, Thedens DR, Nopoulos P, Cao H, Eliason S, Weinberg SM, Martin JF, Moreno-Uribe L, Amendt BA. FoxO6 regulates Hippo signaling and growth of the craniofacial complex. PLoS Genet 2018; 14:e1007675. [PMID: 30286078 PMCID: PMC6197693 DOI: 10.1371/journal.pgen.1007675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/22/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
The mechanisms that regulate post-natal growth of the craniofacial complex and that ultimately determine the size and shape of our faces are not well understood. Hippo signaling is a general mechanism to control tissue growth and organ size, and although it is known that Hippo signaling functions in neural crest specification and patterning during embryogenesis and before birth, its specific role in postnatal craniofacial growth remains elusive. We have identified the transcription factor FoxO6 as an activator of Hippo signaling regulating neonatal growth of the face. During late stages of mouse development, FoxO6 is expressed specifically in craniofacial tissues and FoxO6-/- mice undergo expansion of the face, frontal cortex, olfactory component and skull. Enlargement of the mandible and maxilla and lengthening of the incisors in FoxO6-/- mice are associated with increases in cell proliferation. In vitro and in vivo studies demonstrated that FoxO6 activates Lats1 expression, thereby increasing Yap phosphorylation and activation of Hippo signaling. FoxO6-/- mice have significantly reduced Hippo Signaling caused by a decrease in Lats1 expression and decreases in Shh and Runx2 expression, suggesting that Shh and Runx2 are also linked to Hippo signaling. In vitro, FoxO6 activates Hippo reporter constructs and regulates cell proliferation. Furthermore PITX2, a regulator of Hippo signaling is associated with Axenfeld-Rieger Syndrome causing a flattened midface and we show that PITX2 activates FoxO6 expression. Craniofacial specific expression of FoxO6 postnatally regulates Hippo signaling and cell proliferation. Together, these results identify a FoxO6-Hippo regulatory pathway that controls skull growth, odontogenesis and face morphology.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Clarissa S. G. da Fontoura
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Myriam Moreno
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Nathan E. Holton
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Mason Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Yan Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Myoung Keun Lee
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh PA, United States of America
| | - Jed Arbon
- Private practice, Cary, North Carolina United States of America
| | | | - Daniel R. Thedens
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Peggy Nopoulos
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Huojun Cao
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Steven Eliason
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Seth M. Weinberg
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh PA, United States of America
| | - James F. Martin
- Department of Physiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Lina Moreno-Uribe
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Brad A. Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
21
|
Kaucka M, Petersen J, Tesarova M, Szarowska B, Kastriti ME, Xie M, Kicheva A, Annusver K, Kasper M, Symmons O, Pan L, Spitz F, Kaiser J, Hovorakova M, Zikmund T, Sunadome K, Matise MP, Wang H, Marklund U, Abdo H, Ernfors P, Maire P, Wurmser M, Chagin AS, Fried K, Adameyko I. Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. eLife 2018; 7:34465. [PMID: 29897331 PMCID: PMC6019068 DOI: 10.7554/elife.34465] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/12/2018] [Indexed: 12/14/2022] Open
Abstract
Facial shape is the basis for facial recognition and categorization. Facial features reflect the underlying geometry of the skeletal structures. Here, we reveal that cartilaginous nasal capsule (corresponding to upper jaw and face) is shaped by signals generated by neural structures: brain and olfactory epithelium. Brain-derived Sonic Hedgehog (SHH) enables the induction of nasal septum and posterior nasal capsule, whereas the formation of a capsule roof is controlled by signals from the olfactory epithelium. Unexpectedly, the cartilage of the nasal capsule turned out to be important for shaping membranous facial bones during development. This suggests that conserved neurosensory structures could benefit from protection and have evolved signals inducing cranial cartilages encasing them. Experiments with mutant mice revealed that the genomic regulatory regions controlling production of SHH in the nervous system contribute to facial cartilage morphogenesis, which might be a mechanism responsible for the adaptive evolution of animal faces and snouts.
Collapse
Affiliation(s)
- Marketa Kaucka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Julian Petersen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Bara Szarowska
- Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Kicheva
- Institute of Science and Technology IST Austria, Klosterneuburg, Austria
| | - Karl Annusver
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Orsolya Symmons
- Department of Bioengineering, University of Pennsylvania, Philadelphia, United States
| | - Leslie Pan
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Francois Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Genomics of Animal Development Unit, Institut Pasteur, Paris, France
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Maria Hovorakova
- Department of Developmental Biology, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Kazunori Sunadome
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michael P Matise
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, United States
| | - Hui Wang
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, United States
| | - Ulrika Marklund
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hind Abdo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pascal Maire
- Department of Development, Reproduction and Cancer, Institute Cochin, Paris, France
| | - Maud Wurmser
- Department of Development, Reproduction and Cancer, Institute Cochin, Paris, France
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| |
Collapse
|
22
|
Neaux D, Sansalone G, Ledogar JA, Heins Ledogar S, Luk TH, Wroe S. Basicranium and face: Assessing the impact of morphological integration on primate evolution. J Hum Evol 2018; 118:43-55. [DOI: 10.1016/j.jhevol.2018.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
|
23
|
Abstract
Morphological divergence of domesticated as compared to wild forms must result from changes in the ontogenetic process. Species-specific tests for heterochrony have rejected a single explanation of domestic forms representing juveniles of their wild relatives. Ontogenetic allometric trajectories for 12 pairs of wild and domestic mammals were examined using skull growth data for 1070 specimens, including representatives from all lineages in which domestication has occurred. A suite of tests were performed to quantify allometric disparity in wild and domestic forms and assess the extent and patterning of modification to allometric trajectories. Domestication has modified postnatal ontogenetic allometric trajectories in mammals, and has generated disparity, achieved through lengthening of trajectory slopes and alteration to slope angles. Allometric disparity was similar for domestic forms compared to their wild relatives, whereas the magnitude of dispersion along allometric vectors differed between precocial mammals and altricial mammals, underscoring the importance of life history and shared evolutionary history in patterns of ontogenetic variation. The results verify the importance of scaling in the morphological changes associated with domestication. The response to domestication for all measured trajectory parameters was variable across species, suggesting multiple pathways of change.
