1
|
Al Ali AAAA, Al Ali MMA, El-Shourbagy DMAH, Tirmazy SHH, Mirza I, Raza A, Latif MF, Yasaei H. Genetic characterization of BRCA1 and BRCA2 variants in cancer and high-risk family screening cohorts in the UAE population. J Cancer Res Clin Oncol 2025; 151:146. [PMID: 40257527 PMCID: PMC12011969 DOI: 10.1007/s00432-025-06188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/31/2025] [Indexed: 04/22/2025]
Abstract
INTRODUCTION Germline BRCA1/2 (gBRCA1/2) variants are strongly associated with hereditary cancers, and screening for these variants in high-risk populations is recommended for personalized management. This study aims to comprehensively characterize gBRCA1/2 variants in cancer and family screening cohorts from the Dubai Emirate, UAE. MATERIAL AND METHODS A total of 443 patients with breast, ovarian, prostate and pancreatic cancer were tested for gBRCA1/2 variants from 2017 to 2022 using whole-gene sequencing, and data were analysed using variant interpretation and in-silico prediction tools. All BRCA1/2 variants were classified as P/LP or variants of uncertain significance (VUS) according to ACMG guidelines. RESULTS In the cancer cohort, 38 out of 306 patients harboured gBRCA1/2 P/LP or VUS variants. Of these, 23 (7.5%) were classified as BRCA1/2 P/LP, while 15 (4.9%) were categorized as VUS. These variants were predominantly observed in estrogen receptor-positive/progesterone receptor-positive (ER + /PR +) and triple-negative breast cancer patients. Common BRCA1 P/LP variants included deletion frameshift variants (c.4065_4068del, c.68_69delAG, c.3228_3229delAG), an insertion frameshift variant (c.1140dup), and a nonsense variant (c.5251C > T). BRCA2 P/LP variants included a nonsense variant (c.5645C > A), a missense variant (c.7007G > A), and a deletion frameshift variant (c.2254_2257del). In the family screening cohort, 14 out of 137 samples harboured BRCA1/2 P/LP orVUS. Of these, five (3.6%) were classified as P/LP, while nine (6.6%) were VUS. Pathogenic BRCA1 variants included deletions (c.4065_4068del, c.3756_3759del) and a nonsense variant (c.5095C > T), while BRCA2 PVs included a deletion frameshift (c.771_775del) and a novel missense variant (c.8377G > A). In both cohorts, novel distinct variants were observed. CONCLUSION gBRCA1/2 variant prevalence in cancer and family screening cohorts can serve as beneficial personalized tool for management and treatment of cancer patients. Larger studies from other emirates of UAE will serve as a foundation for robust risk assessment and implementation of treatment and prevention strategies.
Collapse
Affiliation(s)
- Abeer Arif Abdalla Abutalib Al Ali
- Dubai Genetics Center, Pathology and Genetics Department, Latifa Hospital, Dubai Academic Health Corporation, Dubai, United Arab Emirates
| | - Moza Mohamed Alechleh Al Ali
- Dubai Genetics Center, Pathology and Genetics Department, Latifa Hospital, Dubai Academic Health Corporation, Dubai, United Arab Emirates
| | | | | | - Imran Mirza
- Molecular Genomics Department, National Reference Laboratory, M42, Abu Dhabi, United Arab Emirates
| | - Afsheen Raza
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Muhammad Farooq Latif
- Department of Oncology, Dubai Hospital, Dubai Academic Health Corporation, Dubai, United Arab Emirates.
| | - Hemad Yasaei
- Dubai Genetics Center, Pathology and Genetics Department, Latifa Hospital, Dubai Academic Health Corporation, Dubai, United Arab Emirates.
- Molecular Genomics Department, National Reference Laboratory, M42, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Pleșea RM, Riza AL, Ahmet AM, Gavrilă I, Mituț A, Camen GC, Lungulescu CV, Dorobanțu Ș, Barbu A, Grigorescu A, Mirea CS, Schenker M, Burada F, Streață I. Clinically Significant BRCA1 and BRCA2 Germline Variants in Breast Cancer-A Single-Center Experience. Cancers (Basel) 2024; 17:39. [PMID: 39796670 PMCID: PMC11718772 DOI: 10.3390/cancers17010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Conditions associated with BRCA1/2 pathogenic (PVs) or likely pathogenic variants (LPVs) are often severe. The early detection of carrier status is ideal, as it provides options for effective case management. MATERIALS AND METHODS The study involved 58 patients with a personal and familial history of breast cancer (BC) who underwent genetic testing at the Regional Centre for Medical Genetics Dolj over a three-year period. An immunohistochemical panel (HER2, ER, PR, and Ki-67) was used to define the molecular subtypes of breast tumors. The AmpliSeq for Illumina BRCA Panel was used to evaluate germline variants in the BRCA1 and BRCA2 genes in patients with BC. The χ2 test and Fisher's exact test were used to compare the different parameters studied. RESULTS Our findings revealed that 15.5% of the patients carried either BRCA1 or BRCA2 PVs or LPVs. BRCA1 carriers had aggressive tumors whereas BRCA2 carriers had rather low-grade tumors. CONCLUSIONS The study revealed that PVs in both BRCA genes have a significant frequency among BC patients in our region, and BRCA1 carriers tend to develop more aggressive tumors than carriers of BRCA2 PVs and patients with no germline PVs in either of the two genes. These observations could provide new epidemiologic data for this disease in our region and contribute further to the development of national screening strategies.
Collapse
Affiliation(s)
- Răzvan Mihail Pleșea
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania; (R.M.P.); (A.-L.R.); (A.M.); (Ș.D.); (A.B.); (F.B.); (I.S.)
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| | - Anca-Lelia Riza
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania; (R.M.P.); (A.-L.R.); (A.M.); (Ș.D.); (A.B.); (F.B.); (I.S.)
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| | - Ana Maria Ahmet
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ionuț Gavrilă
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania; (R.M.P.); (A.-L.R.); (A.M.); (Ș.D.); (A.B.); (F.B.); (I.S.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Andreea Mituț
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania; (R.M.P.); (A.-L.R.); (A.M.); (Ș.D.); (A.B.); (F.B.); (I.S.)
| | - Georgiana-Cristiana Camen
- Department of Radiology and Medical Imaging, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Cristian Virgil Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ștefania Dorobanțu
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania; (R.M.P.); (A.-L.R.); (A.M.); (Ș.D.); (A.B.); (F.B.); (I.S.)
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| | - Adina Barbu
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania; (R.M.P.); (A.-L.R.); (A.M.); (Ș.D.); (A.B.); (F.B.); (I.S.)
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| | - Andra Grigorescu
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| | - Cecil Sorin Mirea
- Department of Surgical Semiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Michael Schenker
- Department of Medical Oncology, Sfantul Nectarie Oncology Center, 200801 Dolj, Romania;
| | - Florin Burada
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania; (R.M.P.); (A.-L.R.); (A.M.); (Ș.D.); (A.B.); (F.B.); (I.S.)
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| | - Ioana Streață
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania; (R.M.P.); (A.-L.R.); (A.M.); (Ș.D.); (A.B.); (F.B.); (I.S.)
