1
|
Hubel E, Neumann A, Fishman S, Schaffer O, Erez N, Shrkihe BA, Shteingard Y, Gross T, Shibolet O, Varol C, Zvibel I. Sortilin in Biliary Epithelial Cells Promotes Ductular Reaction and Fibrosis during Cholestatic Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:941-957. [PMID: 38493927 DOI: 10.1016/j.ajpath.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 03/19/2024]
Abstract
Cholestatic injuries are accompanied by ductular reaction, initiated by proliferation and activation of biliary epithelial cells (BECs), leading to fibrosis. Sortilin (encoded by Sort1) facilitates IL-6 secretion and leukemia inhibitory factor (LIF) signaling. This study investigated the interplay between sortilin and IL-6 and LIF in cholestatic injury-induced ductular reaction, morphogenesis of new ducts, and fibrosis. Cholestatic injury was induced by bile duct ligation (BDL) in wild-type and Sort1-/- mice, with or without augmentation of IL-6 or LIF. Mice with BEC sortilin deficiency (hGFAPcre.Sort1fl/fl) and control mice were subjected to BDL and 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet (DDC) induced cholestatic injury. Sort1-/- mice displayed reduced BEC proliferation and expression of BEC-reactive markers. Administration of LIF or IL-6 restored BEC proliferation in Sort1-/- mice, without affecting BEC-reactive or inflammatory markers. Sort1-/- mice also displayed impaired morphogenesis, which was corrected by LIF treatment. Similarly, hGFAPcre.Sort1fl/fl mice exhibited reduced BEC proliferation, but similar reactive and inflammatory marker expression. Serum IL-6 and LIF were comparable, yet liver pSTAT3 was reduced, indicating that sortilin is essential for co-activation of LIF receptor/gp130 signaling in BECs, but not for IL-6 secretion. hGFAPcre.Sortfl/fl mice displayed impaired morphogenesis and diminished fibrosis after BDL and DDC. In conclusion, sortilin-mediated engagement of LIF signaling in BECs promoted ductular reaction and morphogenesis during cholestatic injury. This study indicates that BEC sortilin is pivotal for the development of fibrosis.
Collapse
Affiliation(s)
- Einav Hubel
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anat Neumann
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Fishman
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ortal Schaffer
- Department of Pediatric Surgery, Assaf Harofe Hospital, Tzrifin, Israel
| | - Noam Erez
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Bander Abu Shrkihe
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Shteingard
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tamar Gross
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Shibolet
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Chen Varol
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Isabel Zvibel
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center and Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Nenu I, Toadere TM, Topor I, Țichindeleanu A, Bondor DA, Trella ȘE, Sparchez Z, Filip GA. Interleukin-6 in Hepatocellular Carcinoma: A Dualistic Point of View. Biomedicines 2023; 11:2623. [PMID: 37892997 PMCID: PMC10603956 DOI: 10.3390/biomedicines11102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is a pressing health concern, demanding a deep understanding of various mediators' roles in its development for therapeutic progress. Notably, interleukin-6 (IL-6) has taken center stage in investigations due to its intricate and context-dependent functions. This review delves into the dual nature of IL-6 in HCC, exploring its seemingly contradictory roles as both a promoter and an inhibitor of disease progression. We dissect the pro-tumorigenic effects of IL-6, including its impact on tumor growth, angiogenesis, and metastasis. Concurrently, we examine its anti-tumorigenic attributes, such as its role in immune response activation, cellular senescence induction, and tumor surveillance. Through a comprehensive exploration of the intricate interactions between IL-6 and the tumor microenvironment, this review highlights the need for a nuanced comprehension of IL-6 signaling in HCC. It underscores the importance of tailored therapeutic strategies that consider the dynamic stages and diverse surroundings within the tumor microenvironment. Future research directions aimed at unraveling the multifaceted mechanisms of IL-6 in HCC hold promise for developing more effective treatment strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Iuliana Nenu
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
- Department of Gastroenterology, “Prof. Dr. O. Fodor” Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Teodora Maria Toadere
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| | - Ioan Topor
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| | - Andra Țichindeleanu
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| | - Daniela Andreea Bondor
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| | - Șerban Ellias Trella
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| | - Zeno Sparchez
- Department of Gastroenterology, “Prof. Dr. O. Fodor” Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| |
Collapse
|
3
|
Cotransplantation With Adipose Tissue-derived Stem Cells Improves Engraftment of Transplanted Hepatocytes. Transplantation 2022; 106:1963-1973. [PMID: 35404871 PMCID: PMC9521584 DOI: 10.1097/tp.0000000000004130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hepatocyte transplantation is expected to be an alternative therapy to liver transplantation; however, poor engraftment is a severe obstacle to be overcome. The adipose tissue-derived stem cells (ADSCs) are known to improve engraftment of transplanted pancreatic islets, which have many similarities to the hepatocytes. Therefore, we examined the effects and underlying mechanisms of ADSC cotransplantation on hepatocyte engraftment. METHODS Hepatocytes and ADSCs were cotransplanted into the renal subcapsular space and livers of syngeneic analbuminemic rats, and the serum albumin level was quantified to evaluate engraftment. Immunohistochemical staining and fluorescent staining to trace transplanted cells in the liver were also performed. To investigate the mechanisms, cocultured supernatants were analyzed by a multiplex assay and inhibition test using neutralizing antibodies for target factors. RESULTS Hepatocyte engraftment at both transplant sites was significantly improved by ADSC cotransplantation ( P < 0.001, P < 0.001). In the renal subcapsular model, close proximity between hepatocytes and ADSCs was necessary to exert this effect. Unexpectedly, ≈50% of transplanted hepatocytes were attached by ADSCs in the liver. In an in vitro study, the hepatocyte function was significantly improved by ADSC coculture supernatant ( P < 0.001). The multiplex assay and inhibition test demonstrated that hepatocyte growth factor, vascular endothelial growth factor, and interleukin-6 may be key factors for the abovementioned effects of ADSCs. CONCLUSIONS The present study revealed that ADSC cotransplantation can improve the engraftment of transplanted hepatocytes. This effect may be based on crucial factors, such as hepatocyte growth factor, vascular endothelial growth factor, and interleukin-6, which are secreted by ADSCs.
Collapse
|
4
|
Machida K. HCV and tumor-initiating stem-like cells. Front Physiol 2022; 13:903302. [PMID: 36187761 PMCID: PMC9520593 DOI: 10.3389/fphys.2022.903302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Neoplasms contain tumor-initiating stem-like cells (TICs) that are characterized by increased drug resistance. The incidence of many cancer types have trended downward except for few cancer types, including hepatocellular carcinoma (HCC). Therefore mechanism of HCC development and therapy resistance needs to be understood. These multiple hits by hepatitis C virus (HCV) eventually promotes transformation and TIC genesis, leading to HCC development. This review article describes links between HCV-associated HCC and TICs. This review discusses 1) how HCV promotes genesis of TICs and HCC development; 2) how this process avails itself as a novel therapeutic target for HCC treatment; and 3) ten hall marks of TIC oncogenesis and HCC development as targets for novel therapeutic modalities.
Collapse
|
5
|
Ruscitti P, Berardicurti O, Giacomelli R, Cipriani P. The clinical heterogeneity of adult onset Still's disease may underlie different pathogenic mechanisms. Implications for a personalised therapeutic management of these patients. Semin Immunol 2021; 58:101632. [PMID: 35787972 DOI: 10.1016/j.smim.2022.101632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adult-onset Still's disease (AOSD) is a rare inflammatory disease of unknown aetiology usually affecting young adults and manifesting with a clinical triad of spiking fever, arthritis, and evanescent cutaneous rash. AOSD may be considered a highly heterogeneous disease, despite a similar clinical presentation, the disease course may be completely different. Some patients may have a single episode of the disease whereas others may evolve toward a chronic course and experience life-threatening complications. On these bases, to dissect the clinical heterogeneity of this disease, four different subsets were identified combining the manifestations at the beginning with possible diverse outcomes over time. Each one of these derived subsets would be characterised by a prominent different clinical feature from others, thus proposing dissimilar underlying pathogenic mechanisms, at least partially. Consequently, a distinct management of AOSD may be suggested to appropriately tailor the therapeutic strategy to these patients, according to principles of the precision medicine. These findings would also provide the rationale to recognise a different genetic and molecular profile of patients with AOSD. Taking together these findings, the basis for a precision medicine approach may be suggested in AOSD, which would drive a tailored therapeutic approach in these patients. A better patient stratification may also help in arranging specific designed studies to improve the management of patients with AOSD. Behind these different clinical phenotypes, distinct endotypes of AOSD may be suggested, probably differing in pathogenesis, outcomes, and response to therapies.
Collapse
Affiliation(s)
- Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Onorina Berardicurti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Roberto Giacomelli
- Unit of Rheumatology and Clinical Immunology, University of Rome "Campus Biomedico", Rome, Italy
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
6
|
A Novel Orthotopic Liver Cancer Model for Creating a Human-like Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13163997. [PMID: 34439154 PMCID: PMC8394300 DOI: 10.3390/cancers13163997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma is the most common form of liver cancer. The lack of models that resemble actual tumor development in patients, limits the research to improve the diagnosis rate and develop new treatments. This study describes a novel mouse model that involves organoid formation and an implantation technique. This mouse model shares human genetic profiles and factors around the tumor, resembling the actual tumor development in patients. We demonstrate the roles of different cell types around the tumor, in promoting tumor growth, using this model. This model will be useful to understand the tumor developmental process, drug testing, diagnosis, prognosis, and treatment development. Abstract Hepatocellular carcinoma (HCC) is the most common form of liver cancer. This study aims to develop a new method to generate an HCC mouse model with a human tumor, and imitates the tumor microenvironment (TME) of clinical patients. Here, we have generated functional, three-dimensional sheet-like human HCC organoids in vitro, using luciferase-expressing Huh7 cells, human iPSC-derived endothelial cells (iPSC-EC), and human iPSC-derived mesenchymal cells (iPSC-MC). The HCC organoid, capped by ultra-purified alginate gel, was implanted into the disrupted liver using an ultrasonic homogenizer in the immune-deficient mouse, which improved the survival and engraftment rate. We successfully introduced different types of controllable TME into the model and studied the roles of TME in HCC tumor growth. The results showed the role of the iPSC-EC and iPSC-MC combination, especially the iPSC-MC, in promoting HCC growth. We also demonstrated that liver fibrosis could promote HCC tumor growth. However, it is not affected by non-alcoholic fatty liver disease. Furthermore, the implantation of HCC organoids to humanized mice demonstrated that the immune response is important in slowing down tumor growth at an early stage. In conclusion, we have created an HCC model that is useful for studying HCC development and developing new treatment options in the future.
