1
|
Takagi W, Masuda A, Shimoyama K, Tokunaga K, Hyodo S, Sato‐Takabe Y. Low microbial abundance and community diversity in the egg capsule of the oviparous cloudy catshark (Scyliorhinus torazame) during oviposition. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70025. [PMID: 39438677 PMCID: PMC11496042 DOI: 10.1111/1758-2229.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Vertebrate embryos are protected from bacterial infection by various maternally derived factors, yet little is known about the defence mechanisms in elasmobranchs. This study aimed to characterize the intracapsular environment of freshly laid eggs of the oviparous catshark (Scyliorhinus torazame) by investigating the microbial abundance and microbiota to understand its potential contribution to embryonic defence. The egg capsule of oviparous elasmobranchs is tightly sealed until pre-hatching, after which seawater flows into the capsule, exposing the embryos to the surrounding seawater. We found that early embryos were highly vulnerable to environmental pathogens, suggesting that the embryos are somehow protected from infection before pre-hatching. Indeed, the intracapsular environment of freshly laid eggs exhibited significantly low bacterial density, maintained until pre-hatching. Furthermore, the microbiome inside eggs just after oviposition differed markedly from those of rearing seawater and adult oviducal gland epithelia; these eggs were predominantly populated by an unidentified genus of Sphingomonadaceae. Overall, this study provides compelling evidence that early embryos of oviparous cloudy catshark are incubated in a clean intracapsular environment that potentially plays a significant role in embryonic development in oviparous elasmobranchs.
Collapse
Affiliation(s)
- Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Ayami Masuda
- Laboratory of Physiology, Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Koya Shimoyama
- Laboratory of Physiology, Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | | | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
| | - Yuki Sato‐Takabe
- Marine Microbiology, Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChibaJapan
- Department of Food and NutritionJapan Women's UniversityBunkyo‐kuTokyoJapan
- School of EconomicsSenshu UniversityKawasakiKanagawaJapan
| |
Collapse
|
2
|
Gao G, Zhang F, Li W, Liu Y, Xu W, Yang C, Shao G, Wang K, Xiao Z. Genomic analysis and behavioral ecology records of the vulnerable Kong skate (Okamejei kenojei). Integr Zool 2024. [PMID: 39267449 DOI: 10.1111/1749-4877.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Wild populations of cartilaginous fish (sharks, skates, rays, and chimaeras) are encountering challenges. Here, we are unveiling genomic data and behavioral ecological records of Okamejei kenojei, a species listed in the IUCN Red List of Threatened Species, aiming to offer insights into the conservation and environmental adaptability of cartilaginous fish.
Collapse
Affiliation(s)
- Guang Gao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Fenghua Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Wensheng Li
- Laizhou Mingbo Aquatic CO., LTD, Laizhou, China
| | - Yuxuan Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Wenjie Xu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | | | | | - Kun Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zhizhong Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
3
|
Blackburn DG, Hughes DF. Phylogenetic analysis of viviparity, matrotrophy, and other reproductive patterns in chondrichthyan fishes. Biol Rev Camb Philos Soc 2024; 99:1314-1356. [PMID: 38562006 DOI: 10.1111/brv.13070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
The reproductive diversity of extant cartilaginous fishes (class Chondrichthyes) is extraordinarily broad, reflecting more than 400 million years of evolutionary history. Among their many notable reproductive specialisations are viviparity (live-bearing reproduction) and matrotrophy (maternal provision of nutrients during gestation). However, attempts to understand the evolution of these traits have yielded highly discrepant conclusions. Here, we compile and analyse the current knowledge on the evolution of reproductive diversity in Chondrichthyes with particular foci on the frequency, phylogenetic distribution, and directionality of evolutionary changes in their modes of reproduction. To characterise the evolutionary transformations, we amassed the largest empirical data set of reproductive parameters to date covering nearly 800 extant species and analysed it via a comprehensive molecular-based phylogeny. Our phylogenetic reconstructions indicated that the ancestral pattern for Chondrichthyes is 'short single oviparity' (as found in extant holocephalans) in which females lay successive clutches (broods) of one or two eggs. Viviparity has originated at least 12 times, with 10 origins among sharks, one in batoids, and (based on published evidence) another potential origin in a fossil holocephalan. Substantial matrotrophy has evolved at least six times, including one origin of placentotrophy, three separate origins of oophagy (egg ingestion), and two origins of histotrophy (uptake of uterine secretions). In two clades, placentation was replaced by histotrophy. Unlike past reconstructions, our analysis reveals no evidence that viviparity has ever reverted to oviparity in this group. Both viviparity and matrotrophy have arisen by a variety of evolutionary sequences. In addition, the ancestral pattern of oviparity has given rise to three distinct egg-laying patterns that increased clutch (brood) size and/or involved deposition of eggs at advanced stages of development. Geologically, the ancestral oviparous pattern arose in the Paleozoic. Most origins of viviparity and matrotrophy date to the Mesozoic, while a few that are represented at low taxonomic levels are of Cenozoic origin. Coupled with other recent work, this review points the way towards an emerging consensus on reproductive evolution in chondrichthyans while offering a basis for future functional and evolutionary analyses. This review also contributes to conservation efforts by highlighting taxa whose reproductive specialisations reflect distinctive evolutionary trajectories and that deserve special protection and further investigation.