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania;
| |
Collapse
|
3
|
Shumilova S, Danishevich A, Nikolaev S, Krasnov G, Ikonnikova A, Isaeva D, Surzhikov S, Zasedatelev A, Bodunova N, Nasedkina T. High- and Moderate-Risk Variants Among Breast Cancer Patients and Healthy Donors Enrolled in Multigene Panel Testing in a Population of Central Russia. Int J Mol Sci 2024; 25:12640. [PMID: 39684352 PMCID: PMC11641773 DOI: 10.3390/ijms252312640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Assessments of breast cancer (BC) risk in carriers of pathogenic variants identified by gene panel testing in different populations are highly in demand worldwide. We performed target sequencing of 78 genes involved in DNA repair in 860 females with BC and 520 age- and family history-matched controls from Central Russia. Among BC patients, 562/860 (65.3%) were aged 50 years or less at the time of diagnosis. In total, 190/860 (22%) BC patients were carriers of 198 pathogenic/likely pathogenic (P/LP) variants in 30 genes, while among controls, 32/520 (6.2%) carriers of P/LP variants in 17 genes were identified. The odds ratio [95% confidence interval] was 16.3 [4.0-66.7] for BRCA1; 12.0 [2.9-45.9] for BRCA2; and 7.3 [0.9-56.7] for ATM (p < 0.05). Previously undescribed BRCA1/2, ATM, and PALB2 variants, as well as novel recurrent mutations, were identified. The contribution to BC susceptibility of truncating variants in the genes BARD1, RAD50, RAD51C, NBEAL1 (p. E1155*), and XRCC2 (p. P32fs) was evaluated. The BLM, NBN, and MUTYH genes did not demonstrate associations with BC risk. Finding deleterious mutations in BC patients is important for diagnosis and management; in controls, it opens up the possibility of prevention and early diagnostics.
Collapse
Affiliation(s)
- Syuykum Shumilova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Anastasia Danishevich
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - Sergey Nikolaev
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - George Krasnov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Anna Ikonnikova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Darya Isaeva
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - Sergei Surzhikov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Alexander Zasedatelev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| | - Natalia Bodunova
- SBHI Moscow Clinical Scientific Center named after Loginov of Moscow Healthcare Department, 111123 Moscow, Russia; (A.D.); (S.N.); (D.I.); (N.B.)
| | - Tatiana Nasedkina
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; (S.S.); (G.K.); (A.I.); (S.S.); (A.Z.)
| |
Collapse
|
4
|
Rocca V, Lo Feudo E, Dinatolo F, Lavano SM, Bilotta A, Amato R, D’Antona L, Trapasso F, Baudi F, Colao E, Perrotti N, Paduano F, Iuliano R. Germline Variant Spectrum in Southern Italian High-Risk Hereditary Breast Cancer Patients: Insights from Multi-Gene Panel Testing. Curr Issues Mol Biol 2024; 46:13003-13020. [PMID: 39590369 PMCID: PMC11592649 DOI: 10.3390/cimb46110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Hereditary breast cancer accounts for 5-10% of all cases, with pathogenic variants in BRCA1/2 and other susceptibility genes playing a crucial role. This study elucidates the prevalence and spectrum of germline variants in 13 cancer predisposition genes among high-risk hereditary breast cancer patients from Southern Italy. We employed next-generation sequencing (NGS) to analyze 254 individuals selected through genetic counseling. Pathogenic or likely pathogenic variants were identified in 13% (34/254) of patients, with 54% of these variants occurring in non-BRCA1/2 genes. Notably, we observed a recurrent BRCA1 c.4964_4982del founder mutation, underscoring the importance of population-specific genetic screening. The spectrum of variants extended beyond BRCA1/2 to include PALB2, ATM, TP53, CHEK2, and RAD51C, highlighting the genetic heterogeneity of breast cancer susceptibility. Variants of uncertain significance were detected in 20% of patients, emphasizing the ongoing challenge of variant interpretation in the era of multi-gene panel testing. These findings not only enhance our understanding of the genetic landscape of breast cancer in Southern Italy but also provide a foundation for developing more targeted, population-specific approaches to genetic testing and counseling, ultimately contributing to the advancement of precision medicine in oncology.
Collapse
Affiliation(s)
- Valentina Rocca
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Clinical and Experimental Medicine, Campus S. Venuta, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Elisa Lo Feudo
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Clinical and Experimental Medicine, Campus S. Venuta, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Dinatolo
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
| | - Serena Marianna Lavano
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
| | - Anna Bilotta
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
| | - Rosario Amato
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Lucia D’Antona
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Francesco Trapasso
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Clinical and Experimental Medicine, Campus S. Venuta, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Baudi
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Emma Colao
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
| | - Nicola Perrotti
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Francesco Paduano
- Stem Cells and Medical Genetics Units, Biomedical Section, Tecnologica Research Institute and Marrelli Health, 88900 Crotone, Italy
| | - Rodolfo Iuliano
- Medical Genetics Unit, Renato Dulbecco University Hospital, 88100 Catanzaro, Italy; (V.R.); (E.L.F.); (F.D.); (S.M.L.); (A.B.); (R.A.); (F.T.); (F.B.); (E.C.); (N.P.)
- Department of Health Sciences, Campus S. Venuta, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| |
Collapse
|
5
|
Ghareeb GA, Nass ZA, Abu-Grain S, Alnaji A, Almohanna H, Nasser HAS, Al Shahrani S. Genetic Testing Among Breast Cancer Patients in the Eastern Region of Saudi Arabia: Single-Center Experience. J Epidemiol Glob Health 2024; 14:1351-1357. [PMID: 39256315 PMCID: PMC11442735 DOI: 10.1007/s44197-024-00296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 09/01/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Genetic testing for persons with a heightened likelihood of harboring a germline mutation permits early identification and appropriate management. This study aimed to identify the proportion of breast cancer (BC) patients who were offered genetic testing and the prevalence of BRCA mutations among them. Additionally, we assessed the demographic and clinical features of BC patients in the Eastern Region of Saudi Arabia. MATERIALS AND METHODS Data from 2535 patients with BC were retrieved from the registry between 2017 and 2021. The data were analyzed and presented using univariate and bivariate statistics. Odds ratios and 95% confidence intervals using logistic regression analysis were computed to identify the predictors of BRCA testing. RESULTS Patients with BC ranged in age from 18 to 103 years, and the mean age was 49.60 ± 12.14 years. BC was detected in men in 29 (1.1%) cases. Among diagnosed patients with BC, a total of 96 (3.7%) patients underwent testing for BRCA gene mutations. Of them, 36 (37.5%) patients had a BRCA gene mutation. The likelihood of undergoing BRCA testing was higher for those who were diagnosed with the condition before the age of 50, patients who were referred from private institutions, and patients with a history of previously diagnosed cancer. The likelihood of conducting BRCA testing was significantly lower among those with distant metastases. CONCLUSION The proportion of BRCA testing among BC patients was found to be relatively low. The development of a cost-effective, locally developed risk assessment tool that incorporates genetic counseling and testing for those with a familial predisposition to BC is imperative.