Collapse
Affiliation(s)
- Laura A B Wilson
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
24
|
Green RM, Fish JL, Young NM, Smith FJ, Roberts B, Dolan K, Choi I, Leach CL, Gordon P, Cheverud JM, Roseman CC, Williams TJ, Marcucio RS, Hallgrímsson B. Developmental nonlinearity drives phenotypic robustness. Nat Commun 2017; 8:1970. [PMID: 29213092 PMCID: PMC5719035 DOI: 10.1038/s41467-017-02037-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 11/02/2017] [Indexed: 12/22/2022] Open
Abstract
Robustness to perturbation is a fundamental feature of complex organisms. Mutations are the raw material for evolution, yet robustness to their effects is required for species survival. The mechanisms that produce robustness are poorly understood. Nonlinearities are a ubiquitous feature of development that may link variation in development to phenotypic robustness. Here, we manipulate the gene dosage of a signaling molecule, Fgf8, a critical regulator of vertebrate development. We demonstrate that variation in Fgf8 expression has a nonlinear relationship to phenotypic variation, predicting levels of robustness among genotypes. Differences in robustness are not due to gene expression variance or dysregulation, but emerge from the nonlinearity of the genotype–phenotype curve. In this instance, embedded features of development explain robustness differences. How such features vary in natural populations and relate to genetic variation are key questions for unraveling the origin and evolvability of this feature of organismal development. Developmental processes often involve nonlinearities, but the consequences for translating genotype to phenotype are not well characterized. Here, Green et al. vary Fgf8 signaling across allelic series of mice and show that phenotypic robustness in craniofacial shape is explained by a nonlinear effect of Fgf8 expression.
Collapse
Affiliation(s)
- Rebecca M Green
- Department of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Nathan M Young
- Department of Orthopaedic Surgery, School of Medicine, University of California San Francisco, San Francisco, CA, 94110, USA
| | - Francis J Smith
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Benjamin Roberts
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Katie Dolan
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Irene Choi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Courtney L Leach
- Department of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Paul Gordon
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - James M Cheverud
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Charles C Roseman
- Department of Animal Biology, University of Illinois Urbana Champaign, Urbana, IL, 61801, USA
| | - Trevor J Williams
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, School of Medicine, University of California San Francisco, San Francisco, CA, 94110, USA.
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Alberta Children's Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
25
|
Larson JR, Manyama MF, Cole JB, Gonzalez PN, Percival CJ, Liberton DK, Ferrara TM, Riccardi SL, Kimwaga EA, Mathayo J, Spitzmacher JA, Rolian C, Jamniczky HA, Weinberg SM, Roseman CC, Klein O, Lukowiak K, Spritz RA, Hallgrimsson B. Body size and allometric variation in facial shape in children. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 165:327-342. [PMID: 29178597 DOI: 10.1002/ajpa.23356] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Morphological integration, or the tendency for covariation, is commonly seen in complex traits such as the human face. The effects of growth on shape, or allometry, represent a ubiquitous but poorly understood axis of integration. We address the question of to what extent age and measures of size converge on a single pattern of allometry for human facial shape. METHODS Our study is based on two large cross-sectional cohorts of children, one from Tanzania and the other from the United States (N = 7,173). We employ 3D facial imaging and geometric morphometrics to relate facial shape to age and anthropometric measures. RESULTS The two populations differ significantly in facial shape, but the magnitude of this difference is small relative to the variation within each group. Allometric variation for facial shape is similar in both populations, representing a small but significant proportion of total variation in facial shape. Different measures of size are associated with overlapping but statistically distinct aspects of shape variation. Only half of the size-related variation in facial shape can be explained by the first principal component of four size measures and age while the remainder associates distinctly with individual measures. CONCLUSIONS Allometric variation in the human face is complex and should not be regarded as a singular effect. This finding has important implications for how size is treated in studies of human facial shape and for the developmental basis for allometric variation more generally.
Collapse
Affiliation(s)
- Jacinda R Larson
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Mange F Manyama
- Division of Medical Education, Weill Cornell Medicine - Qatar, Doha, Qatar.,Department of Anatomy, Catholic University of Health and Allied Science, Mwanza, Tanzania
| | - Joanne B Cole
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Human Medical Genetics and Genomics Program and Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Paula N Gonzalez
- Department of Anthropology, University of La Plata, La Plata, Argentina
| | | | - Denise K Liberton
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Tracey M Ferrara
- Human Medical Genetics and Genomics Program and Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Sheri L Riccardi
- Human Medical Genetics and Genomics Program and Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Emmanuel A Kimwaga
- Department of Anatomy, Catholic University of Health and Allied Science, Mwanza, Tanzania
| | - Joshua Mathayo
- Department of Anatomy, Catholic University of Health and Allied Science, Mwanza, Tanzania
| | | | - Campbell Rolian
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - Heather A Jamniczky
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - Seth M Weinberg
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Charles C Roseman
- Department of Animal Biology, College of Liberal Arts and Science, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Ophir Klein
- Departments of Orofacial Sciences and Pediatrics, and Program in Craniofacial Biology, University of California San Francisco, San Francisco, California
| | - Ken Lukowiak
- Department of Physiology & Pharmacology and the Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard A Spritz
- Human Medical Genetics and Genomics Program and Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Benedikt Hallgrimsson
- Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
26
|
Motch Perrine SM, Stecko T, Neuberger T, Jabs EW, Ryan TM, Richtsmeier JT. Integration of Brain and Skull in Prenatal Mouse Models of Apert and Crouzon Syndromes. Front Hum Neurosci 2017; 11:369. [PMID: 28790902 PMCID: PMC5525342 DOI: 10.3389/fnhum.2017.00369] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/29/2017] [Indexed: 01/23/2023] Open
Abstract
The brain and skull represent a complex arrangement of integrated anatomical structures composed of various cell and tissue types that maintain structural and functional association throughout development. Morphological integration, a concept developed in vertebrate morphology and evolutionary biology, describes the coordinated variation of functionally and developmentally related traits of organisms. Syndromic craniosynostosis is characterized by distinctive changes in skull morphology and perceptible, though less well studied, changes in brain structure and morphology. Using mouse models for craniosynostosis conditions, our group has precisely defined how unique craniosynostosis causing mutations in fibroblast growth factor receptors affect brain and skull morphology and dysgenesis involving coordinated tissue-specific effects of these mutations. Here we examine integration of brain and skull in two mouse models for craniosynostosis: one carrying the FGFR2c C342Y mutation associated with Pfeiffer and Crouzon syndromes and a mouse model carrying the FGFR2 S252W mutation, one of two mutations responsible for two-thirds of Apert syndrome cases. Using linear distances estimated from three-dimensional coordinates of landmarks acquired from dual modality imaging of skull (high resolution micro-computed tomography and magnetic resonance microscopy) of mice at embryonic day 17.5, we confirm variation in brain and skull morphology in Fgfr2cC342Y/+ mice, Fgfr2+/S252W mice, and their unaffected littermates. Mutation-specific variation in neural and cranial tissue notwithstanding, patterns of integration of brain and skull differed only subtly between mice carrying either the FGFR2c C342Y or the FGFR2 S252W mutation and their unaffected littermates. However, statistically significant and substantial differences in morphological integration of brain and skull were revealed between the two mutant mouse models, each maintained on a different strain. Relative to the effects of disease-associated mutations, our results reveal a stronger influence of the background genome on patterns of brain-skull integration and suggest robust genetic, developmental, and evolutionary relationships between neural and skeletal tissues of the head.