Collapse
Affiliation(s)
- Daniel G Blackburn
- Department of Biology & Electron Microscopy Center, Trinity College, 300 Summit St, Hartford, Connecticut, 06106, USA
| | - Daniel F Hughes
- Department of Biology, Coe College, 1220 First Avenue NE, Cedar Rapids, Iowa, 52402, USA
| |
Collapse
|
4
|
Berio F, Charron R, Dagouret JM, De Gasperis F, Éon A, Meunier E, Simonet M, Verschraegen N, Hirel N. Husbandry conditions of spotted ratfish (Hydrolagus colliei, Chimaeriformes) in aquaria for successful embryonic development and long-term survival of juveniles. Zoo Biol 2024; 43:188-198. [PMID: 38152990 DOI: 10.1002/zoo.21813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
The spotted ratfish Hydrolagus colliei is the most common holocephalan species exhibited in aquaria worldwide for introducing deep-sea environments and raising awareness of their conservation. However, little is known about the biology of H. colliei. Current practices in aquaria allow long-term survival of sexually mature H. colliei specimens; however, this species struggles to complete a reproductive cycle in captivity mostly because embryos do not reach the hatchling stage. The aquarists of Planet Ocean Montpellier (POM, France) have bred H. colliei for 15 years and recorded parameters suitable for this species' successful embryonic and post-embryonic development. POM aquarists now regularly record egg-laying events of H. colliei and use four tanks to incubate eggs and raise neonates, late hatchlings, early and intermediate juveniles, subadults, and sexually mature specimens. In this work we provide the first long-term biometric data on H. colliei from the hatchling to the subadult stage. We also report the biotic and abiotic parameters sufficient to breed H. colliei in aquaria. We finally describe the methods used to facilitate individual monitoring of specimens along the ontogeny and several pathologies identified in this species, their putative causes, and the corresponding treatments. This work highlights the importance of ex situ research and points to the valuable outcomes of collaborative efforts between aquaria and academia in deciphering the biology of species whose study in the wild remains challenging.
Collapse
Affiliation(s)
- Fidji Berio
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | | | | | - Aurore Éon
- Planet Ocean Montpellier, Montpellier, France
| | | | | | | | | |
Collapse
|
5
|
Byrum SR, Frazier BS, Grubbs RD, Naylor GJP, Fraser GJ. Embryonic development in the bonnethead (Sphyrna tiburo), a viviparous hammerhead shark. Dev Dyn 2024; 253:351-362. [PMID: 37767812 DOI: 10.1002/dvdy.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The hammerhead sharks (family Sphyrnidae) are an immediately recognizable group of sharks due to their unique head shape. Though there has long been an interest in hammerhead development, there are currently no explicit staging tables published for any members of the group. The bonnethead Sphyrna tiburo is the smallest member of Sphyrnidae and is abundant in estuarine and nearshore waters in the Gulf of Mexico and Western North Atlantic Ocean. Due to their relative abundance, close proximity to shore, and brief gestation period, it has been possible to collect and document multiple embryonic specimens at progressive stages of development. RESULTS We present the first comprehensive embryonic staging series for the Bonnethead, a viviparous hammerhead shark. Our stage series covers a period of development from stages that match the vertebrate phylotypic period, from Stage 23, through stages of morphological divergence to complete development at birth-Stage 35). Notably, we use a variety of techniques to document crucial stages that lead to their extreme craniofacial diversity, resulting in the formation of one of the most distinctive characters of any shark species, the cephalofoil or hammer-like head. CONCLUSION Documenting the development of hard-to-access vertebrates, like this viviparous shark species, offers important information about how new and diverse morphologies arise that otherwise may remain poorly studied. This work will serve as a platform for future comparative developmental research both within sharks and across the phylogeny of vertebrates, underpinning the extreme potential of craniofacial development and morphological diversity in vertebrate animals.
Collapse
Affiliation(s)
- Steven R Byrum
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Florida Museum of Natural History, Gainesville, Florida, USA
| | - Bryan S Frazier
- South Carolina Department of Natural Resources, College of Charleston, Charleston, South Carolina, USA
| | - R Dean Grubbs
- Florida State University Coastal and Marine Laboratory, St. Teresa, Florida, USA
| | | | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Sendell-Price AT, Tulenko FJ, Pettersson M, Kang D, Montandon M, Winkler S, Kulb K, Naylor GP, Phillippy A, Fedrigo O, Mountcastle J, Balacco JR, Dutra A, Dale RE, Haase B, Jarvis ED, Myers G, Burgess SM, Currie PD, Andersson L, Schartl M. Low mutation rate in epaulette sharks is consistent with a slow rate of evolution in sharks. Nat Commun 2023; 14:6628. [PMID: 37857613 PMCID: PMC10587355 DOI: 10.1038/s41467-023-42238-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
Sharks occupy diverse ecological niches and play critical roles in marine ecosystems, often acting as apex predators. They are considered a slow-evolving lineage and have been suggested to exhibit exceptionally low cancer rates. These two features could be explained by a low nuclear mutation rate. Here, we provide a direct estimate of the nuclear mutation rate in the epaulette shark (Hemiscyllium ocellatum). We generate a high-quality reference genome, and resequence the whole genomes of parents and nine offspring to detect de novo mutations. Using stringent criteria, we estimate a mutation rate of 7×10-10 per base pair, per generation. This represents one of the lowest directly estimated mutation rates for any vertebrate clade, indicating that this basal vertebrate group is indeed a slowly evolving lineage whose ability to restore genetic diversity following a sustained population bottleneck may be hampered by a low mutation rate.