Collapse
|
7
|
Goonetilleke M, Kuk N, Correia J, Hodge A, Moore G, Gantier MP, Yeoh G, Sievert W, Lim R. Addressing the liver progenitor cell response and hepatic oxidative stress in experimental non-alcoholic fatty liver disease/non-alcoholic steatohepatitis using amniotic epithelial cells. Stem Cell Res Ther 2021; 12:429. [PMID: 34321089 PMCID: PMC8317377 DOI: 10.1186/s13287-021-02476-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/26/2021] [Indexed: 12/29/2022] Open
Abstract
Background Non-alcoholic fatty liver disease is the most common liver disease globally and in its inflammatory form, non-alcoholic steatohepatitis (NASH), can progress to cirrhosis and hepatocellular carcinoma (HCC). Currently, patient education and lifestyle changes are the major tools to prevent the continued progression of NASH. Emerging therapies in NASH target known pathological processes involved in the progression of the disease including inflammation, fibrosis, oxidative stress and hepatocyte apoptosis. Human amniotic epithelial cells (hAECs) were previously shown to be beneficial in experimental models of chronic liver injury, reducing hepatic inflammation and fibrosis. Previous studies have shown that liver progenitor cells (LPCs) response plays a significant role in the development of fibrosis and HCC in mouse models of fatty liver disease. In this study, we examined the effect hAECs have on the LPC response and hepatic oxidative stress in an experimental model of NASH. Methods Experimental NASH was induced in C57BL/6 J male mice using a high-fat, high fructose diet for 42 weeks. Mice received either a single intraperitoneal injection of 2 × 106 hAECs at week 34 or an additional hAEC dose at week 38. Changes to the LPC response and oxidative stress regulators were measured. Results hAEC administration significantly reduced the expansion of LPCs and their mitogens, IL-6, IFNγ and TWEAK. hAEC administration also reduced neutrophil infiltration and myeloperoxidase production with a concurrent increase in heme oxygenase-1 production. These observations were accompanied by a significant increase in total levels of anti-fibrotic IFNβ in mice treated with a single dose of hAECs, which appeared to be independent of c-GAS-STING activation. Conclusions Expansion of liver progenitor cells, hepatic inflammation and oxidative stress associated with experimental NASH were attenuated by hAEC administration. Given that repeated doses did not significantly increase efficacy, future studies assessing the impact of dose escalation and/or timing of dose may provide insights into clinical translation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02476-6.
Collapse
Affiliation(s)
- Mihiri Goonetilleke
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - Nathan Kuk
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,Gastroenterology and Hepatology Unit, Monash Health, Melbourne, Victoria, Australia
| | - Jeanne Correia
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Gastroenterology and Hepatology Unit, Monash Health, Melbourne, Victoria, Australia
| | - Alex Hodge
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,Gastroenterology and Hepatology Unit, Monash Health, Melbourne, Victoria, Australia
| | - Gregory Moore
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,Gastroenterology and Hepatology Unit, Monash Health, Melbourne, Victoria, Australia
| | - Michael P Gantier
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.,Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - George Yeoh
- Centre for Medical Research, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - William Sievert
- Centre for Inflammatory Disease, School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,Gastroenterology and Hepatology Unit, Monash Health, Melbourne, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia. .,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Yuan C, Pan Y, Ning Y. Predictive Value of IL-6 Combined with NLR in Inflammation and Cancer. Cancer Invest 2021; 39:489-504. [PMID: 34139921 DOI: 10.1080/07357907.2020.1858852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022]
Abstract
The strong association between inflammation and cancer is reflected by the high interleukin-6 (IL-6) levels in the tumor microenvironment, where it promotes carcinogenesis by regulating all hallmarks of cancer and multiple signaling pathways. In this study, we investigated the prognostic value of IL-6 and other clinical indexes in inflammatory and cancer patients. All the patients were divided into the inflammation group (n = 400) and the cancer group (n = 672) composed of hematological malignancies group (n = 338) and solid tumors group (n = 334). Continuous variables were measured by one-way ANOVA and t-test, and the independent risk factors for carcinogenesis were determined by multivariate logistic regression analysis. The receiver operating characteristic (ROC) curves subsequently performed the predictive value of significant serological parameters and the Corheatmaps illustrated the correlation of these parameters in every case. Our retrospective study revealed that various serological indexes could reflect carcinogenesis in inflammatory patients, as significant differences existed in many indexes between them. It was notable that indicator composed of IL-6 and neutrophils/lymphocytes ratio (NLR) occupied the superior position of Area Under Curve (AUC) values in cancer cases, especially in patients with solid tumors (AUC = 0.85). The newly-found indicator could also be referred as an independent risk factor, which provided us with novel clues on the investigation of more reliable and affordable clinical indexes in tumor prediction.
Collapse
Affiliation(s)
- Chunjue Yuan
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yong Ning
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
9
|
Hodge A, Andrewartha N, Lourensz D, Strauss R, Correia J, Goonetilleke M, Yeoh G, Lim R, Sievert W. Human Amnion Epithelial Cells Produce Soluble Factors that Enhance Liver Repair by Reducing Fibrosis While Maintaining Regeneration in a Model of Chronic Liver Injury. Cell Transplant 2021; 29:963689720950221. [PMID: 32813573 PMCID: PMC7563845 DOI: 10.1177/0963689720950221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human amnion epithelial cells (hAECs) exert potent antifibrotic and anti-inflammatory effects when transplanted into preclinical models of tissue fibrosis. These effects are mediated in part via the secretion of soluble factors by hAECs which modulate signaling pathways and affect cell types involved in inflammation and fibrosis. Based on these reports, we hypothesized that these soluble factors may also support liver regeneration during chronic liver injury. To test this, we characterized the effect of both hAECs and hAEC-conditioned medium (CM) on liver repair in a mouse model of carbon tetrachloride (CCl4)-induced fibrosis. Liver repair was assessed by liver fibrosis, hepatocyte proliferation, and the liver progenitor cell (LPC) response. We found that the administration of hAECs or hAEC-CM reduced liver injury and fibrosis, sustained hepatocyte proliferation, and reduced LPC numbers during chronic liver injury. Additionally, we undertook in vitro studies to document both the cell-cell and paracrine-mediated effects of hAECs on LPCs by investigating the effects of co-culturing the LPCs and hAECs and hAEC-CM on LPCs. We found little change in LPCs co-cultured with hAECs. In contrast, hAEC-CM enhances LPC proliferation and differentiation. These findings suggest that paracrine factors secreted by hAECs enhance liver repair by reducing fibrosis while promoting regeneration during chronic liver injury.
Collapse
Affiliation(s)
- Alexander Hodge
- Gastroenterology and Hepatology Unit, 2538Monash Health, Melbourne, Victoria, Australia.,Centre for Inflammatory Disease, School of Clinical Sciences, 2538Monash University, Melbourne, Victoria, Australia.,Both the authors contributed equally to this article
| | - Neil Andrewartha
- Centre for Medical Research, 102804Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Both the authors contributed equally to this article
| | - Dinushka Lourensz
- Gastroenterology and Hepatology Unit, 2538Monash Health, Melbourne, Victoria, Australia.,Centre for Inflammatory Disease, School of Clinical Sciences, 2538Monash University, Melbourne, Victoria, Australia
| | - Robyn Strauss
- Centre for Medical Research, 102804Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Jeanne Correia
- Gastroenterology and Hepatology Unit, 2538Monash Health, Melbourne, Victoria, Australia.,Centre for Inflammatory Disease, School of Clinical Sciences, 2538Monash University, Melbourne, Victoria, Australia
| | - Mihiri Goonetilleke
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, 2541Monash University, Melbourne, Victoria, Australia.,568369The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - George Yeoh
- Centre for Medical Research, 102804Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Rebecca Lim
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, 2541Monash University, Melbourne, Victoria, Australia.,568369The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| | - William Sievert
- Gastroenterology and Hepatology Unit, 2538Monash Health, Melbourne, Victoria, Australia.,Centre for Inflammatory Disease, School of Clinical Sciences, 2538Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Abd El Hady Mousa M, Mansour H, Eid F, Mashaal A. Anti-inflammatory activity of ginger modulates macrophage activation against the inflammatory pathway of monosodium glutamate. J Food Biochem 2021; 45:e13819. [PMID: 34159624 DOI: 10.1111/jfbc.13819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/01/2022]
Abstract
Monosodium glutamate (MSG) has been traditionally used as a flavor enhancer and is added to many foods. The chronic consumption of MSG has been suggested as causing toxicity, inflammation, obesity, type 2 diabetes, and pre-malignant changes. The use of medicinal plants and their products, such as ginger, against the effects of MSG has been suggested to have a protective effect. To evaluate the anti-inflammatory activity of ginger against the effects of MSG, we conducted a serial inflammatory analysis of MSG- and ginger-treated rats, focusing particularly on liver pathology. The consumption of ginger as an unconventional therapy against the effects of MSG resulted in significant anti-inflammatory activity. We found that it was possible to diagnose MSG-associated inflammatory pathogenesis using inflammatory mediators. Ginger consumption produced protective effects on health, minimized adverse effects, and may be applicable for food development and the treatment of many inflammatory diseases. PRACTICAL APPLICATIONS: The chronic administration of monosodium glutamate (MSG) as a flavor enhancer has been suggested to produce toxicity, inflammation, and pre-malignant changes in organs. Ginger has protective effects, with potent anti-inflammatory and anti-fibrotic activity against MSG administration. This study is the first to report that ginger modulated the inflammatory and fibrotic effects of MSG and improved immunological indices reflecting the involvement of inflammatory and fibrotic markers and polysaccharide content in the activation of macrophages. These findings support the further use of ginger as a supplement for food enhancement and as an anti-fibrotic, anti-inflammatory, and therapeutic agent in pharmaceutical therapies against autoimmune and inflammatory diseases, such as rheumatoid arthritis, lupus, and ulcerative colitis, as well as MSG-associated inflammatory diseases.
Collapse
Affiliation(s)
- Mai Abd El Hady Mousa
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| | - Hemmat Mansour
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| | - Fatma Eid
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| | - Alya Mashaal
- Immunology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
11
|
The relationship between IL-6 and thrombocytosis accompanying gastrointestinal tumours. GASTROENTEROLOGY REVIEW 2020; 15:215-219. [PMID: 33005266 PMCID: PMC7509901 DOI: 10.5114/pg.2020.98538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Introduction Several reports have stated that thrombocytosis is associated with worse survival and higher rate of metastasis in solid tumours. A study in ovarian tumours implicated IL-6 produced by tumour cells as a key mechanistic factor. Aim To evaluate the relevance of this paraneoplastic pathway in gastrointestinal cancer. Material and methods After excluding thromboembolic and inflammatory disorders, 161 patients were enrolled who had been operated due to various gastrointestinal cancer at the 1st Department of Surgery at the Semmelweis University between 2015 and 2017. Platelet counts and serum IL-6 levels were determined from preoperative blood samples. Thrombocytosis was defined as the upper limit of normal platelet count, e.g. 400 × 103/µl. Results A weak but significantly positive correlation was found between elevated platelet counts and serum IL-6 (correlation coefficient: R = 0.214, p = 0.006), which became more pronounced in colon and oesophageal cancer if evaluated in the different tumour types (R = 0.292 and R = 0.419, respectively). However, using a multivariant linear regression model (R 2 = 0.47) corrected with haemoglobin, white blood cell count, and advanced disease stage, the analysis showed no significant correlation between serum IL-6 and platelet counts. Conclusions In gastrointestinal cancer our study did not support the paracrine-mediated paraneoplastic pathway described in ovarian tumors. Thrombocytosis showed significant correlation with white blood cells instead of serum IL-6, which implies that the inflammatory process may influence both parameters. Further studies are needed on larger patient cohorts.