Collapse
Affiliation(s)
- Susan M Motch Perrine
- Department of Anthropology, Pennsylvania State UniversityUniversity Park, PA, United States
| | - Tim Stecko
- Center for Quantitative Imaging, Penn State Institutes for Energy and the Environment, Pennsylvania State UniversityUniversity Park, PA, United States
| | - Thomas Neuberger
- High Field MRI Facility, Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity Park, PA, United States.,Department of Bioengineering, Pennsylvania State UniversityUniversity Park, PA, United States
| | - Ethylin W Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew York, NY, United States
| | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State UniversityUniversity Park, PA, United States.,Center for Quantitative Imaging, Penn State Institutes for Energy and the Environment, Pennsylvania State UniversityUniversity Park, PA, United States
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State UniversityUniversity Park, PA, United States
| |
Collapse
|
27
|
Genome-wide association study of facial morphology reveals novel associations with FREM1 and PARK2. PLoS One 2017; 12:e0176566. [PMID: 28441456 PMCID: PMC5404842 DOI: 10.1371/journal.pone.0176566] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 04/12/2017] [Indexed: 12/30/2022] Open
Abstract
Several studies have now shown evidence of association between common genetic variants and quantitative facial traits in humans. The reported associations generally involve simple univariate measures and likely represent only a small fraction of the genetic loci influencing facial morphology. In this study, we applied factor analysis to a set of 276 facial linear distances derived from 3D facial surface images of 2187 unrelated individuals of European ancestry. We retained 23 facial factors, which we then tested for genetic associations using a genome-wide panel of 10,677,593 single nucleotide polymorphisms (SNPs). In total, we identified genome-wide significant (p < 5 × 10−8) associations in three regions, including two that are novel: one involving measures of midface height at 6q26 within an intron of PARK2 (lead SNP rs9456748; p = 4.99 × 10−8) and another involving measures of central upper lip height at 9p22 within FREM1 (lead SNP rs72713618; p = 2.02 × 10−8). In both cases, the genetic association was stronger with the composite facial factor phenotype than with any of the individual linear distances that comprise those factors. While the biological role of PARK2 in the craniofacial complex is currently unclear, there is evidence from both mouse models and Mendelian syndromes that FREM1 may influence facial variation. These results highlight the potential value of data-driven multivariate phenotyping for genetic studies of human facial morphology.
Collapse
|
28
|
Zollikofer CPE, Bienvenu T, Ponce de León MS. Effects of cranial integration on hominid endocranial shape. J Anat 2017; 230:85-105. [PMID: 27503252 PMCID: PMC5192801 DOI: 10.1111/joa.12531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2016] [Indexed: 12/18/2022] Open
Abstract
Because brains do not fossilize, the internal surface of the braincase (endocast) serves as an important source of information about brain growth, development, and evolution. Recent studies of endocranial morphology and development in great apes, fossil hominins, and modern humans have revealed taxon-specific differences. However, it remains to be investigated to which extent differences in endocranial morphology reflect differences in actual brain morphology and development, and to which extent they reflect different interactions of the brain and its case with the cranial base and face. Here we address this question by analyzing the effects of cranial integration on endocranial morphology. We test the 'spatial packing' and 'facial orientation' hypotheses, which propose that size and orientation of the neurocranium relative to the viscerocranium influence endocranial shape. Results show that a substantial proportion of endocranial shape variation along and across ontogenetic trajectories is due to cranial integration. Specifically, the uniquely globular shape of the human endocast mainly results from the combination of an exceptionally large brain with a comparatively small face. Overall, thus, cranial integration has pervasive effects on endocranial morphology, and only a comparatively small proportion of inter- and intra-taxon variation can directly be associated with variation in brain morphology.
Collapse
Affiliation(s)
| | - Thibaut Bienvenu
- Anthropological Institute and MuseumUniversity of ZurichZurichSwitzerland
| | | |
Collapse
|
29
|
Neaux D. Morphological integration of the cranium inHomo,Pan, andHylobatesand the evolution of hominoid facial structures. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 162:732-746. [DOI: 10.1002/ajpa.23163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 12/05/2016] [Accepted: 12/18/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Dimitri Neaux
- Zoology Division; School of Environmental and Rural Science, University of New England; Armidale New South Wales Australia
| |
Collapse
|
30
|
Maddin HC, Piekarski N, Sefton EM, Hanken J. Homology of the cranial vault in birds: new insights based on embryonic fate-mapping and character analysis. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160356. [PMID: 27853617 PMCID: PMC5108967 DOI: 10.1098/rsos.160356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/12/2016] [Indexed: 05/24/2023]
Abstract
Bones of the cranial vault appear to be highly conserved among tetrapod vertebrates. Moreover, bones identified with the same name are assumed to be evolutionarily homologous. However, recent developmental studies reveal a key difference in the embryonic origin of cranial vault bones between representatives of two amniote lineages, mammals and birds, thereby challenging this view. In the mouse, the frontal is derived from cranial neural crest (CNC) but the parietal is derived from mesoderm, placing the CNC-mesoderm boundary at the suture between these bones. In the chicken, this boundary is located within the frontal. This difference and related data have led several recent authors to suggest that bones of the avian cranial vault are misidentified and should be renamed. To elucidate this apparent conflict, we fate-mapped CNC and mesoderm in axolotl to reveal the contributions of these two embryonic cell populations to the cranial vault in a urodele amphibian. The CNC-mesoderm boundary in axolotl is located between the frontal and parietal bones, as in the mouse but unlike the chicken. If, however, the avian frontal is regarded instead as a fused frontal and parietal (i.e. frontoparietal) and the parietal as a postparietal, then the cranial vault of birds becomes developmentally and topologically congruent with those of urodeles and mammals. This alternative hypothesis of cranial vault homology is also phylogenetically consistent with data from the tetrapod fossil record, where frontal, parietal and postparietal bones are present in stem lineages of all extant taxa, including birds. It further implies that a postparietal may be present in most non-avian archosaurs, but fused to the parietal or supraoccipital as in many extant mammals.