Collapse
Affiliation(s)
- Ashley T Sendell-Price
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden
- Bioinformatics Research Technology Platform, University of Warwick, Coventry, UK
| | - Frank J Tulenko
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden
| | - Du Kang
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Margo Montandon
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Sylke Winkler
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Kathleen Kulb
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Gavin P Naylor
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Adam Phillippy
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Jacquelyn Mountcastle
- Research Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Jennifer R Balacco
- Research Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Amalia Dutra
- Cytogenetics and Microscopy Core, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA
| | - Rebecca E Dale
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia
| | - Bettina Haase
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Erich D Jarvis
- Vertebrate Genome Laboratory, Rockefeller University, New York, NY, 10065, USA
| | - Gene Myers
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center of Systems Biology Dresden, 01307, Dresden, Germany
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health Bethesda, Bethesda, MD, 20892, USA.
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia.
- EMBL Australia, Victorian Node, Monash University, Clayton, Victoria, 3800, Australia.
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE75123, Uppsala, Sweden.
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX77483, USA.
| | - Manfred Schartl
- Developmental Biochemistry, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
7
|
Shan Z, Li S, Yu C, Bai S, Zhang J, Tang Y, Wang Y, Irwin DM, Li J, Wang Z. Embryonic and skeletal development of the albino African clawed frog (Xenopus laevis). J Anat 2023; 242:1051-1066. [PMID: 36708289 PMCID: PMC10184547 DOI: 10.1111/joa.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/29/2023] Open
Abstract
The normal stages of embryonic development for wild-type Xenopus laevis were established by Nieuwkoop and Faber in 1956, a milestone in the history of understanding embryonic development. However, this work lacked photographic images and staining for skeleton structures from the corresponding stages. Here, we provide high-quality images of embryonic morphology and skeleton development to facilitate studies on amphibian development. On the basis of the classical work, we selected the albino mutant of X. laevis as the observation material to restudy embryonic development in this species. The lower level of pigmentation makes it easier to interpret histochemical experiments. At 23°C, albino embryos develop at the same rate as wild-type embryos, which can be divided into 66 stages as they develop into adults in about 58 days. We described the complete embryonic development system for X. laevis, supplemented with pictures of limb and skeleton development that are missing from previous studies, and summarized the characteristics and laws of limb and skeleton development. Our study should aid research into the development of X. laevis and the evolution of amphibians.
Collapse
Affiliation(s)
- Zhixin Shan
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - Shanshan Li
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - Chenghua Yu
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Shibin Bai
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - Junpeng Zhang
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - Yining Tang
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - Yutong Wang
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| | - David M. Irwin
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | - Jun Li
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Zhe Wang
- College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
8
|
Vazquez DM, Awruch CA, Lucifora LO, Díaz de Astarloa JM, Mabragaña E. Embryonic development timeline in skates (Chondrichthyes: Rajiformes): Sympterygia acuta as the first case study in the family Arhynchobatidae. ZOOLOGY 2022; 155:126057. [PMID: 36436401 DOI: 10.1016/j.zool.2022.126057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/01/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Oviparous elasmobranch embryos (Chondrichthyes) have been the focus of several embryological studies; they are useful models for studying early ontogeny in vertebrates, as can help explore the existence of common developmental patterns among species. Skates (Rajiformes) are the most speciose order of oviparous elasmobranchs, however, few studies are focused on embryo development and only based on one skate family: Rajidae. Here, we extended the study of embryo development to other skate family, Arhynchobatidae, which represent about 1/3 of all skate species. Three adult female bignose fanskates (Sympterygia acuta) were held in captivity in order to provide the first complete embryonic development timeline for any species within the Arhynchobatidae family. Our results allowed further comparisons at the embryonic scale of different oviparous elasmobranch families, providing an updated cross-species overview of the early ontogeny. Incubation in S. acuta lasted 97 ± 1.4 days at 11-21.7 °C, and hatching size was 93.2 ± 0.2 mm in total length and 49.2 ± 0.3 mm in disc width. Early embryos of S. acuta were anatomically similar to other oviparous elasmobranch embryos, with several structures appearing at the same time, but late embryonic development was comparatively delayed. The late resorption of both the external yolk sac and the external gill filaments, and also the delay in the slit opening could indicate a low metabolic demand in S. acuta, which would probably be coupled with its seasonal reproductive cycle. Some structures such as external gill filaments and claspers appeared at a similar time in some species of Rajidae and also in Arhynchobatidae, but at different times in species of the same family, showing an inconsistency also found within shark families. Although the sequential scheme remained relatively constant, small heterochronies would be present within skates, within sharks, and also between skates and sharks.