Collapse
Affiliation(s)
- Ghadeer Al Ghareeb
- Qatif Health Network, Eastern Health Cluster, Dammam, Kingdom of Saudi Arabia.
| | - Zainab Al Nass
- Qatif Health Network, Eastern Health Cluster, Dammam, Kingdom of Saudi Arabia
| | - Salma Abu-Grain
- Qatif Health Network, Eastern Health Cluster, Dammam, Kingdom of Saudi Arabia
| | - Alia Alnaji
- Qatif Health Network, Eastern Health Cluster, Dammam, Kingdom of Saudi Arabia
| | - Hani Almohanna
- Research Centre- KKMC, King Fahad Specialist Hospital-Dammam, Eastern Health Cluster, Dammam, Kingdom of Saudi Arabia
| | | | - Saad Al Shahrani
- King Fahad Specialist Hospital- Dammam, Eastern Health Cluster, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Freire MV, Martin M, Segers K, Sepulchre E, Leroi N, Coupier J, Kalantari HR, Wolter P, Collignon J, Polus M, Plomteux O, Josse C, Bours V. Digenic Inheritance of Mutations in Homologous Recombination Genes in Cancer Patients. J Pers Med 2024; 14:584. [PMID: 38929805 PMCID: PMC11204488 DOI: 10.3390/jpm14060584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES BRCA1, BRCA2, ATM, and CHEK2 are known cancer predisposition genes (CPGs), but tumor risk in patients with simultaneous pathogenic variants (PVs) in CPGs remains largely unknown. In this study, we describe six patients from five families with multiple cancers who coinherited a combination of PVs in these genes. METHODS PVs were identified using NGS DNA sequencing and were confirmed by Sanger. RESULTS Families 1, 2, and 3 presented PVs in BRCA2 and ATM, family 4 in BRCA2 and BRCA1, and family 5 in BRCA2 and CHEK2. PVs were identified using NGS DNA sequencing and were confirmed by Sanger. The first family included patients with kidney, prostate, and breast cancer, in addition to pancreatic adenocarcinomas. In the second family, a female had breast cancer, while a male from the third family had prostate, gastric, and pancreatic cancer. The fourth family included a male with pancreatic cancer, and the fifth family a female with breast cancer. CONCLUSIONS The early age of diagnosis and the development of multiple cancers in the reported patients indicate a very high risk of cancer in double-heterozygous patients associated with PVs in HR-related CPGs. Therefore, in families with patients who differ from other family members in terms of phenotype, age of diagnosis, or type of cancer, the cascade testing needs to include the study of other CPGs.
Collapse
Affiliation(s)
- Maria Valeria Freire
- Department of Human Genetics, GIGA Research Center, University of Liège and CHU Liège, Av. Hippocrate 1/11, 4000 Liège, Belgium;
| | - Marie Martin
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | - Karin Segers
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | - Edith Sepulchre
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | - Natacha Leroi
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | - Jérôme Coupier
- Department of Human Genetics, CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (M.M.); (K.S.); (E.S.); (N.L.)
| | | | - Pascal Wolter
- Onco-Hematology Department, St Nikolaus Hospital, Hufengasse 4/8, 4700 Eupen, Belgium;
| | - Joëlle Collignon
- Department of Medical Oncology, GIGA Research Center, University of Liège and CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (J.C.); (C.J.)
| | - Marc Polus
- Department of Gastroenterology, CHU Liège, Av. Hippocrate 1/11, 4000 Liège, Belgium;
| | - Olivier Plomteux
- Gastro-Enterology Department, CHC, Boulevard Patience et Beaujonc 2, 4000 Liège, Belgium;
| | - Claire Josse
- Department of Medical Oncology, GIGA Research Center, University of Liège and CHU Liège, Domaine Universitaire, 4000 Liège, Belgium; (J.C.); (C.J.)
| | - Vincent Bours
- Department of Human Genetics, GIGA Research Center, University of Liège and CHU Liège, Av. Hippocrate 1/11, 4000 Liège, Belgium;
| |
Collapse
|
7
|
Elshwekh H, Alhudiri IM, Elzagheid A, Enattah N, Abbassi Y, Abou Assali L, Marino I, Stuani C, Buratti E, Romano M. Assessing the Impact of Novel BRCA1 Exon 11 Variants on Pre-mRNA Splicing. Cells 2024; 13:824. [PMID: 38786046 PMCID: PMC11119505 DOI: 10.3390/cells13100824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Our study focused on assessing the effects of three newly identified BRCA1 exon 11 variants (c.1019T>C, c.2363T>G, and c.3192T>C) on breast cancer susceptibility. Using computational predictions and experimental splicing assays, we evaluated their potential as pathogenic mutations. Our in silico analyses suggested that the c.2363T>G and c.3192T>C variants could impact both splicing and protein function, resulting in the V340A and V788G mutations, respectively. We further examined their splicing effects using minigene assays in MCF7 and SKBR3 breast cancer cell lines. Interestingly, we found that the c.2363T>G variant significantly altered splicing patterns in MCF7 cells but not in SKBR3 cells. This finding suggests a potential influence of cellular context on the variant's effects. While attempts to correlate in silico predictions with RNA binding factors were inconclusive, this observation underscores the complexity of splicing regulation. Splicing is governed by various factors, including cellular contexts and protein interactions, making it challenging to predict outcomes accurately. Further research is needed to fully understand the functional consequences of the c.2363T>G variant in breast cancer pathogenesis. Integrating computational predictions with experimental data will provide valuable insights into the role of alternative splicing regulation in different breast cancer types and stages.
Collapse
Affiliation(s)
- Halla Elshwekh
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli P.O. Box 30313, Libya; (I.M.A.); (A.E.); (N.E.)
| | - Inas M. Alhudiri
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli P.O. Box 30313, Libya; (I.M.A.); (A.E.); (N.E.)
| | - Adam Elzagheid
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli P.O. Box 30313, Libya; (I.M.A.); (A.E.); (N.E.)
| | - Nabil Enattah
- Department of Genetic Engineering, Libyan Biotechnology Research Center, Tripoli P.O. Box 30313, Libya; (I.M.A.); (A.E.); (N.E.)
| | - Yasmine Abbassi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
| | - Lubna Abou Assali
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
| | - Ilenia Marino
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
- Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy; (H.E.); (Y.A.); (L.A.A.); (I.M.); (C.S.)
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio, 28, 34127 Trieste, Italy
| |
Collapse
|
8
|
Tuncer SB, Celik B, Erciyas SK, Erdogan OS, Gültaslar BK, Odemis DA, Avsar M, Sen F, Saip PM, Yazici H. Germline mutational variants of Turkish ovarian cancer patients suspected of Hereditary Breast and Ovarian Cancer (HBOC) by next-generation sequencing. Pathol Res Pract 2024; 254:155075. [PMID: 38219492 DOI: 10.1016/j.prp.2023.155075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) syndrome is characterized by an increased risk of developing breast cancer (BC) and ovarian cancer (OC) due to inherited genetic mutations. Understanding the genetic variants associated with HBOC is crucial for identifying individuals at high risk and implementing appropriate preventive measures. The study included 630 Turkish OC patients with confirmed diagnostic criteria of The National Comprehensive Cancer Network (NCCN) concerning HBOC. Genomic DNA was extracted from peripheral blood samples, and targeted Next-generation sequencing (NGS) was performed. Bioinformatics analysis and variant interpretation were conducted to identify pathogenic variants (PVs). Our analysis revealed a spectrum of germline pathogenic variants associated with HBOC in Turkish OC patients. Notably, several pathogenic variants in BRCA1, BRCA2, and other DNA repair genes were identified. Specifically, we observed germline PVs in 130 individuals, accounting for 20.63% of the total cohort. 76 distinct PVs in genes, BRCA1 (40 PVs), BRCA2 (29 PVs), ATM (1 PV), CHEK2 (2 PVs), ERCC2 (1 PV), MUTYH (1 PV), RAD51C (1 PV), and TP53 (1PV) and also, two different PVs (i.e., c.135-2 A>G p.? in BRCA1 and c.6466_6469delTCTC in BRCA2) were detected in a 34-year-old OC patient. In conclusion, our study contributes to a better understanding of the genetic variants underlying HBOC in Turkish OC patients. These findings provide valuable insights into the genetic architecture of HBOC in the Turkish population and shed light on the potential contribution of specific germline PVs to the increased risk of OC.