Collapse
|
31
|
Signor SA, Arbeitman MN, Nuzhdin SV. Gene networks and developmental context: the importance of understanding complex gene expression patterns in evolution. Evol Dev 2016; 18:201-9. [PMID: 27161950 DOI: 10.1111/ede.12187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Animal development is the product of distinct components and interactions-genes, regulatory networks, and cells-and it exhibits emergent properties that cannot be inferred from the components in isolation. Often the focus is on the genotype-to-phenotype map, overlooking the process of development that turns one into the other. We propose a move toward micro-evolutionary analysis of development, incorporating new tools that enable cell type resolution and single-cell microscopy. Using the sex determination pathway in Drosophila to illustrate potential avenues of research, we highlight some of the questions that these emerging technologies can address. For example, they provide an unprecedented opportunity to study heterogeneity within cell populations, and the potential to add the dimension of time to gene regulatory network analysis. Challenges still remain in developing methods to analyze this data and to increase the throughput. However this line of research has the potential to bridge the gaps between previously more disparate fields, such as population genetics and development, opening up new avenues of research.
Collapse
Affiliation(s)
- Sarah A Signor
- Program in Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michelle N Arbeitman
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Sergey V Nuzhdin
- Program in Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA.,Applied Mathematics, Saint Petersburg State Polytechnical University, St. Petersburg, Russia
| |
Collapse
|
32
|
Kague E, Roy P, Asselin G, Hu G, Simonet J, Stanley A, Albertson C, Fisher S. Osterix/Sp7 limits cranial bone initiation sites and is required for formation of sutures. Dev Biol 2016; 413:160-72. [PMID: 26992365 DOI: 10.1016/j.ydbio.2016.03.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/16/2022]
Abstract
During growth, individual skull bones overlap at sutures, where osteoblast differentiation and bone deposition occur. Mutations causing skull malformations have revealed some required genes, but many aspects of suture regulation remain poorly understood. We describe a zebrafish mutation in osterix/sp7, which causes a generalized delay in osteoblast maturation. While most of the skeleton is patterned normally, mutants have specific defects in the anterior skull and upper jaw, and the top of the skull comprises a random mosaic of bones derived from individual initiation sites. Osteoblasts at the edges of the bones are highly proliferative and fail to differentiate, consistent with global changes in gene expression. We propose that signals from the bone itself are required for orderly recruitment of precursor cells and growth along the edges. The delay in bone maturation caused by loss of Sp7 leads to unregulated bone formation, revealing a new mechanism for patterning the skull and sutures.
Collapse
Affiliation(s)
- Erika Kague
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Paula Roy
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Garrett Asselin
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - Gui Hu
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jacqueline Simonet
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra Stanley
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA, USA
| | - Shannon Fisher
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Young R, Maga AM. Performance of single and multi-atlas based automated landmarking methods compared to expert annotations in volumetric microCT datasets of mouse mandibles. Front Zool 2015; 12:33. [PMID: 26628903 PMCID: PMC4666065 DOI: 10.1186/s12983-015-0127-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/19/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Here we present an application of advanced registration and atlas building framework DRAMMS to the automated annotation of mouse mandibles through a series of tests using single and multi-atlas segmentation paradigms and compare the outcomes to the current gold standard, manual annotation. RESULTS Our results showed multi-atlas annotation procedure yields landmark precisions within the human observer error range. The mean shape estimates from gold standard and multi-atlas annotation procedure were statistically indistinguishable for both Euclidean Distance Matrix Analysis (mean form matrix) and Generalized Procrustes Analysis (Goodall F-test). Further research needs to be done to validate the consistency of variance-covariance matrix estimates from both methods with larger sample sizes. CONCLUSION Multi-atlas annotation procedure shows promise as a framework to facilitate truly high-throughput phenomic analyses by channeling investigators efforts to annotate only a small portion of their datasets.
Collapse
Affiliation(s)
- Ryan Young
- />Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 Ninth Ave, 98101 Seattle, WA USA
| | - A. Murat Maga
- />Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA USA
- />Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 Ninth Ave, 98101 Seattle, WA USA
- />Department of Oral Biology, University of Washington, Seattle, WA USA
| |
Collapse
|
34
|
Hallgrimsson B, Percival CJ, Green R, Young NM, Mio W, Marcucio R. Morphometrics, 3D Imaging, and Craniofacial Development. Curr Top Dev Biol 2015; 115:561-97. [PMID: 26589938 DOI: 10.1016/bs.ctdb.2015.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent studies have shown how volumetric imaging and morphometrics can add significantly to our understanding of morphogenesis, the developmental basis for variation, and the etiology of structural birth defects. On the other hand, the complex questions and diverse imaging data in developmental biology present morphometrics with more complex challenges than applications in virtually any other field. Meeting these challenges is necessary in order to understand the mechanistic basis for variation in complex morphologies. This chapter reviews the methods and theory that enable the application of modern landmark-based morphometrics to developmental biology and craniofacial development, in particular. We discuss the theoretical foundations of morphometrics as applied to development and review the basic approaches to the quantification of morphology. Focusing on geometric morphometrics, we discuss the principal statistical methods for quantifying and comparing morphological variation and covariation structure within and among groups. Finally, we discuss the future directions for morphometrics in developmental biology that will be required for approaches that enable quantitative integration across the genotype-phenotype map.