Collapse
|
12
|
Widjaja AA, Chothani SP, Cook SA. Different roles of interleukin 6 and interleukin 11 in the liver: implications for therapy. Hum Vaccin Immunother 2020; 16:2357-2362. [PMID: 32530750 PMCID: PMC7644218 DOI: 10.1080/21645515.2020.1761203] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
The interleukin 6 (IL6) family of proteins regulate important cellular processes and act through a variety of signaling pathways via a shared gp130 receptor. In the liver, there is a large body of evidence showing a protective and pro-regenerative role for IL6 cis and trans signaling. While a few studies suggest a pathological role for IL6 trans-signaling in the liver. IL11 is often thought of as similar to IL6 and redundancy has been inferred. However, recent studies reveal that IL6R and IL11RA are expressed on dissimilar cell types and these cytokines actually have very different roles in biology and pathology. In the liver, IL6R is mostly expressed on immune cells, whereas IL11RA is highly expressed on hepatocytes and hepatic stellate cells, both of which exhibit autocrine IL11 activity. In contrast to the beneficial effects of IL6 in the liver, IL11 causes liver disease and its expression in stromal and parenchymal cells leads to fibrosis, inflammation, steatosis and hepatic failure. In this review, we address IL6 and IL11 in the context of liver function. We end by discussing the possibility of IL6 gain-of-function versus IL11 inhibition as therapeutic approaches to treat liver disease. 1,2.
Collapse
Affiliation(s)
- Anissa A. Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Sonia P. Chothani
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Stuart A. Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- National Heart and Lung Institute, Imperial College London, London, UK
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
13
|
So J, Kim A, Lee SH, Shin D. Liver progenitor cell-driven liver regeneration. Exp Mol Med 2020; 52:1230-1238. [PMID: 32796957 PMCID: PMC8080804 DOI: 10.1038/s12276-020-0483-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 12/28/2022] Open
Abstract
The liver is a highly regenerative organ, but its regenerative capacity is compromised in severe liver diseases. Hepatocyte-driven liver regeneration that involves the proliferation of preexisting hepatocytes is a primary regeneration mode. On the other hand, liver progenitor cell (LPC)-driven liver regeneration that involves dedifferentiation of biliary epithelial cells or hepatocytes into LPCs, LPC proliferation, and subsequent differentiation of LPCs into hepatocytes is a secondary mode. This secondary mode plays a significant role in liver regeneration when the primary mode does not effectively work, as observed in severe liver injury settings. Thus, promoting LPC-driven liver regeneration may be clinically beneficial to patients with severe liver diseases. In this review, we describe the current understanding of LPC-driven liver regeneration by exploring current knowledge on the activation, origin, and roles of LPCs during regeneration. We also describe animal models used to study LPC-driven liver regeneration, given their potential to further deepen our understanding of the regeneration process. This understanding will eventually contribute to developing strategies to promote LPC-driven liver regeneration in patients with severe liver diseases.
Collapse
Affiliation(s)
- Juhoon So
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Angie Kim
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Seung-Hoon Lee
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
14
|
Induction of synthesis of matrix metalloproteinases by interleukin-6; evidence for hepatic regeneration following hemi-hepatectomy. Clin Exp Hepatol 2020; 6:137-141. [PMID: 32728631 PMCID: PMC7380479 DOI: 10.5114/ceh.2020.95679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/16/2020] [Indexed: 01/18/2023] Open
Abstract
Aim of the study Interleukin-6 (IL-6) can play a role in hepatic regeneration through many mechanisms, one of which is the induction of synthesis of matrix metalloproteinases (MMPs). The aim of the study is to focus on the significance and role of MMPs in the regenerative process to reveal the correlation between IL-6 and MMPs in rats following partial hepatectomy. Material and methods Following hemi-hepatectomy, eighty male rats were divided into a control group and a group treated with IL-6 35 µg/100 gm body weight according to a lethality study. The blood samples were drawn from all animal groups for MMP-9 serum level assessment. For the quantitative determination of MMP-9 an enzyme-linked immunosorbent assay (ELISA) was used (Cytoimmune Science Inc., MD) through the quantitative sandwich immunosorbent assay technique. A monoclonal antibody for MMP-9 was pre-coated onto microplate standards. After washing away the unbound substances, an enzyme-linked polyclonal antibody specific for cytokine was added to the wells and color developed in proportion to the amount of total cytokine (pro and/or active) bound in the initial step. The color development was stopped and the intensity of the color was measured. Results The liver regeneration rate (%) was significantly higher in the group of rats treated with IL-6 (median value was 49.55% vs. 33.20%), p < 0.001. The MMPs’ serum level was significantly higher in the group of rats with resection and treatment (median value was 8.01). Conclusions These results give evidence for the vital role of MMPs in the process of hepatic regeneration, the level of which, in turn, has a close relationship with the level of IL-6. MMPs have diverse effects in promoting angiogenesis, remodeling of extracellular matrix and endothelial cell proliferation.
Collapse
|
15
|
Machida K. Cell fate, metabolic reprogramming and lncRNA of tumor-initiating stem-like cells induced by alcohol. Chem Biol Interact 2020; 323:109055. [PMID: 32171851 DOI: 10.1016/j.cbi.2020.109055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/13/2019] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Alcoholism synergizes the development of the hepatocellular carcinoma (HCC) in patients infected with hepatitis B or C virus (HBV or HCV). Tumor-initiating stem-like cells (TICs) are refractory to therapy and have expression of stemness transcription factors. Leaky-gut-derived endotoxin stimulates TLR4-NANOG pathway that skews asymmetric cell division and that metabolically reprograms hepatocytes/liver progenitor cells, leading to self-renewal. TICs isolated from mouse HCC models or human HCCs are tumorigenic and have p53 degradation via phosphorylation of the protective protein NUMB and its dissociation from p53 by the oncofetal protein TBC1D15. Furthermore, dysregulation of lncRNA promotes genesis of TICs, leading to HCC development. This review describes roles of cell fate decision, metabolic reprogramming and lncRNA for TIC genesis and liver oncogenesis. This project was supported by NIH grants 1R01AA018857-01, 5R21AA025470, P50AA11999 (Animal Core, Morphology Core, and Pilot Project Program), R24AA012885 (Non-Parenchymal Liver Cell Core) and pilot project funding (5P30DK048522-13).
Collapse
Affiliation(s)
- Keigo Machida
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA; Department of Molecular Microbiology and Immunology, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Complement C1q mediates the expansion of periportal hepatic progenitor cells in senescence-associated inflammatory liver. Proc Natl Acad Sci U S A 2020; 117:6717-6725. [PMID: 32139604 DOI: 10.1073/pnas.1918028117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most hepatocellular carcinomas (HCCs) develop in patients with chronic hepatitis, which creates a microenvironment for the growth of hepatic progenitor cells (HPCs) at the periportal area and subsequent development of HCCs. We investigated the signal from the inflammatory liver for this pathogenic process in the hepatic conditional β-catenin knockout mouse model. Senescent β-catenin-depleted hepatocytes in aged mice create an inflammatory microenvironment that stimulates periportal HPC expansion but arrests differentiation, which predisposes mice to the development of liver tumors. The release of complement C1q from macrophages in the inflammatory niche was identified as the unorthodox signal that activated the β-catenin pathway in periportal HPCs and was responsible for their expansion and de-differentiation. C1q inhibitors blocked the β-catenin pathway in both the expanding HPCs and the liver tumors but spared its orthodox pathway in pericentral normal hepatocytes. This mechanism has been validated in human liver specimens from patients with chronic hepatitis. Taken together, these results demonstrate that C1q- mediated activation of β-catenin pathway in periportal HPCs is a previously unrecognized mechanism for replenishing hepatocytes in the inflammatory liver and, if unchecked, for promoting hepatocarcinogenesis. C1q may become a new target for blocking carcinogenesis in patients with chronic hepatitis.
Collapse
|
17
|
Wang N, Lu K, Qu H, Wang H, Chen Y, Shan T, Ge X, Wei Y, Zhou P, Xia J. CircRBM33 regulates IL-6 to promote gastric cancer progression through targeting miR-149. Biomed Pharmacother 2020; 125:109876. [PMID: 32044717 DOI: 10.1016/j.biopha.2020.109876] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022] Open
Abstract
There is increasing evidence of the vital role played by circular RNAs (circRNAs) in the progression of gastric cancer (GC). A circRNA, hsa_circ_0001772, was generated from the RBM33 gene and named circRBM33. The aim of this study was to investigate the role of circRBM33 in GC. Quantitative real-time PCR (qRT-PCR) was used to quantify the expression of circRBM33 in 79 pairs of GC tissues and paracancerous tissues and 4 GC cell lines (MGC-803, BGC-823, SGC-7901, and AGS). Bioinformatics databases were used to predict downstream targets of circRNA and micro RNA (miRNA). Dual luciferase reporter assay was used to verify whether miR-149 was a direct binding target for circRBM33. Cell Counting Kit-8 (CCK-8) assay, 5-Ethynyl-2´-deoxyuridine (EDU) assay, transwell assay, and flow-cytometric analyses were performed to determine the role of circRBM33 in the biological functioning of GC cells. Western blot technique was used to quantify the levels of interleukin-6 (IL-6). CircRBM33 was distinctly upregulated in GC specimens and cell lines and a close correlation between circRBM33 expression and clinical characteristics of GC was observed. After silencing circRBM33, the apoptosis of GC cells increased, while proliferation, migration, and invasion decreased. Rescue experiments indicated that circRBM33 manipulates biological function in GC cells through the circRBM33/miR-149/IL-6 axis. CircRBM33 can be used as a tumor biomarker and a possible therapeutic target in the future.
Collapse
Affiliation(s)
- Ning Wang
- Department of Genernal Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Keyu Lu
- Department of Genernal Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Huiheng Qu
- Department of Genernal Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Hao Wang
- Department of Genernal Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Yigang Chen
- Department of Genernal Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Ting Shan
- Department of Genernal Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Xuhui Ge
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yunyu Wei
- Department of Laboratory, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Peng Zhou
- Department of Genernal Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Jiazeng Xia
- Department of Genernal Surgery, The Affiliated Wuxi NO.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China.
| |
Collapse
|
18
|
Molina MF, Abdelnabi MN, Fabre T, Shoukry NH. Type 3 cytokines in liver fibrosis and liver cancer. Cytokine 2019; 124:154497. [PMID: 30097286 DOI: 10.1016/j.cyto.2018.07.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
The type 3 cytokines IL-17 and IL-22 play a crucial, well synchronized physiological role in wound healing and repairing tissue damage due to infections or injury at barrier surfaces. These cytokines act on epithelial cells to induce secretion of early immune mediators, recruitment of inflammatory cells to the site of injury, and to trigger tissue repair mechanisms. However, if the damage persists or if these cytokines are dysregulated, then they contribute to a number of inflammatory pathologies, autoimmune conditions and cancer. The liver is a multifunctional organ that plays an essential role in metabolism, detoxification, and immune surveillance. It is also exposed to a variety of pathogens, toxins and injuries. Over the past decade, IL-17 and IL-22 have been implicated in various aspects of liver inflammation. IL-17 is upregulated in chronic liver injury and associated with liver disease progression. In contrast, IL-22 was shown to be hepatoprotective during acute liver injury but exhibited inflammatory effects in other models. Furthermore, IL-22 and IL-17 are both associated with poor prognosis in liver cancer. Finally, the regulatory mechanisms governing the physiological versus the pathological role of these two cytokines during acute and chronic liver injury remain poorly understood. In this review, we will summarize the current state of knowledge about IL-17 and IL-22 in wound healing during acute and chronic liver injury, their contribution to pathogenesis, their regulation, and their role in the transition from advanced liver disease to liver cancer.