Collapse
Affiliation(s)
- Diego M Vazquez
- Laboratorio de Biotaxonomía Morfológica y Molecular de Peces, Instituto de Investigaciones Marinas y Costeras (IIMYC), Facultad de Ciencias Exactas y Naturales,Universidad Nacional de Mar del Plata-CONICET, CC1260, Funes 3350, Mar del Plata, Buenos Aires B7602AYL, Argentina.
| | - Cynthia A Awruch
- Centro para el Estudio de Sistemas Marinos (CESIMAR)-CONICET, Puerto Madryn, Chubut U9120ACD, Argentina; School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Luis O Lucifora
- Instituto Nacional de Limnología (INALI), Universidad Nacional del Litoral (UNL), CONICET, Ruta Nacional 168 km 0, Ciudad de Santa Fe, Santa Fe S3001XAI, Argentina
| | - Juan M Díaz de Astarloa
- Laboratorio de Biotaxonomía Morfológica y Molecular de Peces, Instituto de Investigaciones Marinas y Costeras (IIMYC), Facultad de Ciencias Exactas y Naturales,Universidad Nacional de Mar del Plata-CONICET, CC1260, Funes 3350, Mar del Plata, Buenos Aires B7602AYL, Argentina; Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Buenos Aires B7602AYL, Argentina
| | - Ezequiel Mabragaña
- Laboratorio de Biotaxonomía Morfológica y Molecular de Peces, Instituto de Investigaciones Marinas y Costeras (IIMYC), Facultad de Ciencias Exactas y Naturales,Universidad Nacional de Mar del Plata-CONICET, CC1260, Funes 3350, Mar del Plata, Buenos Aires B7602AYL, Argentina
| |
Collapse
|
9
|
Courtship and Reproduction of the Whitetip Reef Shark Triaenodon obesus (Carcharhiniformes: Carcharhinidae) in an Ex Situ Environment, with a Description of the Late Embryonic Developmental Stage. Animals (Basel) 2022; 12:ani12233291. [PMID: 36496812 PMCID: PMC9737276 DOI: 10.3390/ani12233291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Elasmobranchs represent a group of species under considerable anthropic pressure because of the scale of industrial and artisanal fisheries and the loss of essential areas for nursery and feeding, which are causing substantial population losses around the world. Reproduction in an ex situ environment enables a healthy population to be built and maintained in networks of public aquariums, increasing our knowledge of elasmobranch reproductive biology and offering the opportunity for reintroductions in areas where native populations have been removed. The study reports two successful pregnancies of the whitetip reef shark Triaenodon obesus, considered a vulnerable species by the International Union for the Conservation of Nature. Copulation and gestation data are provided, including ultrasound recordings of the late stage of embryo development. Ultrasonography was performed with the GE Logiq and convex transducer and revealed a fetus with defined fins and organogenesis, with definition of eyes, gills, liver, a heart with individualized chambers, partially defined kidneys, and a well-defined spiral intestine. A cartilaginous skeleton forming a posterior acoustic shadow was detailed, as well as a moving fetus with a biparietal diameter of 6.47 cm and a heart rate of 62 Beats Per Minute on spectral Doppler. This is the first successful reproduction of T. obesus in an aquarium in Brazil.
Collapse
|
10
|
Pre-Hatching Ontogenetic Changes of Morphological Characters of Small-Spotted Catshark (Scyliorhinus canicula). FISHES 2022. [DOI: 10.3390/fishes7030100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The small-spotted catshark, Scyliorhinus canicula, provides an optimal model organism to include chondrichthyans in studies comparing morphology or physiology through vertebrate evolution. In particular, for investigations with ontogenetic aspects, there are only a limited number of alternative taxa. Therefore, a detailed staging system is a prerequisite to allowing comparison between different studies. This study supplements information on the latest stages of the established system by Ballard and colleagues in 1993 and complements the respective staging system by including the latest pre-hatching stages. During this phase, some significant ontogenetic shifts happen, e.g., reduction of external gill filament length and complete flattening of rostral angle until Size Class 6, change in the ratio of pre- to post-vent length, and establishment of body pigmentation in Size Classes 7 and 8. All these shifts finally transform the embryo into a hatchling prepared for living outside the eggshell. This study provides a framework allowing comparison of investigations on pre-hatchings of the small-spotted catshark.
Collapse
|
11
|
López-Romero FA, Berio F, Abed-Navandi D, Kriwet J. Early shape divergence of developmental trajectories in the jaw of galeomorph sharks. Front Zool 2022; 19:7. [PMID: 35123488 PMCID: PMC8818243 DOI: 10.1186/s12983-022-00452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The onset of morphological differences between related groups can be tracked at early stages during embryological development. This is expressed in functional traits that start with minor variations, but eventually diverge to defined specific morphologies. Several processes during this period, like proliferation, remodelling, and apoptosis for instance, can account for the variability observed between related groups. Morphological divergence through development is often associated with the hourglass model, in which early stages display higher variability and reach a conserved point with reduced variability from which divergence occurs again to the final phenotype.