Collapse
Affiliation(s)
- Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, and McCaig Bone and Joint Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Christopher J Percival
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, and McCaig Bone and Joint Institute, University of Calgary, Calgary, Alberta, Canada
| | - Rebecca Green
- Department of Cell Biology and Anatomy, Alberta Children's Hospital Research Institute, and McCaig Bone and Joint Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nathan M Young
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, University of California San Francisco, San Francisco, California, USA
| | - Washington Mio
- Department of Mathematics, Florida State University, Tallahassee, Florida, USA
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
35
|
Hu D, Young NM, Xu Q, Jamniczky H, Green RM, Mio W, Marcucio RS, Hallgrimsson B. Signals from the brain induce variation in avian facial shape. Dev Dyn 2015; 244:1133-1143. [PMID: 25903813 DOI: 10.1002/dvdy.24284] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND How developmental mechanisms generate the phenotypic variation that is the raw material for evolution is largely unknown. Here, we explore whether variation in a conserved signaling axis between the brain and face contributes to differences in morphogenesis of the avian upper jaw. In amniotes, including both mice and avians, signals from the brain establish a signaling center in the ectoderm (the Frontonasal ectodermal zone or "FEZ") that directs outgrowth of the facial primordia. RESULTS Here we show that the spatial organization of this signaling center differs among avians, and these correspond to Sonic hedgehog (Shh) expression in the basal forebrain and embryonic facial shape. In ducks this basal forebrain domain is present almost the entire width, while in chickens it is restricted to the midline. When the duck forebrain is unilaterally transplanted into stage matched chicken embryos the face on the treated side resembles that of the donor. CONCLUSIONS Combined with previous findings, these results demonstrate that variation in a highly conserved developmental pathway has the potential to contribute to evolutionary differences in avian upper jaw morphology. Developmental Dynamics 244:1133-1143, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diane Hu
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, California
| | - Nathan M Young
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, California
| | - Qiuping Xu
- Department of Mathematics, Florida State University, Tallahassee, Florida
| | - Heather Jamniczky
- Department of Cell Biology and Anatomy, Alberta Children's Research Institute for Child and Maternal Health and the McCaig Bone and Joint Institute, University of Calgary, Calgary, Canada
| | - Rebecca M Green
- Department of Cell Biology and Anatomy, Alberta Children's Research Institute for Child and Maternal Health and the McCaig Bone and Joint Institute, University of Calgary, Calgary, Canada
| | - Washington Mio
- Department of Mathematics, Florida State University, Tallahassee, Florida
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, San Francisco General Hospital, Orthopaedic Trauma Institute, The University of California at San Francisco, School of Medicine, San Francisco, California
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, Alberta Children's Research Institute for Child and Maternal Health and the McCaig Bone and Joint Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
36
|
Lehoux C, Cloutier R. Building blocks of a fish head: Developmental and variational modularity in a complex system. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:614-28. [DOI: 10.1002/jez.b.22639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/01/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Caroline Lehoux
- Laboratoire de biologie évolutive; Université du Québec à Rimouski; Rimouski Québec Canada
| | - Richard Cloutier
- Laboratoire de biologie évolutive; Université du Québec à Rimouski; Rimouski Québec Canada
| |
Collapse
|
37
|
Neaux D, Gilissen E, Coudyzer W, Guy F. Integration between the face and the mandible ofPongoand the evolution of the craniofacial morphology of orangutans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 158:475-86. [DOI: 10.1002/ajpa.22807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Dimitri Neaux
- Institut De Paléoprimatologie, Paléontologie Humaine: Evolution Et Paléoenvironnements UMR CNRS 7262, Université De Poitiers; Poitiers F-86073 France
| | - Emmanuel Gilissen
- Department of African Zoology; Royal Museum of Central Africa; Tervuren B-3080 Belgium
- Université Libre De Bruxelles, Laboratory of Histology and Neuropathology; Brussels B-1070 Belgium
- Department of Anthropology; University of Arkansas; Fayetteville Arkansas 72701
| | - Walter Coudyzer
- Department of Radiology; University Hospitals Leuven; Leuven B-3000 Belgium
| | - Franck Guy
- Institut De Paléoprimatologie, Paléontologie Humaine: Evolution Et Paléoenvironnements UMR CNRS 7262, Université De Poitiers; Poitiers F-86073 France
| |
Collapse
|
38
|
Abstract
Background A major goal of evolutionary biology is to understand the origins of phenotypic diversity. Changes in development, for instance heterochrony, can be a potent source of phenotypic variation. On the other hand, development can also constrain the spectrum of phenotypes that can be produced. In order to understand these dual roles of development in evolution, we examined the developmental trajectory of a trait central to the extensive adaptive radiation of East African cichlid fishes: craniofacial adaptations that allow optimal exploitation of ecological niches. Specifically, we use geometric morphometric analysis to compare morphological ontogenies among six species of Lake Malawi cichlids (n > 500 individuals) that span a major ecomorphological axis. We further evaluate how modulation of Wnt signaling impacts the long-term developmental trajectory of facial development. Results We find that, despite drastic differences in adult craniofacial morphologies, there are general similarities in the path of craniofacial ontogeny among species, suggesting that natural selection is working within a conserved developmental program. However, we also detect species-specific differences in the timing, direction, and/or duration of particular developmental trajectories, including evidence of heterochrony. Previous work in cichlids and other systems suggests that species-specific differences in adult morphology are due to changes in molecular signaling pathways that regulate early craniofacial development. In support of this, we demonstrate that modulation of Wnt signaling at early stages can shift a developmental trajectory into morphospace normally occupied by another species. However, without sustained modulation, craniofacial shape can recover by juvenile stages. This underscores the idea that craniofacial development is robust and that adult head shapes are the product of many molecular changes acting over extended periods of development. Conclusions Our results are consistent with the hypothesis that development acts to both constrain and promote morphological diversity. They also illustrate the modular nature of the craniofacial skeleton and hence the ability of selection to act upon distinct anatomical features in an independent manner. We propose that trophic diversity among cichlids has been achieved via shifts in both specific (e.g., stage-specific changes in gene expression) and global (e.g., heterochrony) ontogenetic processes acting within a conserved developmental program. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0020-8) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Klingenberg CP. Studying morphological integration and modularity at multiple levels: concepts and analysis. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130249. [PMID: 25002695 DOI: 10.1098/rstb.2013.0249] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although most studies on integration and modularity have focused on variation among individuals within populations or species, this is not the only level of variation for which integration and modularity exist. Multiple levels of biological variation originate from distinct sources: genetic variation, phenotypic plasticity resulting from environmental heterogeneity, fluctuating asymmetry from random developmental variation and, at the interpopulation or interspecific levels, evolutionary change. The processes that produce variation at all these levels can impart integration or modularity on the covariance structure among morphological traits. In turn, studies of the patterns of integration and modularity can inform about the underlying processes. In particular, the methods of geometric morphometrics offer many advantages for such studies because they can characterize the patterns of morphological variation in great detail and maintain the anatomical context of the structures under study. This paper reviews biological concepts and analytical methods for characterizing patterns of variation and for comparing across levels. Because research comparing patterns across level has only just begun, there are relatively few results, generalizations are difficult and many biological and statistical questions remain unanswered. Nevertheless, it is clear that research using this approach can take advantage of an abundance of new possibilities that are so far largely unexplored.