Collapse
Affiliation(s)
- Manuel Flores Molina
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Mohamed N Abdelnabi
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Thomas Fabre
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Naglaa H Shoukry
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
19
|
Human Amnion Epithelial Cell Therapy for Chronic Liver Disease. Stem Cells Int 2019; 2019:8106482. [PMID: 31485235 PMCID: PMC6702811 DOI: 10.1155/2019/8106482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022] Open
Abstract
Liver fibrosis is a common consequence of chronic liver disease. Over time, liver fibrosis can develop into liver cirrhosis. Current therapies for liver fibrosis are limited, and liver transplant is the only curative therapy for patients who progress to end-stage disease. A potential approach to treat chronic liver disease with increasing interest is cell-based therapy. Among the multiple cell types which have been proposed for therapeutic uses, human amnion epithelial cells and amniotic fluid-derived mesenchymal cells are promising. These cells are highly abundant, and their use poses no ethical concern. Furthermore, they exert potent anti-inflammatory and antifibrotic effects in animal models of liver injury. This review highlights the therapeutic characteristics and discusses how human amnion epithelial cells can be utilised as a therapeutic tool for chronic liver disease.
Collapse
|
20
|
Machida K. NANOG-Dependent Metabolic Reprogramming and Symmetric Division in Tumor-Initiating Stem-like Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1032:105-113. [PMID: 30362094 PMCID: PMC6687510 DOI: 10.1007/978-3-319-98788-0_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alcohol abuse synergistically heightens the development of the third most deadliest cancer hepatocellular carcinoma (HCC) in patients infected with hepatitis C virus (HCV). Ectopically expressed TLR4 promotes liver tumorigenesis in alcohol-fed HCV Ns5a or Core transgenic mice. CD133+/CD49f + tumor-initiating stem cell-like cells (TICs) isolated from these models are tumorigenic have p53 degradation via phosphorylation of the protective protein NUMB and its dissociation from p53 by the oncoprotein TBC1D15. Nutrient deprivation reduces overexpressed TBC1D15 in TICs via autophagy-mediated degradation, suggesting a possible role of this oncoprotein in linking metabolic reprogramming and self-renewal.
Collapse
Affiliation(s)
- Keigo Machida
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA.
- Department of Molecular Microbiology and Immunology, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Wang F, Sun NN, Li LL, Zhu WW, Xiu J, Shen Y, Xu Q. Hepatic progenitor cell activation is induced by the depletion of the gut microbiome in mice. Microbiologyopen 2019; 8:e873. [PMID: 31094067 PMCID: PMC6813488 DOI: 10.1002/mbo3.873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
The homeostasis of the gut microbiome is crucial for human health and for liver function. However, it has not been established whether the gut microbiome influence hepatic progenitor cells (HPCs). HPCs are capable of self‐renewal and differentiate into hepatocytes and cholangiocytes; however, HPCs are normally quiescent and are rare in adults. After sustained liver damage, a ductular reaction occurs, and the number of HPCs is substantially increased. Here, we administered five broad‐spectrum antibiotics for 14 days to deplete the gut microbiomes of male C57BL/6 mice, and we measured the plasma aminotransferases and other biochemical indices. The expression levels of two HPC markers, SRY‐related high mobility group‐box gene 9 (Sox9) and cytokeratin (CK), were also measured. The plasma aminotransferase activities were not affected, but the triglyceride, lactate dehydrogenase, low‐density lipoprotein, and high‐density lipoprotein concentrations were significantly altered; this suggests that liver function is affected by the composition of the gut microbiome. The mRNA expression of Sox9 was significantly higher in the treated mice than it was in the control mice (p < 0.0001), and a substantial expression of Sox9 and CK was observed around the bile ducts. The mRNA expression levels of proinflammatory factors (interleukin [IL]‐1β, IL‐6, tumor necrosis factor [TNF]‐α, and TNF‐like weak inducer of apoptosis [Tweak]) were also significantly higher in the antibiotic‐treated mice than the levels in the control mice. These data imply that the depletion of the gut microbiome leads to liver damage, negatively impacts the hepatic metabolism and function, and activates HPCs. However, the underlying mechanisms remain to be determined.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan-Nan Sun
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Lan-Lan Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Wan-Wan Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianbo Xiu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China.,Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
di Bello G, Vendemiale G, Bellanti F. Redox cell signaling and hepatic progenitor cells. Eur J Cell Biol 2018; 97:546-556. [PMID: 30278988 DOI: 10.1016/j.ejcb.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 02/08/2023] Open
Abstract
Hepatic diseases are widespread in the world and organ transplantation is currently the only treatment for liver failure. New cell-based approaches have been considered, since stem cells may represent a possible source to treat liver diseases. Acute and chronic liver diseases are characterized by high production of reactive oxygen and nitrogen species, with consequent oxidative modifications of cellular macromolecules and alteration of signaling pathways, metabolism and cell cycle. Although considered harmful molecules, reactive species are involved in cell growth and differentiation processes, modulating the activity of transcription factors, which take part in stemness/proliferation. It is conceivable that redox balance may regulate the development of hepatic progenitor cells, function and survival in synchrony with metabolism during chronic liver diseases. This review aims to summarize diverse redox-sensitive signaling pathways involved in stem cell fate, highlighting the important role of hepatic progenitor cells as a possible source to treat end-stage liver disease for organ regeneration.
Collapse
Affiliation(s)
- Giorgia di Bello
- Centre for Experimental and Regenerative Medicine, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Gianluigi Vendemiale
- Centre for Experimental and Regenerative Medicine, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Francesco Bellanti
- Centre for Experimental and Regenerative Medicine, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, Italy.
| |
Collapse
|
23
|
Khaliq M, Ko S, Liu Y, Wang H, Sun Y, Solnica-Krezel L, Shin D. Stat3 Regulates Liver Progenitor Cell-Driven Liver Regeneration in Zebrafish. Gene Expr 2018; 18:157-170. [PMID: 29690953 PMCID: PMC6190120 DOI: 10.3727/105221618x15242506133273] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
After liver injury, regeneration manifests as either (1) hepatocytes proliferating to restore the lost hepatocyte mass or (2) if hepatocyte proliferation is compromised, biliary epithelial cells (BECs) dedifferentiating into liver progenitor cells (LPCs), which subsequently differentiate into hepatocytes. Following pharmacogenetic ablation of hepatocytes in Tg(fabp10a:CFP-NTR) zebrafish, resulting in severe liver injury, signal transducer and activator of transcription 3 (Stat3) and its target gene and negative regulator, socs3a, were upregulated in regenerating livers. Using either Stat3 inhibitors, JSI-124 and S3I-201, or stat3 zebrafish mutants, we investigated the role of Stat3 in LPC-driven liver regeneration. Although Stat3 suppression reduced the size of regenerating livers, BEC dedifferentiation into LPCs was unaffected. However, regenerating livers displayed a delay in LPC-to-hepatocyte differentiation and a significant reduction in the number of BECs. While no difference in cell death was detected, Stat3 inhibition significantly reduced LPC proliferation. Notably, stat3 mutants phenocopied the effects of Stat3 chemical inhibitors, although the mutant phenotype was incompletely penetrant. Intriguingly, a subset of socs3a mutants also displayed a lower number of BECs in regenerating livers. We conclude that the Stat3/Socs3a pathway is necessary for the proper timing of LPC-to-hepatocyte differentiation and establishing the proper number of BECs during LPC-driven liver regeneration.
Collapse
Affiliation(s)
- Mehwish Khaliq
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sungjin Ko
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yinzi Liu
- †Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hualin Wang
- ‡China Zebrafish Resource Center, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Yonghua Sun
- ‡China Zebrafish Resource Center, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Lila Solnica-Krezel
- †Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Donghun Shin
- *Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Miura Y, Matsui S, Miyata N, Harada K, Kikkawa Y, Ohmuraya M, Araki K, Tsurusaki S, Okochi H, Goda N, Miyajima A, Tanaka M. Differential expression of Lutheran/BCAM regulates biliary tissue remodeling in ductular reaction during liver regeneration. eLife 2018; 7:36572. [PMID: 30059007 PMCID: PMC6107333 DOI: 10.7554/elife.36572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023] Open
Abstract
Under chronic or severe liver injury, liver progenitor cells (LPCs) of biliary origin are known to expand and contribute to the regeneration of hepatocytes and cholangiocytes. This regeneration process is called ductular reaction (DR), which is accompanied by dynamic remodeling of biliary tissue. Although the DR shows apparently distinct mode of biliary extension depending on the type of liver injury, the key regulatory mechanism remains poorly understood. Here, we show that Lutheran (Lu)/Basal cell adhesion molecule (BCAM) regulates the morphogenesis of DR depending on liver disease models. Lu+ and Lu- biliary cells isolated from injured liver exhibit opposite phenotypes in cell motility and duct formation capacities in vitro. By overexpression of Lu, Lu- biliary cells acquire the phenotype of Lu+ biliary cells. Lu-deficient mice showed severe defects in DR. Our findings reveal a critical role of Lu in the control of phenotypic heterogeneity of DR in distinct liver disease models. Bile is a green to yellow liquid that the body uses to break down and digest fatty molecules. The substance is produced by the liver, and then it is collected and transported to the small bowel by a series of tubes known as the bile duct. When the liver is damaged, the ‘biliary’ cells that line the duct orchestrate the repair of the organ. In fact, the duct often reorganizes itself differently depending on the type of disease the liver is experiencing. For example, the biliary cells can form thin tube-like structures that deeply invade liver tissues, or they can grow into several robust pipes near the existing bile duct. However, it remains largely unknown which protein – or proteins – drive these different types of remodeling. Miura et al. find that, in mice, the biliary cells which invade an injured liver have a large amount of a protein called Lutheran at their surface, but that the cells that form robust ducts do not. This protein helps a cell attach to its surroundings. In addition, the biliary cells can adopt different types of repairing behaviors depending on the amount of Lutheran in their environment. Further experiments show that it is difficult for genetically modified mice without the protein to reshape their bile duct after liver injury. Finally, Miura et al. also detect Lutheran in the remodeling livers of patients with liver disease. Taken together, these results suggest that Lutheran plays an important role in tailoring the repairing roles of the biliary cells to a particular disease. The next step would be to clarify how different liver conditions coordinate the amount of Lutheran in biliary cells to create the right type of remodeling.