Collapse
Affiliation(s)
- Seref Bugra Tuncer
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye.
| | - Betul Celik
- Erzincan Binali Yıldırım University, Department of Molecular Biology, Erzincan, Türkiye
| | - Seda Kilic Erciyas
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Ozge Sukruoglu Erdogan
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Busra Kurt Gültaslar
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Demet Akdeniz Odemis
- Department of Cancer Genetics, Istanbul Faculty of Medicine, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Mukaddes Avsar
- Health Services Vocational of Higher Education, T.C. Istanbul Aydın University, Istanbul, Türkiye
| | - Fatma Sen
- Clinic of Medical Oncology, Avrasya Hospital, Istanbul, Türkiye
| | - Pınar Mualla Saip
- Department of Medical Oncology, Oncology Institute, Istanbul University, Istanbul, Türkiye
| | - Hulya Yazici
- Istanbul Arel University, Arel Medical Faculty, Department of Medical Biology and Genetics, Istanbul, Türkiye
| |
Collapse
|
9
|
Hodan R, Kingham K, Kurian AW. Recurrent BRCA2 exon 3 deletion in Assyrian families. J Med Genet 2024; 61:155-157. [PMID: 37657917 DOI: 10.1136/jmg-2023-109430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
We identified six patients from five families with a recurrent mutation: NM_000059.3 (BRCA2) exon 3 deletion. All families self-identified as Assyrian. Assyrians are an ethnoreligious population of ancient Mesopotamia, now mostly living in modern day Iraq, Syria, Turkey and Iran. They are historically a socially isolated population with intermarriage within their community, living as a religious and language minority in mostly Muslim countries. The probands of each family presented with a classic BRCA2-associated cancer including early-onset breast cancer, epithelial serous ovarian cancer, male breast cancer and/or high-grade prostate cancer, and family history that was also significant for BRCA2-associated cancer. BRCA2 exon 3 deletion is classified as pathogenic and has been previously described in the literature, but it has not been described as a founder mutation in a particular population. We characterise this recurrent BRCA2 pathogenic variant in five Assyrian families in a single centre cohort.
Collapse
Affiliation(s)
- Rachel Hodan
- Cancer Genetics, Stanford Health Care, Stanford, California, USA
- Department of Pediatrics (Genetics), Stanford University School of Medicine, Stanford, California, USA
| | - Kerry Kingham
- Cancer Genetics, Stanford Health Care, Stanford, California, USA
- Department of Pediatrics (Genetics), Stanford University School of Medicine, Stanford, California, USA
| | - Allison W Kurian
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
10
|
Madar L, Majoros V, Szűcs Z, Nagy O, Babicz T, Butz H, Patócs A, Balogh I, Koczok K. Double Heterozygosity for Rare Deleterious Variants in the BRCA1 and BRCA2 Genes in a Hungarian Patient with Breast Cancer. Int J Mol Sci 2023; 24:15334. [PMID: 37895014 PMCID: PMC10607119 DOI: 10.3390/ijms242015334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Hereditary breast cancer is most commonly attributed to germline BRCA1 and BRCA2 gene variants. The vast majority of BRCA1 and BRCA2 mutation carriers are single heterozygotes, and double heterozygosity (DH) is a very rare finding. Here, we describe the case of a BRCA1/BRCA2 double heterozygous female proband diagnosed with breast cancer. Genetic testing for hereditary breast and ovarian cancer revealed two pathogenic variants in the BRCA1 (c.5095C>T, p.(Arg1699Trp)) and in BRCA2 genes (c.658_659delGT, p.(Val220Ilefs*4)) in heterozygous form. None of the variants were founder Jewish mutations; to our knowledge, these rare deleterious variants have not been previously described in DH patients in the literature. The patient had triple-negative unilateral breast cancer at the age of 36 and 44 years. Based on family studies, the BRCA1 variant was maternally inherited.
Collapse
Affiliation(s)
- László Madar
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (L.M.); (V.M.); (Z.S.); (O.N.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Viktória Majoros
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (L.M.); (V.M.); (Z.S.); (O.N.)
| | - Zsuzsanna Szűcs
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (L.M.); (V.M.); (Z.S.); (O.N.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Orsolya Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (L.M.); (V.M.); (Z.S.); (O.N.)
| | - Tamás Babicz
- Department of Oncoradiology, Nyíregyházi Jósa András Tagkórház, Szabolcs—Szatmár—Bereg County Teaching Hospital, 4400 Nyíregyháza, Hungary;
| | - Henriett Butz
- National Tumorbiology Laboratory Budapest, Department of Molecular Genetics, National Institute of Oncology, 1122 Budapest, Hungary; (H.B.); (A.P.)
| | - Attila Patócs
- National Tumorbiology Laboratory Budapest, Department of Molecular Genetics, National Institute of Oncology, 1122 Budapest, Hungary; (H.B.); (A.P.)
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Katalin Koczok
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (L.M.); (V.M.); (Z.S.); (O.N.)
| |
Collapse
|
11
|
Zhunussova G, Omarbayeva N, Kaidarova D, Abdikerim S, Mit N, Kisselev I, Yergali K, Zhunussova A, Goncharova T, Abdrakhmanova A, Djansugurova L. Determination of genetic predisposition to early breast cancer in women of Kazakh ethnicity. Oncotarget 2023; 14:860-877. [PMID: 37791908 PMCID: PMC10549772 DOI: 10.18632/oncotarget.28518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
Breast cancer (BC) is the most common type of cancer among women in Kazakhstan. To date, little data are available on the spectrum of genetic variation in Kazakh women with BC. We aimed to identify population-specific genetic markers associated with the risk of developing early-onset BC and test their association with clinical and prognostic factors. The study included 224 Kazakh women diagnosed with BC (≤40 age). Entire coding regions (>1700 exons) and the flanking noncoding regions of 94 cancer-associated genes were sequenced from blood DNA using MiSeq platform. We identified 38 unique pathogenic variants (PVs) in 13 different cancer-predisposing genes among 57 patients (25.4%), of which 6 variants were novel. In total, 12 of the 38 distinct PVs were detected recurrently, including BRCA1 c.5266dup, c.5278-2del, and c.2T>C, and BRCA2 c.9409dup and c.9253del that may be founder in this population. BRCA1 carriers were significantly more likely to develop triple-negative BC (OR = 6.61, 95% CI 2.44-17.91, p = 0.0002) and have family history of BC (OR = 3.17, 95% CI 1.14-8.76, p = 0.03) compared to non-carriers. This study allowed the identification of PVs specific to early-onset BC, which may be used as a foundation to develop regional expertise and diagnostic tools for early detection of BC in young Kazakh women.