Collapse
Affiliation(s)
- Christian Peter Klingenberg
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
40
|
Parsons TE, Downey CM, Jirik FR, Hallgrimsson B, Jamniczky HA. Mind the gap: genetic manipulation of basicranial growth within synchondroses modulates calvarial and facial shape in mice through epigenetic interactions. PLoS One 2015; 10:e0118355. [PMID: 25692674 PMCID: PMC4334972 DOI: 10.1371/journal.pone.0118355] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 01/08/2015] [Indexed: 12/17/2022] Open
Abstract
Phenotypic integration patterns in the mammalian skull have long been a focus of intense interest as a result of their suspected influence on the trajectory of hominid evolution. Here we test the hypothesis that perturbation of cartilage growth, which directly affects only the chondrocranium during development, will produce coordinated shape changes in the adult calvarium and face regardless of mechanism. Using two murine models of cartilage undergrowth that target two very different mechanisms, we show that strong reduction in cartilage growth produces a short, wide, and more flexed cranial base. This in turn produces a short, wide face in both models. Cranial base and face are already correlated early in ontogeny, and the relationship between these modules gains structure through postnatal growth and development. These results provide further evidence that there exist physical interactions between developing parts of the phenotype that produce variation at a distance from the actual locus upon which a particular selective pressure is acting. Phenotypic changes observed over the course of evolution may not all require adaptationist explanations; rather, it is likely that a substantial portion of observed phenotypic variation over the history of a clade is not directly adaptive but rather a secondary consequence of some local response to selection.
Collapse
Affiliation(s)
- Trish E Parsons
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Charlene M Downey
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Frank R Jirik
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Benedikt Hallgrimsson
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Heather A Jamniczky
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
41
|
Green RM, Feng W, Phang T, Fish JL, Li H, Spritz RA, Marcucio RS, Hooper J, Jamniczky H, Hallgrímsson B, Williams T. Tfap2a-dependent changes in mouse facial morphology result in clefting that can be ameliorated by a reduction in Fgf8 gene dosage. Dis Model Mech 2015; 8:31-43. [PMID: 25381013 PMCID: PMC4283648 DOI: 10.1242/dmm.017616] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/02/2014] [Indexed: 12/20/2022] Open
Abstract
Failure of facial prominence fusion causes cleft lip and palate (CL/P), a common human birth defect. Several potential mechanisms can be envisioned that would result in CL/P, including failure of prominence growth and/or alignment as well as a failure of fusion of the juxtaposed epithelial seams. Here, using geometric morphometrics, we analyzed facial outgrowth and shape change over time in a novel mouse model exhibiting fully penetrant bilateral CL/P. This robust model is based upon mutations in Tfap2a, the gene encoding transcription factor AP-2α, which has been implicated in both syndromic and non-syndromic human CL/P. Our findings indicate that aberrant morphology and subsequent misalignment of the facial prominences underlies the inability of the mutant prominences to fuse. Exencephaly also occured in some of the Tfap2a mutants and we observed additional morphometric differences that indicate an influence of neural tube closure defects on facial shape. Molecular analysis of the CL/P model indicates that Fgf signaling is misregulated in the face, and that reducing Fgf8 gene dosage can attenuate the clefting pathology by generating compensatory changes. Furthermore, mutations in either Tfap2a or Fgf8 increase variance in facial shape, but the combination of these mutations restores variance to normal levels. The alterations in variance provide a potential mechanistic link between clefting and the evolution and diversity of facial morphology. Overall, our findings suggest that CL/P can result from small gene-expression changes that alter the shape of the facial prominences and uncouple their coordinated morphogenesis, which is necessary for normal fusion.
Collapse
Affiliation(s)
- Rebecca M Green
- Department of Craniofacial Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Weiguo Feng
- Department of Craniofacial Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Tzulip Phang
- Department of Pharmacology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Jennifer L Fish
- University of California San Francisco, Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, San Francisco, CA 94110, USA
| | - Hong Li
- Department of Craniofacial Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Richard A Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, 12800 East 17th Avenue, Aurora, CO 80045, USA
| | - Ralph S Marcucio
- University of California San Francisco, Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, San Francisco, CA 94110, USA
| | - Joan Hooper
- Department of Cell and Developmental Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Heather Jamniczky
- McCaig Institute for Bone and Joint Health, Department of Cell Biology & Anatomy, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N3Z6, Canada
| | - Benedikt Hallgrímsson
- McCaig Institute for Bone and Joint Health, Department of Cell Biology & Anatomy, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N3Z6, Canada. Alberta Children's Hospital Research Institute, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N3Z6, Canada
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA. Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, 12800 East 17th Avenue, Aurora, CO 80045, USA. Department of Cell and Developmental Biology, University of Colorado Denver, 12801 East 17th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
42
|
Billington CJ, Schmidt B, Marcucio RS, Hallgrimsson B, Gopalakrishnan R, Petryk A. Impact of retinoic acid exposure on midfacial shape variation and manifestation of holoprosencephaly in Twsg1 mutant mice. Dis Model Mech 2014; 8:139-46. [PMID: 25468951 PMCID: PMC4314779 DOI: 10.1242/dmm.018275] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Holoprosencephaly (HPE) is a developmental anomaly characterized by inadequate or absent midline division of the embryonic forebrain and midline facial defects. It is believed that interactions between genes and the environment play a role in the widely variable penetrance and expressivity of HPE, although direct investigation of such effects has been limited. The goal of this study was to examine whether mice carrying a mutation in a gene encoding the bone morphogenetic protein (BMP) antagonist twisted gastrulation (Twsg1), which is associated with a low penetrance of HPE, are sensitized to retinoic acid (RA) teratogenesis. Pregnant Twsg1(+/-) dams were treated by gavage with a low dose of all-trans RA (3.75 mg/kg of body weight). Embryos were analyzed between embryonic day (E)9.5 and E11.5 by microscopy and geometric morphometric analysis by micro-computed tomography. P19 embryonal carcinoma cells were used to examine potential mechanisms mediating the combined effects of increased BMP and retinoid signaling. Although only 7% of wild-type embryos exposed to RA showed overt HPE or neural tube defects (NTDs), 100% of Twsg1(-/-) mutants exposed to RA manifested severe HPE compared to 17% without RA. Remarkably, up to 30% of Twsg1(+/-) mutants also showed HPE (23%) or NTDs (7%). The majority of shape variation among Twsg1(+/-) mutants was associated with narrowing of the midface. In P19 cells, RA induced the expression of Bmp2, acted in concert with BMP2 to increase p53 expression, caspase activation and oxidative stress. This study provides direct evidence for modifying effects of the environment in a genetic mouse model carrying a predisposing mutation for HPE in the Twsg1 gene. Further study of the mechanisms underlying these gene-environment interactions in vivo will contribute to better understanding of the pathogenesis of birth defects and present an opportunity to explore potential preventive interventions.