Collapse
Affiliation(s)
- Yasushi Miura
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Satoshi Matsui
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.,Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Miyata
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo College of Medicine, Hyogo, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Shinya Tsurusaki
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.,Laboratory of Stem Cell Regulation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.,Laboratory of Stem Cell Regulation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Jing Y, Sun K, Liu W, Sheng D, Zhao S, Gao L, Wei L. Tumor necrosis factor-α promotes hepatocellular carcinogenesis through the activation of hepatic progenitor cells. Cancer Lett 2018; 434:22-32. [PMID: 29981431 DOI: 10.1016/j.canlet.2018.07.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is an inflammation-related disease. Tumor necrosis factor alpha (TNF-α) is an important inflammatory factor and it has been confirmed to promote tumor growth and poor prognosis of HCC. Hepatic progenitor cells (HPCs) are thought to play an important role in liver injury and repair, as well as tumorigenesis. Chronic inflammation influences HPCs activation as well as differentiation. However, the mechanism is still unclear. In our study, the rat liver cancer model was constructed by DEN treatment, TNFR2-Fc fusion protein variant (TNFR2-FcV) and TNF-α-/- rats were used to detect the role of TNF-α in liver injury and tumorigenesis. And the effect of TNF-α on HPCs activation and proliferation was investigated, and the specific molecular mechanism was explored. We found that TNF-α inhibition and deletion could reduce tumor incidence but shorten survival time by increasing apoptosis and decreasing proliferation of hepatocytes. Further analysis indicated that TNF-α knochdown cloud inhibit HPCs activation and proliferation through TNFR2/STAT3 signaling pathway. And clinically TNF-α expression was correlated to HPCs activation and HCC recurrences. Our work suggested that TNF-α played a key role in liver injury and tumorigenesis.
Collapse
Affiliation(s)
- Yingying Jing
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Kai Sun
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenting Liu
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Dandan Sheng
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Shanmin Zhao
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China.
| |
Collapse
|
26
|
Wang J, Liu J, Chang Q, Yang B, Li S, Gu C. The association between preoperative serum interleukin-6 levels and postoperative prognosis in patients with T2 gallbladder cancer. J Surg Oncol 2018; 117:1672-1678. [PMID: 29723410 DOI: 10.1002/jso.25085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Interleukin-6 (IL-6) is closely associated with tumor progression. Whether it can predict postoperative prognosis of patients with T2 gallbladder cancer (GBC) remains controversial. METHODS We retrospectively collected the medical records of 125 patients with T2 GBC. Then, we analyzed the association between preoperative serum IL-6 levels and postoperative survival by multivariate Cox analyses and Kaplan-Meier curves in exploratory subgroups. RESULTS Predictive effects of serum IL-6 levels on overall survival were similar across most of the evaluated subgroups, except in different tumor location subgroups. The independent odds ratio (OR) of serum IL-6 levels was 2.57 (95%CI 1.73-3.82) in the hepatic side subgroup, while it was 1.15 (95%CI 0.68-1.93) in the peritoneal side subgroup (P = 0.014 for interaction). When we categorized serum IL-6 levels by median value (4.2 pg/mL), the 5-year survival rate of patients with high serum IL-6 levels was significantly higher in the hepatic side subgroup (58.5% vs 14.8%, P < 0.001), but no such difference was found in the peritoneal side subgroup (62.2% vs 67.6%, P = 0.722). CONCLUSIONS Preoperative serum IL-6 is significantly associated with prognostic implications in patients with hepatic side T2 GBC, not in those with peritoneal side tumors.
Collapse
Affiliation(s)
- Jianfa Wang
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Institute of Fudan-MinhangAcademic Healthy System, Minhang Hospital, Fudan university, Shanghai, P.R. China
| | - Jiazhe Liu
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Institute of Fudan-MinhangAcademic Healthy System, Minhang Hospital, Fudan university, Shanghai, P.R. China
| | - Qimeng Chang
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Institute of Fudan-MinhangAcademic Healthy System, Minhang Hospital, Fudan university, Shanghai, P.R. China
| | - Biao Yang
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Institute of Fudan-MinhangAcademic Healthy System, Minhang Hospital, Fudan university, Shanghai, P.R. China
| | - Sen Li
- Department of General Surgery, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Institute of Fudan-MinhangAcademic Healthy System, Minhang Hospital, Fudan university, Shanghai, P.R. China
| | - Chao Gu
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
27
|
Kramer AS, Latham B, Diepeveen LA, Mou L, Laurent GJ, Elsegood C, Ochoa-Callejero L, Yeoh GC. InForm software: a semi-automated research tool to identify presumptive human hepatic progenitor cells, and other histological features of pathological significance. Sci Rep 2018; 8:3418. [PMID: 29467378 PMCID: PMC5821869 DOI: 10.1038/s41598-018-21757-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/30/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatic progenitor cells (HPCs) play an important regenerative role in acute and chronic liver pathologies. Liver disease research often necessitates the grading of disease severity, and pathologists’ reports are the current gold-standard for assessment. However, it is often impractical to recruit pathologists in large cohort studies. In this study we utilise PerkinElmer’s “InForm” software package to semi-automate the scoring of patient liver biopsies, and compare outputs to a pathologist’s assessment. We examined a cohort of eleven acute hepatitis samples and three non-alcoholic fatty liver disease (NAFLD) samples, stained with HPC markers (GCTM-5 and Pan Cytokeratin), an inflammatory marker (CD45), Sirius Red to detect collagen and haematoxylin/eosin for general histology. InForm was configured to identify presumptive HPCs, CD45+ve inflammatory cells, areas of necrosis, fat and collagen deposition (p < 0.0001). Hepatitis samples were then evaluated both by a pathologist using the Ishak-Knodell scoring system, and by InForm through customised algorithms. Necroinflammation as evaluated by a pathologist, correlated with InForm outputs (r2 = 0.8192, p < 0.05). This study demonstrates that the InForm software package provides a useful tool for liver disease research, allowing rapid, and objective quantification of the presumptive HPCs and identifies histological features that assist with assessing liver disease severity, and potentially can facilitate diagnosis.
Collapse
Affiliation(s)
- Anne S Kramer
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Bruce Latham
- PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Luke A Diepeveen
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia
| | - Lingjun Mou
- WA Liver & Kidney Surgical Transplant Service, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Geoffrey J Laurent
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Caryn Elsegood
- School of Pharmacy and Biomedical Science, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Laura Ochoa-Callejero
- Angiogenesis group, Oncology Area, Centre for Biomedical Research of La Rioja, Logroño, Spain
| | - George C Yeoh
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia. .,School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia. .,Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
28
|
Ji T, Li G, Chen J, Zhao J, Li X, Lin H, Cai X, Cang Y. Distinct role of interleukin-6 and tumor necrosis factor receptor-1 in oval cell- mediated liver regeneration and inflammation-associated hepatocarcinogenesis. Oncotarget 2018; 7:66635-66646. [PMID: 27556180 PMCID: PMC5341826 DOI: 10.18632/oncotarget.11365] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Interleukin 6 (IL6), tumor necrosis factor α (TNFα) and TNF receptor-1(TNFR1) have been shown to involve in oval cell proliferation and hepatocellular carcinoma (HCC) development. However, their role in these processes is still unclear. In the present study, by using hepatocytes-specific DDB1 deletion mouse models, we explored the role and mechanism of IL6, TNFα and TNFR1 in oval cell proliferation and HCC development in the context of inflammation, which is the common features of HCC pathogenesis in humans. Our results showed that IL6 promotes oval cell proliferation and liver regeneration, while TNFα/TNFR1 does not affect this process. Deletion of IL6 accelerates HCC development and increases tumor burden. The number of natural killer(NK) cells is significantly decreased in tumors without IL6, implying that IL6 suppresses HCC by NK cells. In contrast to IL6, TNFR1-mediated signaling pathway promotes HCC development, and deletion of TNFR1 reduced tumor incidence. Increased apoptosis, compensatory proliferation and activation of MAPK/MEK/ERK cascade contribute to the oncogenic function of TNFR1-mediated signaling pathway. Intriguingly, deletion of TNFα accelerates tumor development, which shows divergent roles of TNFα and TNFR1 in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Tong Ji
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Gaofeng Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jie Zhao
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xi Li
- Oncology Business Unit and Innovation Center for Cell Signaling Network, WuXi AppTec Co., Ltd., Shanghai 200131, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yong Cang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
29
|
Naseem S, Hussain T, Manzoor S. Interleukin-6: A promising cytokine to support liver regeneration and adaptive immunity in liver pathologies. Cytokine Growth Factor Rev 2018; 39:36-45. [PMID: 29361380 DOI: 10.1016/j.cytogfr.2018.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
Abstract
Liver pathologies (fibrosis, cirrhosis, alcoholic, non-alcoholic diseases and hepatocellular carcinoma) represent one of the most common causes of death worldwide. A number of genetic and environmental factors contribute to the development of liver diseases. Interleukin-6 (IL-6) is a pleiotropic cytokine, exerting variety of effects on inflammation, liver regeneration, and defence against infections by regulating adaptive immunity. Due to its high abundance in inflammatory settings, IL-6 is often viewed as a detrimental cytokine. However, accumulating evidence supports the view that IL-6 has a beneficial impact in numerous liver pathologies, due to its roles in liver regeneration and in promoting an anti-inflammatory response in certain conditions. IL-6 promotes proliferation, angiogenesis and metabolism, and downregulates apoptosis and oxidative stress; together these functions are critical for mediating hepatoprotection. IL-6 is also an important regulator of adaptive immunity where it induces T cell differentiation and regulates autoimmunity. It can augment antiviral adaptive immune responses and mitigate exhaustion of T cells during chronic infection. This review focuses on studies that present IL-6 as a key factor in regulating liver regeneration and in supporting effector immune functions and suggests that these functions of IL-6 can be exploited in treatment strategies for liver pathologies.
Collapse
Affiliation(s)
- Sidrah Naseem
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Tabinda Hussain
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| |
Collapse
|
30
|
Chen X, Wei J, Li C, Pierson CR, Finlay JL, Lin J. Blocking interleukin-6 signaling inhibits cell viability/proliferation, glycolysis, and colony forming activity of human medulloblastoma cells. Int J Oncol 2017; 52:571-578. [PMID: 29207075 PMCID: PMC5741369 DOI: 10.3892/ijo.2017.4211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/23/2017] [Indexed: 02/07/2023] Open
Abstract
Elevated levels of the pro-inflammatory cytokine interleukin-6 (IL-6) have tumor-promoting activity and are associated with poor survival outcomes in many cancers. Additionally, the IL-6/GP130/STAT3 axis has been widely studied due to its pivotal role in tumor development and maintenance in a number of tissue types, including the cerebellum. However, the connection between IL-6 signaling and medulloblastoma progression is largely unexplored. In the present study, we observed that IL-6 induced medulloblastoma cell viability, cell proliferation and glycolysis. Furthermore, it also upregulated the expression of phosphorylated STAT3, indicating that the IL-6/GP130/STAT3 pathway plays a central role in medulloblastoma. The FDA-approved drug bazedoxifene, a blocker of the formation of the hexameric IL-6/IL-6R/GP130 complex, was re-purposed in this study to inhibit the IL-6/GP130/STAT3 signaling pathway. Bazedoxifene not only inhibited IL-6 mediated cell viability and cell proliferation, and increased phosphorylated STAT3 expression, but it also decreased cell glycolysis, demonstrating a certain level of therapeutic efficacy in vitro. Collectively, our findings offer new insight into the molecular mechanism underlying the biological aggressiveness of medulloblastoma, the roles of IL-6 in these processes and a possible efficacious adjuvant therapy for medulloblastoma.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Jia Wei
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Chenglong Li
- College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, The Department of Pathology and Division of Anatomy, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Jonathan L Finlay
- Hematology and Oncology, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
31
|
Chen J, Chen L, Zern MA, Theise ND, Diehl AM, Liu P, Duan Y. The diversity and plasticity of adult hepatic progenitor cells and their niche. Liver Int 2017; 37:1260-1271. [PMID: 28135758 PMCID: PMC5534384 DOI: 10.1111/liv.13377] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
The liver is a unique organ for homoeostasis with regenerative capacities. Hepatocytes possess a remarkable capacity to proliferate upon injury; however, in more severe scenarios liver regeneration is believed to arise from at least one, if not several facultative hepatic progenitor cell compartments. Newly identified pericentral stem/progenitor cells residing around the central vein is responsible for maintaining hepatocyte homoeostasis in the uninjured liver. In addition, hepatic progenitor cells have been reported to contribute to liver fibrosis and cancers. What drives liver homoeostasis, regeneration and diseases is determined by the physiological and pathological conditions, and especially the hepatic progenitor cell niches which influence the fate of hepatic progenitor cells. The hepatic progenitor cell niches are special microenvironments consisting of different cell types, releasing growth factors and cytokines and receiving signals, as well as the extracellular matrix (ECM) scaffold. The hepatic progenitor cell niches maintain and regulate stem cells to ensure organ homoeostasis and regeneration. In recent studies, more evidence has been shown that hepatic cells such as hepatocytes, cholangiocytes or myofibroblasts can be induced to be oval cell-like state through transitions under some circumstance, those transitional cell types as potential liver-resident progenitor cells play important roles in liver pathophysiology. In this review, we describe and update recent advances in the diversity and plasticity of hepatic progenitor cell and their niches and discuss evidence supporting their roles in liver homoeostasis, regeneration, fibrosis and cancers.