Results
Here we explored the patterns of developmental shape changes in the lower jaw of two shark species, the bamboo shark (Chiloscyllium punctatum) and the catshark (Scyliorhinus canicula). These two species present marked differences in their foraging behaviour, which is reflected in their adult jaw morphology. By tracing the developmental sequence of the cartilage condensation, we identified the onset of cartilage for both species at around stage 31. Other structures that developed later without a noticeable anlage were the labial cartilages, which appear at around stage 33. We observed that the lower jaw displays striking differences in shape from the earliest moments, without any overlap in shape through the compared stages.
Conclusions
The differences observed are also reflected in the functional variation in feeding mechanism between both species. Likewise, the trajectory analysis shows that the main differences are in the magnitude of the shape change through time. Both species follow a unique trajectory, which is explained by the timing between stages.
Collapse
|
12
|
Spatial regulation by multiple Gremlin1 enhancers provides digit development with cis-regulatory robustness and evolutionary plasticity. Nat Commun 2021; 12:5557. [PMID: 34548488 PMCID: PMC8455560 DOI: 10.1038/s41467-021-25810-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Precise cis-regulatory control of gene expression is essential for normal embryogenesis and tissue development. The BMP antagonist Gremlin1 (Grem1) is a key node in the signalling system that coordinately controls limb bud development. Here, we use mouse reverse genetics to identify the enhancers in the Grem1 genomic landscape and the underlying cis-regulatory logics that orchestrate the spatio-temporal Grem1 expression dynamics during limb bud development. We establish that transcript levels are controlled in an additive manner while spatial regulation requires synergistic interactions among multiple enhancers. Disrupting these interactions shows that altered spatial regulation rather than reduced Grem1 transcript levels prefigures digit fusions and loss. Two of the enhancers are evolutionary ancient and highly conserved from basal fishes to mammals. Analysing these enhancers from different species reveal the substantial spatial plasticity in Grem1 regulation in tetrapods and basal fishes, which provides insights into the fin-to-limb transition and evolutionary diversification of pentadactyl limbs. The BMP antagonist Gremlin1 balances BMP and SHH signalling, endowing limb bud development with robustness. Here, the authors identify enhancers controlling Grem1 levels in an additive, and spatial regulation in a synergistic manner, providing digit patterning with cis-regulatory robustness and evolutionary plasticity.
Collapse
|
13
|
Shark and ray genomics for disentangling their morphological diversity and vertebrate evolution. Dev Biol 2021; 477:262-272. [PMID: 34102168 DOI: 10.1016/j.ydbio.2021.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022]
Abstract
Developmental studies of sharks and rays (elasmobranchs) have provided much insight into the process of morphological evolution of vertebrates. Although those studies are supposedly fueled by large-scale molecular sequencing information, whole-genome sequences of sharks and rays were made available only recently. One compelling difficulty of elasmobranch developmental biology is the low accessibility to embryonic study materials and their slow development. Another limiting factor is the relatively large size of their genomes. Moreover, their large body sizes restrict sustainable captive breeding, while their high body fluid osmolarity prevents reproducible cell culturing for in vitro experimentation, which has also limited our knowledge of their chromosomal organization for validation of genome sequencing products. This article focuses on egg-laying elasmobranch species used in developmental biology and provides an overview of the characteristics of the shark and ray genomes revealed to date. Developmental studies performed on a gene-by-gene basis are also reviewed from a whole-genome perspective. Among the popular regulatory genes studied in developmental biology, I scrutinize shark homologs of Wnt genes that highlight vanishing repertoires in many other vertebrate lineages, as well as Hox genes that underwent an unexpected modification unique to the elasmobranch lineage. These topics are discussed together with insights into the reconstruction of developmental programs in the common ancestor of vertebrates and its subsequent evolutionary trajectories that mark the features that are unique to, and those characterizing the diversity among, cartilaginous fishes.
Collapse
|
14
|
Möbius W, Hümmert S, Ruhwedel T, Kuzirian A, Gould R. New Species Can Broaden Myelin Research: Suitability of Little Skate, Leucoraja erinacea. Life (Basel) 2021; 11:136. [PMID: 33670172 PMCID: PMC7916940 DOI: 10.3390/life11020136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Although myelinated nervous systems are shared among 60,000 jawed vertebrates, studies aimed at understanding myelination have focused more and more on mice and zebrafish. To obtain a broader understanding of the myelination process, we examined the little skate, Leucoraja erinacea. The reasons behind initiating studies at this time include: the desire to study a species belonging to an out group of other jawed vertebrates; using a species with embryos accessible throughout development; the availability of genome sequences; and the likelihood that mammalian antibodies recognize homologs in the chosen species. We report that the morphological features of myelination in a skate hatchling, a stage that supports complex behavioral repertoires needed for survival, are highly similar in terms of: appearances of myelinating oligodendrocytes (CNS) and Schwann cells (PNS); the way their levels of myelination conform to axon caliber; and their identity in terms of nodal and paranodal specializations. These features provide a core for further studies to determine: axon-myelinating cell communication; the structures of the proteins and lipids upon which myelinated fibers are formed; the pathways used to transport these molecules to sites of myelin assembly and maintenance; and the gene regulatory networks that control their expressions.
