1
|
Synthesis, Structure, and Electrocatalysis of a Novel Compound Based on [β-Mo8O26]4− Cluster and [NiN4O2]2+ Secondary Building Unit. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
In Situ Electrochemical Production of Metal‐organic Hybrid Composite Film from Nickel Containing Polyoxometalate and 3,4‐Ethylenedioxy‐thiophene for Sensor Application. ELECTROANAL 2021. [DOI: 10.1002/elan.202100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Electrochemical Sensors for Determination of Bromate in Water and Food Samples-Review. BIOSENSORS-BASEL 2021; 11:bios11060172. [PMID: 34072226 PMCID: PMC8230011 DOI: 10.3390/bios11060172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
The application of potassium bromate in the baking industry is used in most parts of the world to avert the human health compromise that characterizes bromates carcinogenic effect. Herein, various methods of its analysis, especially the electrochemical methods of bromate detection, were extensively discussed. Amperometry (AP), cyclic voltammetry (CV), square wave voltammetry (SWV), electrochemiluminescence (ECL), differential pulse voltammetry and electrochemical impedance spectroscopy (EIS) are the techniques that have been deployed for bromate detection in the last two decades, with 50%, 23%, 7.7%, 7.7%, 7.7% and 3.9% application, respectively. Despite the unique electrocatalytic activity of metal phthalocyanine (MP) and carbon quantum dots (CQDs), only few sensors based on MP and CQDs are available compared to the conducting polymers, carbon nanotubes (CNTs), metal (oxide) and graphene-based sensors. This review emboldens the underutilization of CQDs and metal phthalocyanines as sensing materials and briefly discusses the future perspective on MP and CQDs application in bromate detection via EIS.
Collapse
|
4
|
Abstract
Polyoxometalates (POMs) have been used for spectrophotometric determinations of silicon and phosphorus under acidic conditions, referred to as the molybdenum yellow method and molybdenum blue method, respectively. Many POMs are redox active and exhibit fascinating but complicated voltammetric responses. These compounds can reversibly accommodate and release many electrons without exhibiting structural changes, implying that POMs can function as excellent mediators and can be applied to sensitive determination methods based on catalytic electrochemical reactions. In addition, some rare-earth-metal-incorporated POMs exhibit fluorescence, which enables sensitive determination by the enhancement and quenching of fluorescence intensities. In this review, various analytical applications of POMs are introduced, mainly focusing on papers published after 2000, except for the molybdenum yellow method and molybdenum blue method.
Collapse
Affiliation(s)
- Tadaharu Ueda
- Department of Marine Resource Science Faculty of Agriculture and Marine Science, Kochi University, Nankoku, 783-8502, Japan. .,Center for Advanced Marine Core Research, Kochi University, Nankoku, 783-8502, Japan.
| |
Collapse
|
5
|
Ali B, Laffir F, Kailas L, Armstrong G, Kailas L, O'Connell R, McCormac T. Electrochemical Characterisation of NiII
-Crown-Type Polyoxometalate-Doped Polypyrrole Films for the Catalytic Reduction of Bromate in Water. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bushra Ali
- Electrochemistry Research Group; Applied Sciences; Dundalk Institute of Technology; Dublin Road Dundalk Ireland
| | - Fathima Laffir
- Bernal Institute; Applied Sciences; University of Limerick; Limerick Ireland
| | - Lekshmi Kailas
- Bernal Institute; Applied Sciences; University of Limerick; Limerick Ireland
| | - Gordon Armstrong
- Bernal Institute; Applied Sciences; University of Limerick; Limerick Ireland
| | - Lekshmi Kailas
- Bernal Institute; Applied Sciences; University of Limerick; Limerick Ireland
| | - Robbie O'Connell
- Bernal Institute; Applied Sciences; University of Limerick; Limerick Ireland
| | - Timothy McCormac
- Electrochemistry Research Group; Applied Sciences; Dundalk Institute of Technology; Dublin Road Dundalk Ireland
| |
Collapse
|
6
|
Ibanez JG, Rincón ME, Gutierrez-Granados S, Chahma M, Jaramillo-Quintero OA, Frontana-Uribe BA. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chem Rev 2018; 118:4731-4816. [DOI: 10.1021/acs.chemrev.7b00482] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jorge G. Ibanez
- Departamento de Ingeniería y Ciencias Químicas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, 01219 Ciudad de México, Mexico
| | - Marina. E. Rincón
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580, Temixco, MOR, Mexico
| | - Silvia Gutierrez-Granados
- Departamento de Química, DCNyE, Campus Guanajuato, Universidad de Guanajuato, Cerro de la Venada S/N, Pueblito