Collapse
Affiliation(s)
- Gulnur Zhunussova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
- Al-Farabi Kazakh National University, Almaty 050060, Kazakhstan
| | - Nazgul Omarbayeva
- Kazakh Institute of Oncology and Radiology, Almaty 050060, Kazakhstan
- Asfendiyarov Kazakh National Medical University, Almaty 050060, Kazakhstan
| | - Dilyara Kaidarova
- Kazakh Institute of Oncology and Radiology, Almaty 050060, Kazakhstan
- Asfendiyarov Kazakh National Medical University, Almaty 050060, Kazakhstan
| | - Saltanat Abdikerim
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
- Al-Farabi Kazakh National University, Almaty 050060, Kazakhstan
| | - Natalya Mit
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| | - Ilya Kisselev
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| | - Kanagat Yergali
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| | - Aigul Zhunussova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| | | | - Aliya Abdrakhmanova
- Kazakh Institute of Oncology and Radiology, Almaty 050060, Kazakhstan
- Asfendiyarov Kazakh National Medical University, Almaty 050060, Kazakhstan
| | - Leyla Djansugurova
- Laboratory of Molecular Genetics, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
- Al-Farabi Kazakh National University, Almaty 050060, Kazakhstan
| |
Collapse
|
12
|
Azadnajafabad S, Saeedi Moghaddam S, Mohammadi E, Rezaei N, Rashidi MM, Rezaei N, Mokdad AH, Naghavi M, Murray CJL, Larijani B, Farzadfar F. Burden of breast cancer and attributable risk factors in the North Africa and Middle East region, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Front Oncol 2023; 13:1132816. [PMID: 37593096 PMCID: PMC10431599 DOI: 10.3389/fonc.2023.1132816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/10/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer in women globally. The North Africa and Middle East (NAME) region is coping hard with the burden of BC. We aimed to present the latest epidemiology of BC and its risk factors in this region. METHODS We retrieved the data on BC burden and risk factors from the Global Burden of Disease Study 2019 to describe BC status in the 21 countries of the NAME region from 1990 to 2019. We explored BC incidence, prevalence, deaths, disability-adjusted life years (DALYs), and attributable burden to seven risk factors of female BC, namely, alcohol use, diet high in red meat, low physical activity, smoking, secondhand smoke, high body mass index, and high fasting plasma glucose. Decomposition analysis on BC incidence trend was done to find out the contributing factors to this cancer's growth. RESULTS In 2019, there were 835,576 (95% uncertainty interval: 741,968 to 944,851) female and 10,938 (9,030 to 13,256) male prevalent cases of BC in the NAME region. This number leads to 35,405 (30,676 to 40,571) deaths among female patients and 809 (654 to 1,002) deaths in male patients this year. BC was responsible for 1,222,835 (1,053,073 to 1,411,009) DALYs among female patients in 2019, with a greater proportion (94.9%) of burden in years of life lost (YLLs). The major contributor to female BC incidence increase in the past three decades was found to be increase in age-specific incidence rates of BC (227.5%), compared to population growth (73.8%) and aging (81.8%). The behavioral risk factors were responsible for majority of attributable female BC burden (DALYs: 106,026 [66,614 to 144,247]). High fasting plasma glucose was found to be the risk factor with the largest effect (DALYs: 84,912 [17,377 to 192,838]) on female BC burden. CONCLUSION The increasing incidence and burden of BC in the NAME region is remarkable, especially when considering limited resources in the developing countries of this region. Proper policies like expanding screening programs and careful resource management are needed to effectively manage BC burden.
Collapse
Affiliation(s)
- Sina Azadnajafabad
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Saeedi Moghaddam
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Kiel Institute for the World Economy, Kiel, Germany
| | - Esmaeil Mohammadi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Rezaei
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mahdi Rashidi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazila Rezaei
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali H. Mokdad
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, United States
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, United States
| | - Mohsen Naghavi
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, United States
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, United States
| | - Christopher J. L. Murray
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, United States
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, United States
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Farzadfar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Ahmad O, Sutter C, Hirsch S, Pfister SM, Schaaf CP. BRCA1/2 potential founder variants in the Jordanian population: an opportunity for a customized screening panel. Hered Cancer Clin Pract 2023; 21:11. [PMID: 37400873 DOI: 10.1186/s13053-023-00256-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023] Open
Abstract
A founder variant is a genetic alteration, that is inherited from a common ancestor together with a surrounding chromosomal segment, and is observed at a high frequency in a defined population. This founder effect occurs as a consequence of long-standing inbreeding of isolated populations. For high-risk cancer predisposition genes, such as BRCA1/2, the identification of founder variants in a certain population could help designing customized cost-effective cancer screening panels. This advantage has been best utilized in designing a customized breast cancer BRCA screening panel for the Ashkenazi Jews (AJ) population, composed of the three BRCA founder variants which account for approximately 90% of identified BRCA alterations. Indeed, the high prevalence of pathogenic BRCA1/2 variants among AJ (~ 2%) has additionally contributed to make population-based screening cost-effective in comparison to family-history-based screening. In Jordan there are multiple demographic characteristics supporting the proposal of a founder effect. A high consanguinity rate of ~ 57% in the nineties of the last century and ~ 30% more recently is a prominent factor, in addition to inbreeding which is often practiced by different sub-populations of the country.This review explains the concept of founder effect, then applies it to analyze published Jordanian BRCA variants, and concludes that nine pathogenic (P) and likely pathogenic (LP) BRCA2 variants together with one pathogenic BRCA1 variant are potential founder variants. Together they make up 43% and 55% of all identified BRCA1/2 alterations in the two largest studied cohorts of young patients and high-risk patients respectively. These variants were identified based on being recurrent and either specific to ethnic groups or being novel. In addition, the report highlights the required testing methodologies to validate these findings, and proposes a health economic evaluation model to test cost-effectiveness of a population-based customized BRCA screening panel for the Jordanian population. The aim of this report is to highlight the potential utilization of founder variants in establishing customized cancer predisposition services, in order to encourage more population-based genomic studies in Jordan and similar populations.
Collapse
Affiliation(s)
- Olfat Ahmad
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
- University of Oxford, Oxford, UK
- King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Christian Sutter
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Steffen Hirsch
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian P Schaaf
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
14
|
Figlioli G, Billaud A, Wang Q, Bolla MK, Dennis J, Lush M, Kvist A, Adank MA, Ahearn TU, Antonenkova NN, Auvinen P, Behrens S, Bermisheva M, Bogdanova NV, Bojesen SE, Bonanni B, Brüning T, Camp NJ, Campbell A, Castelao JE, Cessna MH, Czene K, Devilee P, Dörk T, Eriksson M, Fasching PA, Flyger H, Gabrielson M, Gago-Dominguez M, García-Closas M, Glendon G, Gómez Garcia EB, González-Neira A, Grassmann F, Guénel P, Hahnen E, Hamann U, Hillemanns P, Hooning MJ, Hoppe R, Howell A, Humphreys K, Jakubowska A, Khusnutdinova EK, Kristensen VN, Lindblom A, Loizidou MA, Lubiński J, Mannermaa A, Maurer T, Mavroudis D, Newman WG, Obi N, Panayiotidis MI, Radice P, Rashid MU, Rhenius V, Ruebner M, Saloustros E, Sawyer EJ, Schmidt MK, Schmutzler RK, Shah M, Southey MC, Tomlinson I, Truong T, van Veen EM, Wendt C, Yang XR, Michailidou K, Dunning AM, Pharoah PDP, Easton DF, Andrulis IL, Evans DG, Hollestelle A, Chang-Claude J, Milne RL, Peterlongo P. Spectrum and Frequency of Germline FANCM Protein-Truncating Variants in 44,803 European Female Breast Cancer Cases. Cancers (Basel) 2023; 15:3313. [PMID: 37444426 DOI: 10.3390/cancers15133313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023] Open
Abstract
FANCM germline protein truncating variants (PTVs) are moderate-risk factors for ER-negative breast cancer. We previously described the spectrum of FANCM PTVs in 114 European breast cancer cases. In the present, larger cohort, we report the spectrum and frequency of four common and 62 rare FANCM PTVs found in 274 carriers detected among 44,803 breast cancer cases. We confirmed that p.Gln1701* was the most common PTV in Northern Europe with lower frequencies in Southern Europe. In contrast, p.Gly1906Alafs*12 was the most common PTV in Southern Europe with decreasing frequencies in Central and Northern Europe. We verified that p.Arg658* was prevalent in Central Europe and had highest frequencies in Eastern Europe. We also confirmed that the fourth most common PTV, p.Gln498Thrfs*7, might be a founder variant from Lithuania. Based on the frequency distribution of the carriers of rare PTVs, we showed that the FANCM PTVs spectra in Southwestern and Central Europe were much more heterogeneous than those from Northeastern Europe. These findings will inform the development of more efficient FANCM genetic testing strategies for breast cancer cases from specific European populations.