Collapse
Affiliation(s)
- Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany; (W.M.); (S.H.); (T.R.)
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC), University of Göttingen, 37073 Göttingen, Germany
| | - Sophie Hümmert
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany; (W.M.); (S.H.); (T.R.)
| | - Torben Ruhwedel
- Electron Microscopy Core Unit, Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, 37075 Göttingen, Germany; (W.M.); (S.H.); (T.R.)
| | - Alan Kuzirian
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02540, USA;
| | - Robert Gould
- Whitman Science Center, Marin Biological Laboratory, Woods Hole, MA 02540, USA
| |
Collapse
|
15
|
Onimaru K, Tatsumi K, Tanegashima C, Kadota M, Nishimura O, Kuraku S. Developmental hourglass and heterochronic shifts in fin and limb development. eLife 2021; 10:62865. [PMID: 33560225 PMCID: PMC7932699 DOI: 10.7554/elife.62865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
How genetic changes are linked to morphological novelties and developmental constraints remains elusive. Here, we investigate genetic apparatuses that distinguish fish fins from tetrapod limbs by analyzing transcriptomes and open-chromatin regions (OCRs). Specifically, we compared mouse forelimb buds with the pectoral fin buds of an elasmobranch, the brown-banded bamboo shark (Chiloscyllium punctatum). A transcriptomic comparison with an accurate orthology map revealed both a mass heterochrony and hourglass-shaped conservation of gene expression between fins and limbs. Furthermore, open-chromatin analysis suggested that access to conserved regulatory sequences is transiently increased during mid-stage limb development. During this stage, stage-specific and tissue-specific OCRs were also enriched. Together, early and late stages of fin/limb development are more permissive to mutations than middle stages, which may have contributed to major morphological changes during the fin-to-limb evolution. We hypothesize that the middle stages are constrained by regulatory complexity that results from dynamic and tissue-specific transcriptional controls. Animals come in all shapes and sizes. This diversity arose through genetic mutations during evolution, but it is unclear exactly how these variations led to the formation of new shapes. There is increasing evidence to suggest that not all shapes are possible and that variability between animals is limited by a phenomenon known as “developmental constraint”. These limitations direct parts of the body towards a specific shape as they develop in the embryo. Therefore, understanding the mechanisms underlying these developmental constraints could help explain how different body shapes evolved. The limbs of humans and other mammals evolved from the fins of fish, and this transition is often used to study the role developmental constraints play in evolution. This is an ideal model as there is already a detailed fossil record mapping this evolutionary event, and data pinpointing some of the genes involved in the development of limbs and fins. But this data is incomplete, and a full comparison between the genes activated in the fin and the limb during embryonic development had not been achieved. This is because most fish used for research have undergone recent genetic changes, making it hard to spot which genetic differences are linked to the evolution of the limb. To overcome this barrier, Onimaru et al. compared genetic data from the developing limbs of mice to the developing fins of the brown-banded bamboo shark, which evolves much slower than other fish. This revealed that although many genes commonly played a role in the development of the fin and the limb in the embryo, the activity of these shared genes was not the same. For example, genes that switched on in the late stages of limb development, switched off in the late stages of fin development. But in the middle of development, those differences were relatively small and both species activated very similar sets of genes. Many of these genes were pleiotropic, which means they have important roles in other tissues and therefore mutate less often. This suggests that the mid-stage of limb development is under the strongest level of constraint. Darwin’s theory of natural selection explains that mutations drive evolution. But the theory cannot predict what kinds of new body shapes new mutations will produce. Understanding how the activity levels of different genes affect development could help to fill this knowledge gap. This has potential medical applications, for example, understanding why some genetic changes cause more serious problems than others. This work suggests that mutations in genes that are active during the mid-stage of limb development may have the most serious impact.
Collapse
Affiliation(s)
- Koh Onimaru
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Laboratory for Bioinformatics Research, RIKEN BDR, Wako City, Japan.,Molecular Oncology Laboratory, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kaori Tatsumi
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Chiharu Tanegashima
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
16
|
Uno Y, Nozu R, Kiyatake I, Higashiguchi N, Sodeyama S, Murakumo K, Sato K, Kuraku S. Cell culture-based karyotyping of orectolobiform sharks for chromosome-scale genome analysis. Commun Biol 2020; 3:652. [PMID: 33159152 PMCID: PMC7648076 DOI: 10.1038/s42003-020-01373-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
Karyotyping, traditionally performed using cytogenetic techniques, is indispensable for validating genome assemblies whose sequence lengths can be scaled up to chromosome sizes using modern methods. Karyotype reports of chondrichthyans are scarce because of the difficulty in cell culture. Here, we focused on carpet shark species and the culture conditions for fibroblasts and lymphocytes. The utility of the cultured cells enabled the high-fidelity characterization of their karyotypes, namely 2n = 102 for the whale shark (Rhincodon typus) and zebra shark (Stegostoma fasciatum), and 2n = 106 for the brownbanded bamboo shark (Chiloscyllium punctatum) and whitespotted bamboo shark (C. plagiosum). We identified heteromorphic XX/XY sex chromosomes for the two latter species and demonstrated the first-ever fluorescence in situ hybridization of shark chromosomes prepared from cultured cells. Our protocols are applicable to diverse chondrichthyan species and will deepen the understanding of early vertebrate evolution at the molecular level.