de Rocha, 36080 Guanajuato, GTO Mexico
| | - M’hamed Chahma
- Laurentian University, Department of Chemistry & Biochemistry, Sudbury, ON P3E2C6, Canada
| | - Oscar A. Jaramillo-Quintero
- CONACYT-Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580 Temixco, MOR, Mexico
| | - Bernardo A. Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca 50200, Estado de México Mexico
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito
exterior Ciudad Universitaria, 04510 Ciudad de México, Mexico
| |
Collapse
|
7
|
Electrochemical Determination of Bromate in Different Types of Flour and Bread by a Sensitive Amperometric Sensor Based on Palladium Nanoparticles/Graphene Oxide Nanosheets. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-014-0065-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Li X, Li J, Wang H, Li R, Ma H, Du B, Wei Q. An electrochemiluminescence sensor for bromate assay based on a new cationic polythiophene derivative. Anal Chim Acta 2014; 852:69-73. [PMID: 25441881 DOI: 10.1016/j.aca.2014.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 11/19/2022]
Abstract
A sensitive electrochemiluminescence (ECL) sensor was fabricated for bromate assay based on a cationic polythiophene derivative, poly[3-(1,1'-dimethyl-4-piperidinemethylene)thiophene-2,5-diyl chloride] (PTh-D)/nafion modified Au electrode. Bromate was used as the coreactant as well as detecting analyte in the ECL sensor for the first time. The prepared PTh-D exhibited excellent solubility, strong and stable cathodic ECL activity. PTh-D can be immobilized on the surface of Au electrode via AuS bonding and nafion and chitosan were also used to immobilize PTh-D. The fabricated sensor exhibited a good linear relationship between the ECL intensities and the concentrations of BrO3(-) ranging from 1 μM to 0.1 M with a detection limit of 1 μM. This proposed method not only expands the application of PTh-D, but also opens new doors toward the detection of BrO3(-).
Collapse
Affiliation(s)
- Xiaojian Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jianxiu Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Huan Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Rongxia Li
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Hongmin Ma
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Bin Du
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
9
|
Ding L, Liu Y, Guo SX, Zhai J, Bond AM, Zhang J. Phosphomolybdate@poly(diallyldimethylammonium chloride)-reduced graphene oxide modified electrode for highly efficient electrocatalytic reduction of bromate. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Hassan SS, Liu Y, Sirajuddin, Solangi AR, Bond AM, Zhang J. Phosphomolybdate-doped-poly(3,4-ethylenedioxythiophene) coated gold nanoparticles: Synthesis, characterization and electrocatalytic reduction of bromate. Anal Chim Acta 2013; 803:41-6. [DOI: 10.1016/j.aca.2013.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/17/2013] [Accepted: 04/21/2013] [Indexed: 10/26/2022]
|
11
|
Yuan C, Guo S, Wang S, Liu L, Chen W, Wang E. Electropolymerization Polyoxometalate (POM)-Doped PEDOT Film Electrodes with Mastoid Microstructure and Its Application in Dye-Sensitized Solar Cells (DSSCs). Ind Eng Chem Res 2013. [DOI: 10.1021/ie302845z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chunchen Yuan
- Key Laboratory
of Polyoxometalate Science of Ministry of Education, Department of
Chemistry, Northeast Normal University,
Ren Min Street No. 5268, Changchun, Jilin, 130024, People’s
Republic of China
| | - Shuangshuang Guo
- Key Laboratory
of Polyoxometalate Science of Ministry of Education, Department of
Chemistry, Northeast Normal University,
Ren Min Street No. 5268, Changchun, Jilin, 130024, People’s
Republic of China
| | - Shiming Wang
- Key Laboratory
of Polyoxometalate Science of Ministry of Education, Department of
Chemistry, Northeast Normal University,
Ren Min Street No. 5268, Changchun, Jilin, 130024, People’s
Republic of China
| | - Lin Liu
- Key Laboratory
of Polyoxometalate Science of Ministry of Education, Department of
Chemistry, Northeast Normal University,
Ren Min Street No. 5268, Changchun, Jilin, 130024, People’s
Republic of China
| | - Weilin Chen
- Key Laboratory
of Polyoxometalate Science of Ministry of Education, Department of
Chemistry, Northeast Normal University,
Ren Min Street No. 5268, Changchun, Jilin, 130024, People’s
Republic of China
| | - Enbo Wang
- Key Laboratory
of Polyoxometalate Science of Ministry of Education, Department of
Chemistry, Northeast Normal University,
Ren Min Street No. 5268, Changchun, Jilin, 130024, People’s
Republic of China
| |
Collapse
|
12
|