Collapse
Affiliation(s)
- Jiamei Chen
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
- E-institutes of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
| | - Long Chen
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mark A Zern
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
| | - Neil D. Theise
- Departments of Pathology and Medicine, Beth Israel Medical Center of Albert Einstein College of Medicine, New York, New York, USA
| | - Ann Mae Diehl
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ping Liu
- Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases of Ministry of Education of China, Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
- E-institutes of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuyou Duan
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
32
|
Kono H, Fujii H, Suzuki-Inoue K, Inoue O, Furuya S, Hirayama K, Akazawa Y, Nakata Y, Sun C, Tsukiji N, Shirai T, Ozaki Y. The platelet-activating receptor C-type lectin receptor-2 plays an essential role in liver regeneration after partial hepatectomy in mice. J Thromb Haemost 2017; 15:998-1008. [PMID: 28294559 DOI: 10.1111/jth.13672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 01/22/2023]
Abstract
Essentials Regeneration role of C-type lectin receptor-2 (CLEC-2) after 70% hepatectomy (HPx) was investigated. Wild-type or CLEC-2 deleted from platelets of chimeric mice (flKO) underwent HPx. The liver/body weight ratio was significantly lower in the flKO than in the wild-type. CLEC-2 plays an essential role in liver regeneration after HPx. SUMMARY Background and aim The aim of the present study was to investigate the role of C-type lectin receptor (CLEC)-2 in liver regeneration following partial liver resection in mice. Materials and methods Irradiated chimeric mice transplanted with fetal liver cells from wild-type (WT) mice, CLEC-2-deleted (KO) mice or mice with CLEC-2 deleted specifically from platelets (flKO) were generated. Mice underwent 70% partial hepatectomy (PH). Immunohistochemical staining was performed to investigate the expression of the endogenous ligand for CLEC-2, podoplanin. The accumulation of platelets in the liver was also quantified. The hepatic expression of the IL-6/gp130 and STAT3, Akt and ERK1/2 was also examined. Results The liver/body weight ratio and expression of all cell proliferation markers were significantly lower in the flKO group than in the WT group. The expression of phosphorylated (p) Akt and pERK1/2 was similar in the WT and flKO groups. On the other hand, the expression of pSTAT3 and IL-6 was significantly stronger in the WT group than in the flKO group. The expression of podoplanin was detected in the hepatic sinusoids of both groups. However, the extent to which platelets accumulated in hepatic sinusoids was significantly less in the flKO group than in the WT group. Conclusion CLEC-2 was involved in hepatic regeneration after liver resection and CLEC-2-related liver regeneration was attributed to the interaction between platelets and sinusoidal endothelial cells.
Collapse
Affiliation(s)
- H Kono
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - H Fujii
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - K Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - O Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - S Furuya
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - K Hirayama
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Y Akazawa
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Y Nakata
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - C Sun
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - N Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - T Shirai
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Y Ozaki
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
33
|
Lukacs-Kornek V, Lammert F. The progenitor cell dilemma: Cellular and functional heterogeneity in assistance or escalation of liver injury. J Hepatol 2017; 66:619-630. [PMID: 27826058 DOI: 10.1016/j.jhep.2016.10.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022]
Abstract
Liver progenitor cells (LPCs) are quiescent cells that are activated during liver injury and thought to give rise to hepatocytes and cholangiocytes in order to support liver regeneration and tissue restitution. While hepatocytes are capable of self-renewal, during most chronic injuries the proliferative capacity of hepatocytes is inhibited, thus LPCs provide main source for regeneration. Despite extensive lineage tracing studies, their role and involvement in these processes are often controversial. Additionally, increasing evidence suggests that the LPC compartment consists of heterogeneous cell populations that are actively involved in cellular interactions with myeloid and lymphoid cells during regeneration. On the other hand, LPC expansion has been associated with an increased fibrogenic response, raising concerns about the therapeutic use of these cells. This review aims to summarize the current understanding of the identity, the cellular interactions and the key pathways affecting the biology of LPCs. Understanding the regulatory circuits and the specific role of LPCs is especially important as it could provide novel therapeutic platforms for the treatment of liver inflammation, fibrosis and regeneration.
Collapse
Affiliation(s)
- Veronika Lukacs-Kornek
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
34
|
Existence of cancer stem cells in hepatocellular carcinoma: myth or reality? Hepatol Int 2016; 11:143-147. [PMID: 27990610 DOI: 10.1007/s12072-016-9777-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
Abstract
The cancer stem cell (CSC) hypothesis has been disproved in many cancers. CSCs may exist in blood cancer, while many epithelial cancers may not have CSCs but tumor-initiating cells (TICs). Several independent studies have provided strong evidence for existence of CSCs in brain, skin, and colon cancers (Mani et al. in Cell 133:704-715, 2008, Joseph et al. in Cancer Cell 13:129-140, 2008, Reya et al. in Nature 414:105-111, 2001), while the CSC hypothesis remains controversial (Magee et al. in Cancer Cell 21:283-296, 2012). Liver TICs have bipotential to give rise to two different lineage types: hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC). In the liver cancer field, the origin of HCC and CC is extensively debated. Several groups have validated that TICs gave rise to HCC and CC. Hepatocytes gave rise to HCC. Several groups have demonstrated that oval cells (or liver progenitor cells) give rise to TICs. However, CSCs may be a myth in gastrointestinal cancer, while many groups have validated liver TICs. The definition of CSCs includes pluripotency, while TICs do not have to have pluripotency and only need to have bi- or multipotential to give rise to diverse tumor types and tumor initiation potential in mouse models. The CSC hypothesis therefore controversial (Magee et al. in Cancer Cell 21:283-296, 2012). Cancer tissues contain subpopulations of cells known as tumor-initiating stem-like cells (TICs, so-called CSCs) that have been identified as key drivers of tumor growth and malignant progression with drug resistance. Stem cells proliferate via self-renewing division in which the two daughter cells differ in proliferative potential, with one displaying differentiated phenotype and the other retaining self-renewing activity.
Collapse
|
35
|
Tanaka M, Miyajima A. Liver regeneration and fibrosis after inflammation. Inflamm Regen 2016; 36:19. [PMID: 29259692 PMCID: PMC5725806 DOI: 10.1186/s41232-016-0025-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 02/08/2023] Open
Abstract
The liver is a unique organ with an extraordinary capacity to regenerate upon various injuries. In acute and transient liver injury by insults such as chemical hepatotoxins, the liver in rodents returns to the original architecture by proliferation and remodeling of the remaining cells within a week. In contrast, chronic liver inflammation due to various etiologies, e.g., virus infection and metabolic and immune disorders, results in liver fibrosis, often leading to cirrhosis and carcinogenesis. In both acute and chronic inflammation, a variety of immune and non-immune cells in the liver is involved in the processes resulting in either regeneration or fibrosis. In addition, chronic hepatitis often accompanies proliferation of atypical biliary cells, also known as liver progenitor cells or oval cells. Although the origin of liver progenitor cells and its contribution to hepatic repair is still under intense debate, recent studies have revealed a regulatory role for immune cells in progenitor proliferation and differentiation. In this review, we summarize recent studies on liver regeneration and fibrosis in the viewpoint of inflammation.
Collapse
Affiliation(s)
- Minoru Tanaka
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Atsushi Miyajima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Abstract
The human body combats infection and promotes wound healing through the remarkable process of inflammation. Inflammation is characterized by the recruitment of stromal cell activity including recruitment of immune cells and induction of angiogenesis. These cellular processes are regulated by a class of soluble molecules called cytokines. Based on function, cell target, and structure, cytokines are subdivided into several classes including: interleukins, chemokines, and lymphokines. While cytokines regulate normal physiological processes, chronic deregulation of cytokine expression and activity contributes to cancer in many ways. Gene polymorphisms of all types of cytokines are associated with risk of disease development. Deregulation RNA and protein expression of interleukins, chemokines, and lymphokines have been detected in many solid tumors and hematopoetic malignancies, correlating with poor patient prognosis. The current body of literature suggests that in some tumor types, interleukins and chemokines work against the human body by signaling to cancer cells and remodeling the local microenvironment to support the growth, survival, and invasion of primary tumors and enhance metastatic colonization. Some lymphokines are downregulated to suppress tumor progression by enhancing cytotoxic T cell activity and inhibiting tumor cell survival. In this review, we will describe the structure/function of several cytokine families and review our current understanding on the roles and mechanisms of cytokines in tumor progression. In addition, we will also discuss strategies for exploiting the expression and activity of cytokines in therapeutic intervention.
Collapse
Affiliation(s)
- M Yao
- University of Kansas Medical Center, Kansas City, KS, United States
| | - G Brummer
- University of Kansas Medical Center, Kansas City, KS, United States
| | - D Acevedo
- University of Kansas Medical Center, Kansas City, KS, United States
| | - N Cheng
- University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
37
|
Liu WH, Ren LN, Wang T, Navarro-Alvarez N, Tang LJ. The Involving Roles of Intrahepatic and Extrahepatic Stem/Progenitor Cells (SPCs) to Liver Regeneration. Int J Biol Sci 2016; 12:954-963. [PMID: 27489499 PMCID: PMC4971734 DOI: 10.7150/ijbs.15715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022] Open
Abstract
Liver regeneration is usually attributed to mature hepatocytes, which possess a remarkable potential to proliferate under mild to moderate injury. However, when the liver is severely damaged or hepatocyte proliferation is greatly inhibited, liver stem/progenitor cells (LSPCs) will contribute to the liver regeneration process. LSPCs in the developing liver have been extensively characterized, however, their contributing role to liver regeneration has not been completely understood. In addition to the restoration of the liver parenchymal tissue by hepatocytes or/and LSPCs, or in some cases bone marrow (BM) derived cells, such as hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs), the wound healing after injury in terms of angiopoiesis by liver sinusoidal endothelial cells (LSECs) or/and sinusoidal endothelial progenitor cells (SEPCs) is another important aspect taking place during regeneration. To conclude, liver regeneration can be mainly divided into three distinct restoring levels according to the cause and severity of injury: hepatocyte dominant regeneration, LSPCs mediated regeneration, extrahepatic stem cells participative regeneration. In this review, we focus on the recent findings of liver regeneration, especially on those related to stem/progenitor cells (SPCs)-mediated regeneration and their potential clinical applications and challenges.