Collapse
Affiliation(s)
- Gisella Figlioli
- Genome Diagnostics Program, IFOM ETS-The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Amandine Billaud
- Genome Diagnostics Program, IFOM ETS-The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Michael Lush
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Anders Kvist
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
| | - Muriel A Adank
- The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Family Cancer Clinic, 1066 CX Amsterdam, The Netherlands
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, 223040 Minsk, Belarus
| | - Päivi Auvinen
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Oncology, Cancer Center, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Natalia V Bogdanova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, 223040 Minsk, Belarus
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Stig E Bojesen
- Copenhagen General Population Study, Copenhagen University Hospital, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), 44789 Bochum, Germany
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh EH16 4UX, UK
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, 36312 Vigo, Spain
| | | | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Henrik Flyger
- Department of Breast Surgery, Copenhagen University Hospital, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Manuela Gago-Dominguez
- Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS) Foundation, IDIS Cancer Genetics and Epidemiology Group, Genomic Medicine Group, Complejo Hospitalario Universitario de Santiago, SERGAS, 15706 Santiago de Compostela, Spain
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON M5G 1X5, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Encarna B Gómez Garcia
- Department of Clinical Genetics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Anna González-Neira
- Human Genotyping Unit-CeGen, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Felix Grassmann
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Medicine, Institute for Clinical Research and Systems Medicine, Health and Medical University, 14467 Potsdam, Germany
| | - Pascal Guénel
- CESP U1018, Inserm "Exposome, Heredity, Cancer and Health" Team, UVSQ, University Paris-Saclay, Gustave Roussy, 94805 Villejuif, France
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Ute Hamann
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, 69120 Heidelberg, Germany
| | - Peter Hillemanns
- Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany
| | - Maartje J Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, Germany
- University of Tübingen, 72074 Tübingen, Germany
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Elza K Khusnutdinova
- Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450054 Ufa, Russia
- Department of Genetics and Fundamental Medicine, Ufa University of Science and Technology, 450076 Ufa, Russia
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0379 Oslo, Norway
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Maria A Loizidou
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, 70210 Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210 Kuopio, Finland
- Kuopio University Hospital, Biobank of Eastern Finland, 70210 Kuopio, Finland
| | - Tabea Maurer
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, 711 10 Heraklion, Greece
| | - William G Newman
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Nadia Obi
- University Medical Center Hamburg-Eppendorf, Institute for Medical Biometry and Epidemiology, 20246 Hamburg, Germany
| | - Mihalis I Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
| | - Paolo Radice
- Unit of 'Predictive Medicine: Molecular Bases of Genetic Risk', Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy
| | - Muhammad U Rashid
- German Cancer Research Center (DKFZ), Molecular Genetics of Breast Cancer, 69120 Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore 54000, Pakistan
| | - Valerie Rhenius
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | | | - Elinor J Sawyer
- King's College London, School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, London SE1 9RT, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC 3000, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia
| | - Ian Tomlinson
- Cancer Research Centre, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Thérèse Truong
- CESP U1018, Inserm "Exposome, Heredity, Cancer and Health" Team, UVSQ, University Paris-Saclay, Gustave Roussy, 94805 Villejuif, France
| | - Elke M van Veen
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Camilla Wendt
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, 2371 Nicosia, Cyprus
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA 90069, USA
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Fred A. Litwin Center for Cancer Genetics, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Antoinette Hollestelle
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 GD Rotterdam, The Netherlands
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM ETS-The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| |
Collapse
|
15
|
Osman K, Ahmet K, Hilmi T, İlker N, Ercan Ö, Devrim Ç, Murat S, Emre Ç, İlhan H, Mustafa G, Yüksel Ü, Bahiddin Y, Cihan E, Mehmet Ali NŞ, Emrah E, Umut D, Zeynep O, Mehmet Ali K, Ali G, İvo G, Erkan Ö, Muhammet B, Bülent E, Selma D, Sernaz U, Mahmut G, Hakan G, İrfan Ç. BRCA 1/BRCA 2 Pathogenic/Likely Pathogenic Variant Patients with Breast, Ovarian, and Other Cancers. Balkan J Med Genet 2023; 25:5-14. [PMID: 37265975 PMCID: PMC10230841 DOI: 10.2478/bjmg-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
The demographic and clinical characteristics of patients who have BRCA 1/BRCA 2 pathogenic/likely pathogenic variants may differ from their relatives who had BRCA-related cancer. In this study, we aimed to demonstrate the clinical and demographic findings of patients who had BRCA-related cancer and to assess the differences comparing their relatives who had BRCA-related cancer with breast, genital tract, prostate, and pancreas cancers as well. The results of sequencing analysis of 200 cancer patients (190 women, 10 men) who have been directed to genetic counseling with an indication of BRCA1/BRCA2 testing from different regions across 9 medical oncology centers were retrospectively analyzed. A total of 200 consecutive cancer patients who harbored the BRCA1/BRCA2 pathogenic/likely pathogenic variant (130 (65%) patients harbored BRCA 1 pathogenic/likely pathogenic variant, and 70 harbored BRCA 2 pathogenic/likely pathogenic variant) were included. Of these, 64.0% had breast cancer (43.8% of them had the triple-negative disease, and about 2.3% had only the HER-2 mutant), 31.5% had genital cancers (92.1% of them had ovarian cancer, 3.2% had endometrium, and 1.6% had peritoneum cancer as the primary site and mostly serous adenocarcinoma was the most common histopathology and 14.3% of the patients had endometrioid adenocarcinoma), 3.5% had prostate (median time from metastasis to castration-resistant status was 28 months) and 1.0% had pancreas cancer. Newly diagnosed cancer (breast and ovary) patients who had BRCA 1/BRCA 2 pathogenic/ likely pathogenic variant were younger than their previous cancer diagnosed (breast, ovary, and pancreas) parents who harbored BRCA pathogenic/likely pathogenic variant. We suggest that the genetic screening of BRCA 1/ BRCA 2 pathogenic/likely pathogenic variant is needed as a routine screening for those with a personal or family history of breast, ovarian, tubal, or peritoneal cancer. In addition, once BRCA 1 or BRCA 2 germline pathogenic variant has been identified in a family, testing of at-risk next-generation relatives earlier can identify those family members who also have the familial pathogenic variant, and thus need increased surveillance.