Collapse
Affiliation(s)
- Charles J Billington
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA. Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55454, USA
| | - Brian Schmidt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA
| | - Ralph S Marcucio
- Department of Orthopedic Surgery, University of California, San Francisco, CA 94110, USA
| | - Benedikt Hallgrimsson
- Department of Cell Biology & Anatomy, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rajaram Gopalakrishnan
- Diagnostic/Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anna Petryk
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA. Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55454, USA.
| |
Collapse
|
43
|
Aoto K, Trainor PA. Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival. Hum Mol Genet 2014; 24:698-713. [PMID: 25292199 DOI: 10.1093/hmg/ddu489] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Congenital brain and craniofacial defects often occur together as a consequence of their developmental dependency on common progenitor tissue interactions and signaling pathways during embryogenesis. A classic example of this is perturbation of midline embryo development, and disruption of Hedgehog (Hh) signaling in the pathogenesis of holoprosencephaly. However, our understanding of how Hh signaling governs cell and tissue survival remains incomplete. Patched1 (Ptch1) is a well-known receptor for Hh ligands and Ptch1 overexpression is associated with cell and tissue-specific apoptosis. Here, we demonstrate that the X-linked inhibitory apoptosis protein (XIAP) associates with the C terminus of Ptch1 (Ptch1-C) in primary cilia to inhibit Ptch1-mediated cell death. Consistent with this observation, inhibition of XIAP suppresses cell proliferation, resulting in cell death and pathogenesis of an Hh loss-of-function phenotype. Thus, co-ordinated development of the brain and face is dependent in part upon XIAP mediation of Hh/Ptch1-regulated cell survival and apoptosis during embryogenesis.
Collapse
Affiliation(s)
- Kazushi Aoto
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA and
| | - Paul A Trainor
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA and Department of Anatomy & Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66202, USA
| |
Collapse
|
44
|
Manyama M, Larson JR, Liberton DK, Rolian C, Smith FJ, Kimwaga E, Gilyoma J, Lukowiak KD, Spritz RA, Hallgrimsson B. Facial morphometrics of children with non-syndromic orofacial clefts in Tanzania. BMC Oral Health 2014; 14:93. [PMID: 25070002 PMCID: PMC4118654 DOI: 10.1186/1472-6831-14-93] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/25/2014] [Indexed: 12/04/2022] Open
Abstract
Background Orofacial clefts (cleft lip/palate; CL/P) are among the most common congenital anomalies, with prevalence that varies among different ethnic groups. Craniofacial shape differences between individuals with CL/P and healthy controls have been widely reported in non-African populations. Knowledge of craniofacial shape among individuals with non-syndromic CL/P in African populations will provide further understanding of the ethnic and phenotypic variation present in non-syndromic orofacial clefts. Methods A descriptive cross-sectional study was carried out at Bugando Medical Centre, Tanzania, comparing individuals with unrepaired non-syndromic CL/P and normal individuals without orofacial clefts. Three-dimensional (3D) facial surfaces were captured using a non-invasive 3D camera. The corresponding 3D coordinates for 26 soft tissue landmarks were used to characterize facial shape. Facial shape variation within and between groups, based on Procrustes superimposed data, was studied using geometric morphometric methods. Results Facial shape of children with cleft lip differed significantly from the control group, beyond the cleft itself. The CL/P group exhibited increased nasal and mouth width, increased interorbital distance, and more prognathic premaxillary region. Within the CL/P group, PCA showed that facial shape variation is associated with facial height, nasal cavity width, interorbital distance and midfacial prognathism. The isolated cleft lip (CL) and combined cleft lip and palate (CLP) groups did not differ significantly from one another (Procrustes distance = 0.0416, p = 0.50). Procrustes distance permutation tests within the CL/P group showed a significant shape difference between unilateral clefts and bilateral clefts (Procrustes distance = 0.0728, p = 0.0001). Our findings indicate the morphological variation is similar to those of studies of CL/P patients and their unaffected close relatives in non-African populations. Conclusion The mean facial shape in African children with non-syndromic CL/P differs significantly from children without orofacial clefts. The main differences involve interorbital width, facial width and midface prognathism. The axes of facial shape differences we observed are similar to the patterns seen in Caucasian populations, despite apparent differences in cleft prevalence and cleft type distribution. Similar facial morphology in individuals with CL/P in African and Caucasian populations suggests a similar aetiology.
Collapse
Affiliation(s)
- Mange Manyama
- Department of Anatomy, Catholic University of Health and Allied Sciences, P,O, Box 1464, Mwanza, Tanzania.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Surface landmark quantification of embryonic mouse craniofacial morphogenesis. BMC DEVELOPMENTAL BIOLOGY 2014; 14:31. [PMID: 25059626 PMCID: PMC4222779 DOI: 10.1186/1471-213x-14-31] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/01/2014] [Indexed: 12/27/2022]
Abstract
Background Morphometric quantification of subtle craniofacial variation in studies of experimentally modified embryonic mice has proved valuable in determining the effects of developmental perturbations on craniofacial morphogenesis. The direct comparison of landmark coordinate data from embryos of many different mouse strains and mouse models can advance our understanding of the bases for craniofacial variation. We propose a standard set of craniofacial surface landmarks, for use with embryonic day (E) 10.5-12.5 mice, to serve as the foundation for this type of data compilation and analysis. We quantify the intra- and inter-observer landmark placement variation associated with each landmark and determine how the results of a simple ontogenetic analysis might be influenced by selection of landmark set. Results Intraobserver landmark placement error for experienced landmarkers generally remains below 0.1 mm, with some landmarks exhibiting higher values at E11.5 and E12.5. Interobserver error tends to increase with embryonic age and those landmarks defined on wide inflections of curves or facial processes exhibit the highest error. Landmarks with highest intra- or inter-observer are identified and we determine that their removal from the dataset does not significantly change the vectors of craniofacial shape change associated with an ontogenetic regression. Conclusions Our quantification of landmark placement error demonstrates that it is preferable for a single observer to identify all landmark coordinates within a single study and that significant training and experience are necessary before a landmarker can produce data for use in larger meta-analyses. However, we are confident that this standard landmark set, once landmarks with higher error are removed, can serve as a foundation for a comparative dataset of facial morphogenesis across various mouse populations to help identify the developmental bases for phenotypic variation in the craniofacial complex.