Collapse
Affiliation(s)
- Yoshinobu Uno
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan. .,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| | - Ryo Nozu
- Okinawa Churashima Research Center, Okinawa Churashima Foundation, Okinawa, Japan.,Okinawa Churaumi Aquarium, Okinawa, Japan
| | | | | | | | | | - Keiichi Sato
- Okinawa Churashima Research Center, Okinawa Churashima Foundation, Okinawa, Japan.,Okinawa Churaumi Aquarium, Okinawa, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
17
|
López‐Romero FA, Klimpfinger C, Tanaka S, Kriwet J. Growth trajectories of prenatal embryos of the deep-sea shark Chlamydoselachus anguineus (Chondrichthyes). JOURNAL OF FISH BIOLOGY 2020; 97:212-224. [PMID: 32307702 PMCID: PMC7497067 DOI: 10.1111/jfb.14352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Chlamydoselachus anguineus, Garman 1884, commonly called the frilled shark, is a deep-sea shark species occurring up to depths of 1300 m. It is assumed to represent an ancient morphotype of sharks (e.g., terminal mouth opening, more than five gill slits) and thus is often considered to represent plesiomorphic traits for sharks. Therefore, its early ontogenetic developmental traits are important for understanding the evolution of its particular phenotype. Here, we established six stages for prenatal embryos and used linear measurements and geometric morphometrics to analyse changes in shape and size as well as their timing during different embryonic stages. Our results show a change in head shape and a relocation of the mouth opening at a late stage of development. We also detected a negative allometric growth of the head and especially the eye compared to the rest of the body and a sexual dimorphism in total body length, which differs from the known data for adults. A multivariate analysis of covariance shows a significant interaction of shape related to the logarithm of centroid size and developmental stage. Geometric morphometrics results indicate that the head shape changes as a covariate of body size while not accounting for differences between sexes. The growth pattern of stages 32 and 33 indicates a shift in head shape, thus highlighting the moment in development when the jaws start to elongate anteriorly to finally achieve the adult condition of terminal mouth opening rather than retaining the early embryonic subterminal position as is typical for sharks. Thus, the antero-terminal mouth opening of the frilled shark has to be considered a derived feature.
Collapse
Affiliation(s)
| | | | - Sho Tanaka
- School of Marine Science and Technology, Faculty of Marine Science and TechnologyTokai UniversityShizuoka Shimizu‐kuJapan
| | - Jürgen Kriwet
- Department of PaleontologyUniversity of ViennaViennaAustria
| |
Collapse
|
18
|
Turner N, Mikalauskaite D, Barone K, Flaherty K, Senevirathne G, Adachi N, Shubin NH, Nakamura T. The evolutionary origins and diversity of the neuromuscular system of paired appendages in batoids. Proc Biol Sci 2019; 286:20191571. [PMID: 31662089 DOI: 10.1098/rspb.2019.1571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Appendage patterning and evolution have been active areas of inquiry for the past two centuries. While most work has centred on the skeleton, particularly that of amniotes, the evolutionary origins and molecular underpinnings of the neuromuscular diversity of fish appendages have remained enigmatic. The fundamental pattern of segmentation in amniotes, for example, is that all muscle precursors and spinal nerves enter either the paired appendages or body wall at the same spinal level. The condition in finned vertebrates is not understood. To address this gap in knowledge, we investigated the development of muscles and nerves in unpaired and paired fins of skates and compared them to those of chain catsharks. During skate and shark embryogenesis, cell populations of muscle precursors and associated spinal nerves at the same axial level contribute to both appendages and body wall, perhaps representing an ancestral condition of gnathostome appendicular neuromuscular systems. Remarkably in skates, this neuromuscular bifurcation as well as colinear Hox expression extend posteriorly to pattern a broad paired fin domain. In addition, we identified migratory muscle precursors (MMPs), which are known to develop into paired appendage muscles with Pax3 and Lbx1 gene expression, in the dorsal fins of skates. Our results suggest that muscles of paired fins have evolved via redeployment of the genetic programme of MMPs that were already involved in dorsal fin development. Appendicular neuromuscular systems most likely have emerged as side branches of body wall neuromusculature and have been modified to adapt to distinct aquatic and terrestrial habitats.