Collapse
Affiliation(s)
- K. Osman
- Marmara University, School of Medicine, Department of Medical Oncology, İstanbul, Turkey
| | - K. Ahmet
- Trakya University, Department of Medical Oncology, Edirne, Turkey
| | - T. Hilmi
- Namık Kemal University, Department of Medical Genetic, Tekirdag, Turkey
| | - N.O. İlker
- Medeniyet University, Department of Medical Oncology, İstanbul, Turkey
| | - Ö. Ercan
- Kocaeli University, Department of Medical Oncology, Kocaeli, Turkey
| | - Ç. Devrim
- Kocaeli University, Department of Medical Oncology, Kocaeli, Turkey
| | - S. Murat
- Marmara University, School of Medicine, Department of Medical Oncology, İstanbul, Turkey
| | - Ç. Emre
- Sakarya University, Department of Medical Oncology, Sakarya, Turkey
| | - H. İlhan
- Sakarya University, Department of Medical Oncology, Sakarya, Turkey
| | - G. Mustafa
- Ankara university, Department of Medical Oncology, Ankara, Turkey
| | - Ü. Yüksel
- Ankara university, Department of Medical Oncology, Ankara, Turkey
| | - Y. Bahiddin
- Ondokuz Mayıs University, Department of Medical Oncology, Samsun, Turkey
| | - E. Cihan
- Ankara City Hospital, Yildirim Beyazit University, Department of Medical Oncology, Ankara, Turkey
| | - N. Ş. Mehmet Ali
- Ankara City Hospital, Yildirim Beyazit University, Department of Medical Oncology, Ankara, Turkey
| | - E. Emrah
- University of Health Sciences, Dr. A.Y Ankara Oncology Research and Education Hospital, Oncology Department, Ankara, Turkey
| | - D. Umut
- University of Health Sciences, Dr. A.Y Ankara Oncology Research and Education Hospital, Oncology Department, Ankara, Turkey
| | - O. Zeynep
- Dicle University, Department of Medical Oncology, Diyarbakır, Turkey
| | - K. Mehmet Ali
- Trakya University, Department of Medical Genetic, Edirne, Turkey
| | - G. Ali
- Trakya University, Department of Medical Oncology, Edirne, Turkey
| | - G. İvo
- Trakya University, Department of Medical Oncology, Edirne, Turkey
| | - Ö. Erkan
- Trakya University, Department of Medical Oncology, Edirne, Turkey
| | - B.H. Muhammet
- Trakya University, Department of Medical Oncology, Edirne, Turkey
| | - E. Bülent
- Trakya University, Department of Medical Oncology, Edirne, Turkey
| | - D. Selma
- Trakya University, Department of Medical Genetic, Edirne, Turkey
| | - U. Sernaz
- Trakya University, Department of Medical Oncology, Edirne, Turkey
| | - G. Mahmut
- Medeniyet University, Department of Medical Oncology, İstanbul, Turkey
| | - G. Hakan
- Trakya University, Department of Medical Genetic, Edirne, Turkey
| | - Ç. İrfan
- Trakya University, Department of Medical Oncology, Edirne, Turkey
| |
Collapse
|
16
|
Goidescu IG, Nemeti G, Surcel M, Caracostea G, Florian AR, Cruciat G, Staicu A, Muresan D, Goidescu C, Pintican R, Eniu DT. Spectrum of High-Risk Mutations among Breast Cancer Patients Referred for Multigene Panel Testing in a Romanian Population. Cancers (Basel) 2023; 15:cancers15061895. [PMID: 36980780 PMCID: PMC10047778 DOI: 10.3390/cancers15061895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
(1) Background: Multigene panel testing for Hereditary Breast and Ovarian Cancer (HBOC) using next generation sequencing (NGS) is becoming a standard in medical care. There are insufficient genetic studies reported on breast cancer (BC) patients from Romania and most of them are focused only on BRCA 1/2 genes (Breast cancer 1/2). (2) Methods: NGS was performed in 255 consecutive cases of BC referred for management in our clinic between 2015-2019. (3) Results: From the 171 mutations identified, 85 were in the high-penetrance BC susceptibility genes category, 72 were pathogenic genes, and 13 genes were in the (variants of uncertain significance) VUS genes category. Almost half of the mutations were in the BRCA 1 gene. The most frequent BRCA1 variant was c.3607C>T (14 cases), followed by c.5266dupC (11 cases). Regarding BRCA-2 mutations we identified c.9371A>T (nine cases), followed by c.8755-1G>A in three cases, and we diagnosed VUS mutations in three cases. We also identified six pathogenic variants in the PALB2 gene and two pathogenic variants in (tumor protein P 53) TP53. (4) Conclusions: The majority of pathogenic mutations in the Romanian population with BC were in the BRCA 1/ 2 genes, followed by PALB2 (partner and localizer of BRCA2) and TP53, while in the CDH1 (cadherin 1) and STK11 (Serine/Threonine-Protein Kinase) genes we only identified VUS mutations.
Collapse
Affiliation(s)
- Iulian Gabriel Goidescu
- Obstetrics and Gynecology I, Mother and Child Department, University of Medicine and Pharmacy "Iuliu Hatieganu", 400006 Cluj-Napoca, Romania
| | - Georgiana Nemeti
- Obstetrics and Gynecology I, Mother and Child Department, University of Medicine and Pharmacy "Iuliu Hatieganu", 400006 Cluj-Napoca, Romania
| | - Mihai Surcel
- Obstetrics and Gynecology I, Mother and Child Department, University of Medicine and Pharmacy "Iuliu Hatieganu", 400006 Cluj-Napoca, Romania
| | - Gabriela Caracostea
- Obstetrics and Gynecology I, Mother and Child Department, University of Medicine and Pharmacy "Iuliu Hatieganu", 400006 Cluj-Napoca, Romania
| | - Andreea Roxana Florian
- Obstetrics and Gynecology I, Mother and Child Department, University of Medicine and Pharmacy "Iuliu Hatieganu", 400006 Cluj-Napoca, Romania
| | - Gheorghe Cruciat
- Obstetrics and Gynecology I, Mother and Child Department, University of Medicine and Pharmacy "Iuliu Hatieganu", 400006 Cluj-Napoca, Romania
| | - Adelina Staicu
- Obstetrics and Gynecology I, Mother and Child Department, University of Medicine and Pharmacy "Iuliu Hatieganu", 400006 Cluj-Napoca, Romania
| | - Daniel Muresan
- Obstetrics and Gynecology I, Mother and Child Department, University of Medicine and Pharmacy "Iuliu Hatieganu", 400006 Cluj-Napoca, Romania
| | - Cerasela Goidescu
- Department of Internal Medicine, Medical Clinic I-Internal Medicine, Cardiology and Gastroenterology, University of Medicine and Pharmacy "Iuliu Hatieganu", 400006 Cluj-Napoca, Romania
| | - Roxana Pintican
- Department of Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Dan Tudor Eniu
- Department of Surgery 2, University Emergency Hospital, University of Medicine and Pharmacy "Iuliu Hatieganu", 400006 Cluj-Napoca, Romania
| |
Collapse
|
17
|
Qin Z, Li J, Tam B, Sinha S, Zhao B, Bhaskaran SP, Huang T, Wu X, Chian JS, Guo M, Kou SH, Lei H, Zhang L, Wang X, Lagniton PNP, Xiao F, Jiang X, Wang SM. Ethnic-specificity, evolution origin and deleteriousness of Asian BRCA variation revealed by over 7500 BRCA variants derived from Asian population. Int J Cancer 2023; 152:1159-1173. [PMID: 36385461 PMCID: PMC10098510 DOI: 10.1002/ijc.34359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Pathogenic variation in BRCA1 and BRCA2 (BRCA) causes high risk of breast and ovarian cancer, and BRCA variation data are important markers for BRCA-related clinical cancer applications. However, comprehensive BRCA variation data are lacking from the Asian population despite its large population size, heterogenous genetic background and diversified living environment across the Asia continent. We performed a systematic study on BRCA variation in Asian population including extensive data mining, standardization, annotation and characterization. We identified 7587 BRCA variants from 685 592 Asian individuals in 40 Asia countries and regions, including 1762 clinically actionable pathogenic variants and 4915 functionally unknown variants (https://genemutation.fhs.um.edu.mo/Asian-BRCA/). We observed the highly ethnic-specific nature of Asian BRCA variants between Asian and non-Asian populations and within Asian populations, highlighting that the current European descendant population-based BRCA data is inadequate to reflect BRCA variation in the Asian population. We also provided archeological evidence for the evolutionary origin and arising time of Asian BRCA variation. We further provided structural-based evidence for the deleterious variants enriched within the functionally unknown Asian BRCA variants. The data from our study provide a current view of BRCA variation in the Asian population and a rich resource to guide clinical applications of BRCA-related cancer for the Asian population.