Collapse
Affiliation(s)
- Wei-hui Liu
- 1. General Surgery Center, Chengdu Military General Hospital; Chengdu, Sichuan Province, 610083
| | - Li-na Ren
- 1. General Surgery Center, Chengdu Military General Hospital; Chengdu, Sichuan Province, 610083
| | - Tao Wang
- 1. General Surgery Center, Chengdu Military General Hospital; Chengdu, Sichuan Province, 610083
| | - Nalu Navarro-Alvarez
- 2. Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Li-jun Tang
- 1. General Surgery Center, Chengdu Military General Hospital; Chengdu, Sichuan Province, 610083
| |
Collapse
|
38
|
DJ-1 deficiency attenuates expansion of liver progenitor cells through modulating the inflammatory and fibrogenic niches. Cell Death Dis 2016; 7:e2257. [PMID: 27277679 PMCID: PMC5143389 DOI: 10.1038/cddis.2016.161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 12/27/2022]
Abstract
Our previous study suggested that DJ-1 has a critical role in initiating an inflammatory response, but its role in the liver progenitor cell (LPC) expansion, a process highly dependent on the inflammatory niche, remains elusive. The objective of this study is to determine the role of DJ-1 in LPC expansion. The correlation of DJ-1 expression with LPC markers was examined in the liver of patients with hepatitis B or hepatitis C virus (HBV and HCV, respectively) infection, primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), nonalcoholic fatty liver disease (NAFLD), cirrhosis or hepatocellular carcinoma (HCC), respectively. The role of DJ-1 in LPC expansion and the formation of LPC-associated fibrosis and inflammation was examined in a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced liver injury murine model. We also determined the ability of hepatic stellate cells (HSCs) in recruiting macrophages in DJ-1 knockout (KO) mice. The expression levels of DJ-1 were upregulated in the liver of HBV, HCV, PBC and PSC patients and DDC-fed mice. Additionally, DJ-1 expression was positively correlated with LPC proliferation in patients with liver injury and mice with DDC exposure. DJ-1 has no direct effect on LPC proliferation. Reduced activation of HSCs and collagen deposition were observed in DJ-1 KO mice. Furthermore, infiltrated CD11b+Gr-1low macrophages and pro-inflammatory factors (IL-6, TNF-α) were attenuated in DJ-1 KO mice. Mechanistically, we found that HSCs isolated from DJ-1 KO mice had decreased secretion of macrophage-mobilizing chemokines, such as CCL2 and CX3CL1, resulting in impaired macrophage infiltration. DJ-1 positively correlates with LPC expansion during liver injury. DJ-1 deficiency negatively regulates LPC proliferation by impairing the formation of LPC-associated fibrosis and inflammatory niches.
Collapse
|
39
|
Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol 2016; 37:11553-11572. [DOI: 10.1007/s13277-016-5098-7] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/22/2016] [Indexed: 02/07/2023] Open
|
40
|
Schmidt-Arras D, Rose-John S. IL-6 pathway in the liver: From physiopathology to therapy. J Hepatol 2016; 64:1403-15. [PMID: 26867490 DOI: 10.1016/j.jhep.2016.02.004] [Citation(s) in RCA: 628] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/15/2016] [Accepted: 02/03/2016] [Indexed: 02/07/2023]
Abstract
Interleukin 6 (IL-6) is a pleiotropic four-helix-bundle cytokine that exerts multiple functions in the body. In the liver, IL-6 is an important inducer of the acute phase response and infection defense. IL-6 is furthermore crucial for hepatocyte homeostasis and is a potent hepatocyte mitogen. It is not only implicated in liver regeneration, but also in metabolic function of the liver. However, persistent activation of the IL-6 signaling pathway is detrimental to the liver and might ultimately result in the development of liver tumors. On target cells IL-6 can bind to the signal transducing subunit gp130 either in complex with the membrane-bound or with the soluble IL-6 receptor to induce intracellular signaling. In this review we describe how these different pathways are involved in the physiology and pathophyiology of the liver. We furthermore discuss how IL-6 pathways can be selectively inhibited and therapeutically exploited for the treatment of liver pathologies.
Collapse
Affiliation(s)
- Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstrasse 40, Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstrasse 40, Kiel, Germany.
| |
Collapse
|
41
|
Upregulation of hydroxysteroid sulfotransferase 2B1b promotes hepatic oval cell proliferation by modulating oxysterol-induced LXR activation in a mouse model of liver injury. Arch Toxicol 2016; 91:271-287. [PMID: 27052460 DOI: 10.1007/s00204-016-1693-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/21/2016] [Indexed: 02/07/2023]
Abstract
Hydroxysteroid sulfotransferase 2B1b (SULT2B1b) sulfates cholesterol and oxysterols. Hepatic oval cells (HOCs), thought to be progenitor cells, can be triggered in chemically injured livers. The present study focused on the role of SULT2B1b in HOC proliferation after liver injury. Our experiments revealed that the expression of SULT2B1b was increased dramatically in a chemical-induced liver injury model, mainly in HOCs. Upon challenge with a hepatotoxic diet containing 0.1 % 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), SULT2B1-/- mice presented alleviated liver injury and less HOC proliferation compared with wild-type (WT) mice, and these findings were verified by serum analysis, histopathology, immunofluorescence staining, RNA-seq, and Western blotting. HOCs derived from SULT2B1-/- mice showed lower proliferative capability than those from WT mice. SULT2B1b overexpression promoted growth of the WB-F344 hepatic oval cell line, whereas SULT2B1b knockdown inhibited growth of these cells. The IL-6/STAT3 signaling pathway also was promoted by SULT2B1b. Liquid chromatography and mass spectrometry indicated that the levels of 22-hydroxycholesterol, 25-hydroxycholesterol, and 24,25-epoxycholesterol were higher in the DDC-injured livers of SULT2B1-/- mice than in livers of WT mice. The above oxysterols are physiological ligands of liver X receptors (LXRs), and SULT2B1b suppressed oxysterol-induced LXR activation. Additional in vivo and in vitro experiments demonstrated that LXR activation could inhibit HOC proliferation and the IL-6/STAT3 signaling pathway, and these effects could be reversed by SULT2B1b. Our data indicate that upregulation of SULT2B1b might promote HOC proliferation and aggravate liver injury via the suppression of oxysterol-induced LXR activation in chemically induced mouse liver injury.
Collapse
|
42
|
Wueest S, Item F, Lucchini FC, Challa TD, Müller W, Blüher M, Konrad D. Mesenteric Fat Lipolysis Mediates Obesity-Associated Hepatic Steatosis and Insulin Resistance. Diabetes 2016; 65:140-8. [PMID: 26384383 DOI: 10.2337/db15-0941] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/08/2015] [Indexed: 11/13/2022]
Abstract
Hepatic steatosis and insulin resistance are among the most prevalent metabolic disorders and are tightly associated with obesity and type 2 diabetes. However, the underlying mechanisms linking obesity to hepatic lipid accumulation and insulin resistance are incompletely understood. Glycoprotein 130 (gp130) is the common signal transducer of all interleukin 6 (IL-6) cytokines. We provide evidence that gp130-mediated adipose tissue lipolysis promotes hepatic steatosis and insulin resistance. In obese mice, adipocyte-specific gp130 deletion reduced basal lipolysis and enhanced insulin's ability to suppress lipolysis from mesenteric but not epididymal adipocytes. Consistently, free fatty acid levels were reduced in portal but not in systemic circulation of obese knockout mice. Of note, adipocyte-specific gp130 knockout mice were protected from high-fat diet-induced hepatic steatosis as well as from insulin resistance. In humans, omental but not subcutaneous IL-6 mRNA expression correlated positively with liver lipid accumulation (r = 0.31, P < 0.05) and negatively with hyperinsulinemic-euglycemic clamp glucose infusion rate (r = -0.28, P < 0.05). The results show that IL-6 cytokine-induced lipolysis may be restricted to mesenteric white adipose tissue and that it contributes to hepatic insulin resistance and steatosis. Therefore, blocking IL-6 cytokine signaling in (mesenteric) adipocytes may be a novel approach to blunting detrimental fat-liver crosstalk in obesity.
Collapse
Affiliation(s)
- Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Flurin Item
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Fabrizio C Lucchini
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland Children's Research Centre, University Children's Hospital, Zurich, Switzerland Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Tenagne D Challa
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Werner Müller
- Faculty of Life Sciences, University of Manchester, Manchester, U.K
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland Children's Research Centre, University Children's Hospital, Zurich, Switzerland Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Irvine KM, Clouston AD, Gadd VL, Miller GC, Wong WY, Melino M, Maradana MR, MacDonald K, Lang RA, Sweet MJ, Blumenthal A, Powell EE. Deletion of Wntless in myeloid cells exacerbates liver fibrosis and the ductular reaction in chronic liver injury. FIBROGENESIS & TISSUE REPAIR 2015; 8:19. [PMID: 26473015 PMCID: PMC4606475 DOI: 10.1186/s13069-015-0036-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022]
Abstract
Background Macrophages play critical roles in liver regeneration, fibrosis development and resolution. They are among the first responders to liver injury and are implicated in orchestrating the fibrogenic response via multiple mechanisms. Macrophages are also intimately associated with the activated hepatic progenitor cell (HPC) niche or ductular reaction that develops in parallel with fibrosis. Among the many macrophage-derived mediators implicated in liver disease progression, a key role for macrophage-derived Wnt proteins in driving pro-regenerative HPC activation towards a hepatocellular fate has been suggested. Wnt proteins, in general, however, have been associated with both pro- and anti-fibrogenic activities in the liver and other organs. We investigated the role of macrophage-derived Wnt proteins in fibrogenesis and HPC activation in murine models of chronic liver disease by conditionally deleting Wntless expression, which encodes a chaperone essential for Wnt protein secretion, in LysM-Cre-expressing myeloid cells (LysM-Wls mice). Results Fibrosis and HPC activation were exacerbated in LysM-Wls mice compared to littermate controls, in the absence of an apparent increase in myofibroblast activation or interstitial collagen mRNA expression, in both the TAA and CDE models of chronic liver disease. Increased Epcam mRNA levels paralleled the increased HPC activation and more mature ductular reactions, in LysM-Wls mice. Increased Epcam expression in LysM-Wls HPC was also observed, consistent with a more cholangiocytic phenotype. No differences in the mRNA expression levels of key pro-inflammatory and pro-fibrotic cytokines or the macrophage-derived HPC mitogen, Tweak, were observed. LysM-Wls mice exhibited increased expression of Timp1, encoding the key Mmp inhibitor Timp1 that blocks interstitial collagen degradation, and, in the TAA model, reduced expression of the anti-fibrotic matrix metalloproteinases, Mmp12 and Mmp13, suggesting a role for macrophage-derived Wnt proteins in restraining fibrogenesis during ongoing liver injury. Conclusion In summary, these data suggest that macrophage-derived Wnt proteins possess anti-fibrogenic potential in chronic liver disease, which may be able to be manipulated for therapeutic benefit. Electronic supplementary material The online version of this article (doi:10.1186/s13069-015-0036-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katharine M Irvine
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| | - Andrew D Clouston
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| | - Victoria L Gadd
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| | - Gregory C Miller
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| | - Weng-Yew Wong
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| | - Michelle Melino
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Muralidhara Rao Maradana
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Kelli MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Richard A Lang
- Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, OH USA
| | - Matthew J Sweet
- Institute for Molecular Bioscience and the Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Elizabeth E Powell
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, 37 Kent St, Brisbane, 4102 Australia
| |
Collapse
|
44
|
Weng HL, Cai X, Yuan X, Liebe R, Dooley S, Li H, Wang TL. Two sides of one coin: massive hepatic necrosis and progenitor cell-mediated regeneration in acute liver failure. Front Physiol 2015; 6:178. [PMID: 26136687 PMCID: PMC4468385 DOI: 10.3389/fphys.2015.00178] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023] Open
Abstract
Massive hepatic necrosis is a key event underlying acute liver failure, a serious clinical syndrome with high mortality. Massive hepatic necrosis in acute liver failure has unique pathophysiological characteristics including extremely rapid parenchymal cell death and removal. On the other hand, massive necrosis rapidly induces the activation of liver progenitor cells, the so-called "second pathway of liver regeneration." The final clinical outcome of acute liver failure depends on whether liver progenitor cell-mediated regeneration can efficiently restore parenchymal mass and function within a short time. This review summarizes the current knowledge regarding massive hepatic necrosis and liver progenitor cell-mediated regeneration in patients with acute liver failure, the two sides of one coin.