Collapse
Affiliation(s)
- Natalie Turner
- Department of Genetics, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | - Krista Barone
- Department of Genetics, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kathleen Flaherty
- Comparative Medicine Resources, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Gayani Senevirathne
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Noritaka Adachi
- Aix-Marseille Université, IBDM, CNRS UMR 7288, Marseille, France
| | - Neil H Shubin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Tetsuya Nakamura
- Department of Genetics, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
19
|
Swenson JD, Klomp J, Fisher RA, Crow KD. How the Devil Ray Got Its Horns: The Evolution and Development of Cephalic Lobes in Myliobatid Stingrays (Batoidea: Myliobatidae). Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Musa SM, Czachur MV, Shiels HA. Oviparous elasmobranch development inside the egg case in 7 key stages. PLoS One 2018; 13:e0206984. [PMID: 30399186 PMCID: PMC6219803 DOI: 10.1371/journal.pone.0206984] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/23/2018] [Indexed: 11/25/2022] Open
Abstract
Embryological stages of oviparous elasmobranch during development can be difficult to identify, requiring magnification and/or fixation of an anaesthetized embryo. These restrictions are poorly suited for monitoring the development of living elasmobranchs inside their egg cases. There are two major aims of this study. The first was to observe elasmobranch embryonic development non-invasively and produce a non-invasive developmental key for identifying the life stages for an elasmobranch inside the egg case. To this end, 7 key developmental stages were identified for the greater spotted catshark, Scyliorhinus stellaris, and are provided here with diagrams from multiple perspectives to demonstrate the key features of each stage. The physiological and ecological relevance of each stage are discussed in terms of structure and function for embryonic survival in the harsh intertidal zone. Also discussed is the importance of the egg case membrane and the protective embryonic jelly. The second aim of the study was to understand the applicability of the 7 developmental stages from S. stellaris to other oviparous elasmobranchs. Thus, changes in embryonic body size and egg yolk volume at each stage were measured and compared with those of the closely related, lesser spotted catshark, Scyliorhinus canicula. We find nearly identical growth patterns and yolk consumption patterns in both species across the 7 developmental stages. Thus, although the 7 developmental stages have been constructed in reference to the greater spotted catshark, we suggest that it can be applied to other oviparous elasmobranch species with only minor modification.
Collapse
Affiliation(s)
- Syafiq M. Musa
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Molly V. Czachur
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Holly A. Shiels
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Tanegashima C, Nishimura O, Motone F, Tatsumi K, Kadota M, Kuraku S. Embryonic transcriptome sequencing of the ocellate spot skate Okamejei kenojei. Sci Data 2018; 5:180200. [PMID: 30295675 PMCID: PMC6174922 DOI: 10.1038/sdata.2018.200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/31/2018] [Indexed: 11/09/2022] Open
Abstract
Chondrichthyans (cartilaginous fishes) exhibit highly variable reproductive styles, categorized as viviparity and oviparity. Among these, species with oviparity provide an enormous potential of molecular experimentation with stable sample supply which does not demand the sacrifices of live mothers. Cartilaginous fishes are divided into two subclasses, chimaeras (Holocephali) and elasmobranchs (Elasmobranchii), and the latter consists of two monophyletic groups, Batoidea (rays, skates and torpedoes) and Selachimorpha (sharks). Here we report transcriptome assemblies of the ocellate spot skate Okamejei kenojei, produced by strand-specific RNA-seq of its embryonic tissues. We obtained a total of 325 million illumina short reads from libraries prepared using four different tissue domains and assembled them all together. Our assembly result confirmed the species authenticity and high continuity of contig sequences. Also, assessment of its coverage of pre-selected one-to-one orthologs supported high diversity of transcripts in the assemblies. Our products are expected to provide a basis of comparative molecular studies encompassing other chondrichthyan species with emerging genomic and transcriptomic sequence information.
Collapse
Affiliation(s)
- Chiharu Tanegashima
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Fumio Motone
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Graduate School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
| | - Kaori Tatsumi
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojimaminami-machi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| |
Collapse
|
22
|
Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat Ecol Evol 2018; 2:1761-1771. [PMID: 30297745 DOI: 10.1038/s41559-018-0673-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Modern cartilaginous fishes are divided into elasmobranchs (sharks, rays and skates) and chimaeras, and the lack of established whole-genome sequences for the former has prevented our understanding of early vertebrate evolution and the unique phenotypes of elasmobranchs. Here we present de novo whole-genome assemblies of brownbanded bamboo shark and cloudy catshark and an improved assembly of the whale shark genome. These relatively large genomes (3.8-6.7 Gbp) contain sparse distributions of coding genes and regulatory elements and exhibit reduced molecular evolutionary rates. Our thorough genome annotation revealed Hox C genes previously hypothesized to have been lost, as well as distinct gene repertories of opsins and olfactory receptors that would be associated with adaptation to unique underwater niches. We also show the early establishment of the genetic machinery governing mammalian homoeostasis and reproduction at the jawed vertebrate ancestor. This study, supported by genomic, transcriptomic and epigenomic resources, provides a foundation for the comprehensive, molecular exploration of phenotypes unique to sharks and insights into the evolutionary origins of vertebrates.
Collapse
|