Zanardi C, Terzi F, Seeber R. Polythiophenes and polythiophene-based composites in amperometric sensing. Anal Bioanal Chem 2012; 405:509-31. [PMID: 22941065 DOI: 10.1007/s00216-012-6318-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/25/2012] [Accepted: 07/30/2012] [Indexed: 11/26/2022]
Abstract
This overview of polythiophene-based materials provides a critical examination of meaningful examples of applications of similar electrode materials in electroanalysis. The advantages arising from the use of polythiophene derivatives in such an applicative context is discussed by considering the organic conductive material as such, and as one of the components of hybrid materials. The rationale at the basis of the combination of two or even more individual components into a hybrid material is discussed with reference to the active electrode processes and the consequent possible improvements of the electroanalytical performance. In this respect, study cases are presented considering different analytes chosen among those that are most frequently reported within the classes of organics and inorganics. The use of a polythiophene matrix to stably fix biological elements at the electrode surface for the development of catalytic biosensors and genosensors is also discussed. Finally, a few possible lines along which the next research in the field could be fruitfully pursued are outlined. Furthermore, the work still to be done to exploit the possibilities offered by novel products of organic synthesis, even along paths already traced in other fields of electrochemistry, is discussed.
Collapse
Affiliation(s)
- C Zanardi
- Department of Chemical and Geological Sciences, University of Modena and Reggio E, Modena, Italy
| | | | | |
Collapse
|
13
|
Tsai TH, Chen TW, Chen SM, Sarawathi R. Nickel, copper and manganese hexacyanoferrate with poly(3,4-ethylenedioxythiophene) hybrid film modified electrode for selectively determination of ascorbic acid. RUSS J ELECTROCHEM+ 2012. [DOI: 10.1134/s1023193512030147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Manivel A, Sivakumar R, Anandan S, Ashokkumar M. Ultrasound-Assisted Synthesis of Hybrid Phosphomolybdate–Polybenzidine Containing Silver Nanoparticles for Electrocatalytic Detection of Chlorate, Bromate and Iodate Ions in Aqueous Solutions. Electrocatalysis (N Y) 2011. [DOI: 10.1007/s12678-011-0072-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Liu S, Xu L, Li F, Xu B, Sun Z. Enhanced electrochromic performance of composite films by combination of polyoxometalate with poly(3,4-ethylenedioxythiophene). ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm02412k] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Electrocatalytic reduction of bromate ion using a polyaniline-modified electrode: An efficient and green technology for the removal of BrO3− in aqueous solutions. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.07.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Dispersion effect of Cs-PW particles on multiwalled carbon nanotubes and their electrocatalytic activity on the reduction of bromate. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Electrochemical behavior of an inorganic–organic hybrid based on isopolymolybdate anions and ethylenediamine. J APPL ELECTROCHEM 2009. [DOI: 10.1007/s10800-008-9748-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Lange U, Roznyatovskaya NV, Mirsky VM. Conducting polymers in chemical sensors and arrays. Anal Chim Acta 2008; 614:1-26. [PMID: 18405677 DOI: 10.1016/j.aca.2008.02.068] [Citation(s) in RCA: 407] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 02/22/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
The review covers main applications of conducting polymers in chemical sensors and biosensors. The first part is focused on intrinsic and induced receptor properties of conducting polymers, such as pH sensitivity, sensitivity to inorganic ions and organic molecules as well as sensitivity to gases. Induced receptor properties can be also formed by molecularly imprinted polymerization or by immobilization of biological receptors. Immobilization strategies are reviewed in the second part. The third part is focused on applications of conducting polymers as transducers and includes usual optical (fluorescence, SPR, etc.) and electrical (conductometric, amperometric, potentiometric, etc.) transducing techniques as well as organic chemosensitive semiconductor devices. An assembly of stable sensing structures requires strong binding of conducting polymers to solid supports. These aspects are discussed in the next part. Finally, an application of combinatorial synthesis and high-throughput analysis to the development and optimization of sensing materials is described.
Collapse
Affiliation(s)
- Ulrich Lange
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| | | | | |
Collapse
|