Collapse
|
46
|
Tsuboi M, Gonzalez-Voyer A, Kolm N. Phenotypic integration of brain size and head morphology in Lake Tanganyika Cichlids. BMC Evol Biol 2014; 14:39. [PMID: 24593160 PMCID: PMC4015177 DOI: 10.1186/1471-2148-14-39] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/25/2014] [Indexed: 12/13/2022] Open
Abstract
Background Phenotypic integration among different anatomical parts of the head is a common phenomenon across vertebrates. Interestingly, despite centuries of research into the factors that contribute to the existing variation in brain size among vertebrates, little is known about the role of phenotypic integration in brain size diversification. Here we used geometric morphometrics on the morphologically diverse Tanganyikan cichlids to investigate phenotypic integration across key morphological aspects of the head. Then, while taking the effect of shared ancestry into account, we tested if head shape was associated with brain size while controlling for the potentially confounding effect of feeding strategy. Results The shapes of the anterior and posterior parts of the head were strongly correlated, indicating that the head represents an integrated morphological unit in Lake Tanganyika cichlids. After controlling for phylogenetic non-independence, we also found evolutionary associations between head shape, brain size and feeding ecology. Conclusions Geometric morphometrics and phylogenetic comparative analyses revealed that the anterior and posterior parts of the head are integrated, and that head morphology is associated with brain size and feeding ecology in Tanganyikan cichlid fishes. In light of previous results on mammals, our results suggest that the influence of phenotypic integration on brain diversification is a general process.
Collapse
Affiliation(s)
- Masahito Tsuboi
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden.
| | | | | |
Collapse
|
47
|
Hall BK. Summarizing craniofacial genetics and developmental biology (SCGDB). Am J Med Genet A 2014; 164A:884-91. [PMID: 24482307 DOI: 10.1002/ajmg.a.35288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 12/29/2011] [Indexed: 11/10/2022]
Abstract
This overview article highlights active areas of research in craniofacial genetics and developmental biology as reflected in presentations given at the 34th annual meeting of the Society of Craniofacial Genetics and Developmental Biology (SCGDB) in Montreal, Quebec on October 11, 2011. This 1-day meeting provided a stimulating occasion that demonstrated the present status of research in craniofacial genetics and developmental biology and where the field is heading. To accompany the abstracts published in this issue I have selected several themes that emerged from the meeting. After discussing the basis on which craniofacial defects/syndromes are classified and investigated, I address the multi-gene basis of craniofacial syndromes with an examination of the roles of Sox9 and FGF receptors in normal and abnormal craniofacial development. I then turn to the knowledge being gained from population-wide and longitudinal cohort studies and from the discovery of new signaling centers that regulate craniofacial development.
Collapse
Affiliation(s)
- Brian K Hall
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
48
|
Aerts A, DeVolder I, Weinberg SM, Thedens D, Dunnwald M, Schutte BC, Nopoulos P. Haploinsufficiency of interferon regulatory factor 6 alters brain morphology in the mouse. Am J Med Genet A 2013; 164A:655-60. [PMID: 24357509 DOI: 10.1002/ajmg.a.36333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/12/2013] [Indexed: 12/22/2022]
Abstract
Orofacial clefts are among the commonest birth defects. Among many genetic contributors to orofacial clefting, Interferon Regulatory Factor 6 (IRF6) is unique since mutations in this gene cause Van der Woude (VWS), the most common clefting syndrome. Furthermore, variants in IRF6 contribute to increased risk for non-syndromic cleft lip and/or palate (NSCL/P). Our previous work shows that individuals with either VWS or NSCL/P may have cerebral anomalies (larger anterior, smaller posterior regions), and a smaller cerebellum. The objective of this study was to test the hypothesis that disrupting Irf6 in the mouse will result in quantitative brain changes similar to those reported for humans with VWS and NSCL/P. Male mice heterozygous for Irf6 (Irf6(gt1/+); n = 9) and wild-type (Irf6(+/+) ; n = 6) mice at comparable age underwent a 4.7-T MRI scan to obtain quantitative measures of cortical and subcortical brain structures. There was no difference in total brain volume between groups. However, the frontal cortex was enlarged in the Irf6(gt1/+) mice compared to that of wild types (P = 0.028) while the posterior cortex did not differ. In addition, the volume of the cerebellum of Irf6(gt1/+) mice was decreased (P = 0.004). Mice that were heterozygous for Irf6 showed a similar pattern of brain anomalies previously reported in humans with VWS and NSCL/P. These structural differences were present in the absence of overt oral clefts. These results support a role for IRF6 in brain morphometry and provide evidence for a potential genetic link to abnormal brain development in orofacial clefting.
Collapse
Affiliation(s)
- Andrea Aerts
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | | | | | | | | | | | | |
Collapse
|
49
|
Larger mammals have longer faces because of size-related constraints on skull form. Nat Commun 2013; 4:2458. [DOI: 10.1038/ncomms3458] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 08/19/2013] [Indexed: 12/14/2022] Open
|
50
|
Misiak B, Frydecka D, Piotrowski P, Kiejna A. The multidimensional nature of metabolic syndrome in schizophrenia: lessons from studies of one-carbon metabolism and DNA methylation. Epigenomics 2013; 5:317-29. [DOI: 10.2217/epi.13.22] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Large data sets indicate that the prevalence of metabolic syndrome (MetS) is significantly higher in patients with schizophrenia in comparison with the general population. Given that interactions between genes and the environment may underlie the etiology of MetS in subjects with schizophrenia, it is feasible that epigenetic phenomena can serve as the etiological consensus between genetic and environmental factors. However, there is still a striking scarcity of studies aimed at investigating the role of aberrant DNA methylation in the development of MetS in this group of patients. This article provides an update on the epigenetics of schizophrenia and reviews studies on the role of one-carbon metabolism and aberrant DNA methylation in the development of MetS.
Collapse
Affiliation(s)
- Blazej Misiak
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 51-367 Wroclaw, Poland.
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 51-367 Wroclaw, Poland
| | - Patryk Piotrowski
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 51-367 Wroclaw, Poland
| | - Andrzej Kiejna
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 51-367 Wroclaw, Poland
| |
Collapse
|