Collapse
Affiliation(s)
- Hong-Lei Weng
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
| | - Xiaobo Cai
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
| | - Xiaodong Yuan
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
| | - Roman Liebe
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
- Department of Medicine II, Saarland University HospitalHomburg, Germany
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg UniversityMannheim, Germany
| | - Hai Li
- Department of Gastroenterology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Tai-Ling Wang
- Department of Pathology, Beijing China-Japan Friendship HospitalBeijing, China
| |
Collapse
|
45
|
Kaneko K, Kamimoto K, Miyajima A, Itoh T. Adaptive remodeling of the biliary architecture underlies liver homeostasis. Hepatology 2015; 61:2056-66. [PMID: 25572923 DOI: 10.1002/hep.27685] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/25/2014] [Indexed: 12/18/2022]
Abstract
UNLABELLED Serving as the center for metabolism and detoxification, the liver is inherently susceptible to a wide variety of damage imposed by toxins or chemicals. Induction of cell populations with biliary epithelial phenotypes, which include progenitor-like cells and are referred to as liver progenitor cells, is often observed in histopathological examination of various liver diseases in both human patients and animal models and has been implicated in regeneration. However, the tissue dynamics underlying this phenomenon remains largely unclear. We have developed a simple imaging technique to reveal the global and fine-scale architecture of the biliary tract spreading in the mouse liver. Using this novel method, we show that the emergence and expansion of liver progenitor cells actually reflect structural transformation of the intrahepatic biliary tree in mouse liver injury models. The biliary branches expanded their area gradually and contiguously along with the course of chronic injury. Relevant regulatory signals known to be involved in liver progenitor cell regulation, including fibroblast growth factor 7 and tumor necrosis factor-like weak inducer of apoptosis, can modulate the dynamics of the biliary epithelium in different ways. Importantly, the structural transformations of the biliary tree were diverse and corresponded well with the parenchymal injury patterns. That is, when chronic hepatocyte damage was induced in the pericentral area, the biliary branches exhibited an extended structure from the periportal area with apparent tropism toward the distant injured area. CONCLUSION The hepatobiliary system possesses a unique and unprecedented structural flexibility and can remodel dynamically and adaptively in response to various injury conditions; this type of tissue plasticity should constitute an essential component to maintain liver homeostasis.
Collapse
Affiliation(s)
- Kota Kaneko
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Kenji Kamimoto
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Miyajima
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Tohru Itoh
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Zhang F, Li L, Yang X, Wang B, Zhao J, Lu S, Yu X. Expression and activation of EGFR and STAT3 during the multistage carcinogenesis of intrahepatic cholangiocarcinoma induced by 3'-methyl-4 dimethylaminoazobenzene in rats. J Toxicol Pathol 2015; 28:79-87. [PMID: 26028817 PMCID: PMC4444506 DOI: 10.1293/tox.2014-0047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/09/2015] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to investigate whether the epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription-3 (STAT3) signal pathway contributes to the carcinogenesis of intrahepatic cholangiocarcinoma (ICC) induced by 3’-methyl-4 dimethylaminoazobenzene (3’Me-DAB) in rats. EGFR, TGFα, STAT3 and p-STAT3 in different stages of carcinogenesis were detected by immunohistochemistry (IHC). In situ hybridization (ISH) was applied to investigate the expression of STAT3 mRNA. Oval cells were verified by the immunohistochemical staining of alpha-fetoprotein (AFP), CD133 and epithelial cell adhesion molecules (EpCAM). Sequential development of necrosis, oval cell proliferation, cholangiofibrosis (CF) and ICC was observed in the liver of rats administered 3’Me-DAB. Oval cells showed positive expression of AFP, CD133 and EpCAM. The expression of EGFR was significantly higher in the ICC than in oval cells, CF or normal bile ducts (p<0.05), but there was no difference in EGFR expression between the other groups. The highest expression of p-STAT3 and TGFα was observed in CF. The expression of these two molecules in the ICC and oval cells was significantly higher than in normal bile ducts (p<0.05). Elevation of STAT3 mRNA was detected during carcinogenesis as shown by ISH, strong intensity was observed in the ICC and moderate intensity was observed in oval cells and CF. These observations suggest that the EGFR and STAT3 signal pathway contributes to the carcinogenesis of ICC. High activity of STAT3 during the carcinogenesis of ICC may be the result of high activity of EGFR triggered by TGFα.
Collapse
Affiliation(s)
- Fan Zhang
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Lianhong Li
- Department of Pathology and Forensic Medicine, Dalian Medical University, Dalian 116044, PR China
| | - Xingwu Yang
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116044, PR China
| | - Bo Wang
- Department of Pathology and Forensic Medicine, Dalian Medical University, Dalian 116044, PR China
| | - Jinyao Zhao
- Department of Histology and Embryology, Dalian Medical University, Dalian 116044, PR China
| | - Shilun Lu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | - Xiaotang Yu
- Department of Pathology and Forensic Medicine, Dalian Medical University, Dalian 116044, PR China
| |
Collapse
|
47
|
Verhulst S, Best J, van Grunsven LA, Dollé L. Advances in hepatic stem/progenitor cell biology. EXCLI JOURNAL 2015; 14:33-47. [PMID: 26600740 PMCID: PMC4650945 DOI: 10.17179/excli2014-576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/23/2014] [Indexed: 12/16/2022]
Abstract
The liver is famous for its strong regenerative capacity, employing different modes of regeneration according to type and extent of injury. Mature liver cells are able to proliferate in order to replace the damaged tissue allowing the recovery of the parenchymal function. In more severe scenarios hepatocytes are believed to arise also from a facultative liver progenitor cell compartment. In human, severe acute liver failure and liver cirrhosis are also both important clinical targets in which regeneration is impaired, where the role of this stem cell compartment seems more convincing. In animal models, the current state of ambiguity regarding the identity and role of liver progenitor cells in liver physiology dampens the enthusiasm for the potential use of these cells in regenerative medicine. The aim of this review is to give the basics of liver progenitor cell biology and discuss recent results vis-à-vis their identity and contribution to liver regeneration.
Collapse
Affiliation(s)
- Stefaan Verhulst
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jan Best
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Leo A. van Grunsven
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laurent Dollé
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
48
|
Machida K, Feldman DE, Tsukamoto H. TLR4-dependent tumor-initiating stem cell-like cells (TICs) in alcohol-associated hepatocellular carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 815:131-44. [PMID: 25427905 PMCID: PMC10578031 DOI: 10.1007/978-3-319-09614-8_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alcohol abuse predisposes individuals to the development of hepatocellular carcinoma (HCC) and synergistically heightens the HCC risk in patients infected with hepatitis C virus (HCV). The mechanisms of this synergism have been elusive until our recent demonstration of the obligatory role of ectopically expressed TLR4 in liver tumorigenesis in alcohol-fed HCV Ns5a or Core transgenic mice. CD133+/CD49f+ tumor-initiating stem cell-like cells (TICs) isolated from these models are tumorigenic in a manner dependent on TLR4 and NANOG. TICs' tumor-initiating activity and chemoresistance are causally associated with inhibition of TGF-β tumor suppressor pathway due to NANOG-mediated expression of IGF2BP3 and YAP1. TLR4/NANOG activation causes p53 degradation via phosphorylation of the protective protein NUMB and its dissociation from p53 by the oncoprotein TBC1D15. Nutrient deprivation reduces overexpressed TBC1D15 in TICs via autophagy-mediated degradation, suggesting a possible role of this oncoprotein in linking metabolic reprogramming and self-renewal.
Collapse
Affiliation(s)
- Keigo Machida
- Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine of the University of Southern California, 1333 San Pablo Street, MMR-402, Los Angeles, CA, 90089-9141, USA,
| | | | | |
Collapse
|
49
|
Chen CL, Tsukamoto H, Machida K. Oncogenic signaling pathways and origins of tumor-initiating stem-like cells of hepatocellular carcinomas induced by hepatitis C virus, alcohol and/or obesity. Hepatol Int 2014; 8:330-8. [PMID: 26202636 PMCID: PMC10560513 DOI: 10.1007/s12072-014-9545-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/13/2014] [Indexed: 12/21/2022]
Abstract
This review article discusses the importance and oncogenic signaling pathways of tumor-initiating cells (TICs) in several etiologies of hepatocellular carcinomas (HCCs) induced by hepatitis C virus (HCV), alcohol, obesity and/or chemicals. Stem cells may be present in cancer tissue, and a hierarchy of cells is formed, as is the case for normal tissue. Tumor formation, growth and propagation are maintained by a small proportion of cells with stem cell-like properties. TICs are present in alcohol-fed HCV transgenic mice, diethylnitrosamine/phenobarbital-treated mice (chemical carcinogenesis) and Spnb2 +/- mice (defective TGF-β signal). Alcohol/obesity-associated endotoxemia induces the stem cell marker Nanog through TLR4 signaling to generate TICs and liver tumors in several HCC models. The oncogenic pathway (such as the STAT3 and TLR4-NANOG pathway) and mechanism of generation of TICs of HCCs associated with HCV, alcohol and obesity are discussed. Understanding the molecular stemness signaling and cellular hierarchy and defining key TIC-specific genes will accelerate the development of novel biomarkers and treatment strategies. This review highlights recent advances in understanding the pathogenesis of liver TICs and discusses unanswered questions about the concept of liver TICs. (This project was supported by NIH grants 1R01AA018857 and P50AA11999).
Collapse
Affiliation(s)
- Chia-Lin Chen
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA
- Department of Pathology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, 90033, USA.
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA.
| |
Collapse
|
50
|
Stem/Progenitor Cells in Liver Development, Homeostasis, Regeneration, and Reprogramming. Cell Stem Cell 2014; 14:561-74. [DOI: 10.1016/j.stem.2014.04.010] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|