Collapse
Affiliation(s)
- Zixin Qin
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Jiaheng Li
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Benjamin Tam
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Siddharth Sinha
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Bojin Zhao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Shanmuga Priya Bhaskaran
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Teng Huang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Xiaobing Wu
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Jia Sheng Chian
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Maoni Guo
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Si Hoi Kou
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Huijun Lei
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Li Zhang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Xiaoyu Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Philip Naderev P Lagniton
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Fengxia Xiao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Xinyang Jiang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
18
|
Rao ND, Shirts BH. Using species richness calculations to model the global profile of unsampled pathogenic variants: Examples from BRCA1 and BRCA2. PLoS One 2023; 18:e0278010. [PMID: 36753473 PMCID: PMC9907816 DOI: 10.1371/journal.pone.0278010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
There have been many surveys of genetic variation in BRCA1 and BRCA2 to identify variant prevalence and catalogue population specific variants, yet none have evaluated the magnitude of unobserved variation. We applied species richness estimation methods from ecology to estimate "variant richness" and determine how many germline pathogenic BRCA1/2 variants have yet to be identified and the frequency of these missing variants in different populations. We also estimated the prevalence of germline pathogenic BRCA1/2 variants and identified those expected to be most common. Data was obtained from a literature search including studies conducted globally that tested the entirety of BRCA1/2 for pathogenic variation. Across countries, 45% to 88% of variants were estimated to be missing, i.e., present in the population but not observed in study data. Estimated variant frequencies in each country showed a higher proportion of rare variants compared to recurrent variants. The median prevalence estimate of BRCA1/2 pathogenic variant carriers was 0.64%. BRCA1 c.68_69del is likely the most recurrent BRCA1/2 variant globally due to its estimated prevalence in India. Modeling variant richness using ecology methods may assist in evaluating clinical targeted assays by providing a picture of what is observed with estimates of what is still unknown.
Collapse
Affiliation(s)
- Nandana D. Rao
- Institute for Public Health Genetics, University of Washington, Seattle, Washington, United States of America
| | - Brian H. Shirts
- Institute for Public Health Genetics, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, United States of America
| |
Collapse
|
19
|
Piedmonte S, Tsang K, Jembere N, Murphy J, McCurdy B, Sacco J, Kupets R. Are Women with Antecedent Low-Grade Cytology and <CIN2 Findings in Colposcopy Being Overmanaged? JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2022; 44:1054-1060. [PMID: 35948169 DOI: 10.1016/j.jogc.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVE To determine the baseline and cumulative risks of cervical intraepithelial lesion grade 3 (CIN3) and invasive cervical cancer in patients with <CIN2 colposcopy findings after a low-grade screening cytology finding (atypical squamous cells of undetermined significance or low-grade squamous intraepithelial lesion [LSIL]). METHODS By linking administrative databases, including cytology, pathology, cancer registries, and physician billing history, a population-based cohort study was performed on participants with <CIN2 initial colposcopy results after a low-grade antecedent cytology finding, between January 2012 and December 2013. Three and 5-year risks of CIN3 and invasive cervical cancer were generated using Kaplan-Meier survival analysis. RESULTS Among the 36 887 participants included in the study, CIN3 incidence based on referral cytology were as follows at 3 and 5 years, respectively: normal, 0.7% and 0.9%; ASCUS, 4.31% and 5.6%; and LSIL, 5.9% and 7.2%. Three- and 5-year incidence of invasive cancer were 0% and 0.02% for normal cytology, 0.08% and 0.11% for ASCUS, and 0.04% and 0.07% for LSIL, respectively. Stratifying risk by biopsy result at initial colposcopy, 3- and 5-year CIN3 incidences were 2.85% and 3.81% with a negative biopsy, 7.09% and 8.32% with an LSIL biopsy, and 4.11% and 5.2% when no biopsy was done, respectively. Three- and 5-year incidence of invasive cancer was 0% and 0.05% after a negative biopsy, 0% and 0% after LSIL biopsy, and 0.05% and 0.08% when no biopsy was done, respectively. CONCLUSION When initial colposcopy is done after a low-grade screening cytology result and <CIN2 is identified, the risk of CIN3 and invasive cancer is low, particularly when biopsies indicate LSIL. Surveillance strategies should balance the likelihood of detecting CIN3 with the potential harms over management with too frequent screening or colposcopic interventions in low-risk patients.
Collapse
Affiliation(s)
- Sabrina Piedmonte
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON
| | | | | | | | | | | | | |
Collapse
|
20
|
Sokolenko AP, Sultanova LV, Stepanov IA, Romanko AA, Venina AR, Sokolova TN, Musayeva HS, Tovgereeva MY, Magomedova MK, Akhmatkhanov KU, Vagapova EI, Suleymanov E, Vasilyeva EV, Bakaeva EK, Bizin IV, Aleksakhina SN, Imyanitov EN. Strong founder effect for BRCA1 c.3629_3630delAG pathogenic variant in Chechen patients with breast or ovarian cancer. Cancer Med 2022; 12:3167-3171. [PMID: 36000185 PMCID: PMC9939208 DOI: 10.1002/cam4.5159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Coding sequences of BRCA1, BRCA2, ATM, TP53, and PALB2 genes were analyzed in 68 consecutive Chechen patients with high-grade serous ovarian cancer (HGSOC). Pathogenic BRCA1/2 variants were identified in 15 (22%) out of 68 HGSOC cases. Nine out of ten patients with BRCA1 pathogenic alleles carried the same deletion (c.3629_3630delAG), and three out of five BRCA2 heterozygotes had Q3299X allele. The analysis of 49 consecutive patients with triple-negative breast cancer (TNBC) revealed 3 (6%) additional BRCA1 heterozygotes. All women with BRCA1 c.3629_3630delAG allele also carried linked c.1067G>A (Q356R) single nucleotide polymorphism, indicating that this is a genuine founder variant but not a mutational hotspot. An ATM truncating allele was detected in one HGSOC patient. There were no women with TP53 or PALB2 germline alterations. Genetic analysis of non-selected HGSOC patients is an efficient tool for the identification of ethnicity-specific BRCA1/2 pathogenic variants.
Collapse
Affiliation(s)
- Anna P. Sokolenko
- Department of Tumor Growth BiologyN.N. Petrov Institute of OncologySaint‐PetersburgRussia,Department of Medical GeneticsSt.‐Petersburg Pediatric Medical UniversitySaint‐PetersburgRussia
| | | | - Ilya A. Stepanov
- Department of Tumor Growth BiologyN.N. Petrov Institute of OncologySaint‐PetersburgRussia
| | - Alexandr A. Romanko
- Department of Tumor Growth BiologyN.N. Petrov Institute of OncologySaint‐PetersburgRussia,Department of Medical GeneticsSt.‐Petersburg Pediatric Medical UniversitySaint‐PetersburgRussia
| | - Aigul R. Venina
- Department of Tumor Growth BiologyN.N. Petrov Institute of OncologySaint‐PetersburgRussia
| | - Tatiana N. Sokolova
- Department of Tumor Growth BiologyN.N. Petrov Institute of OncologySaint‐PetersburgRussia
| | | | | | | | | | | | | | - Elena V. Vasilyeva
- Department of Tumor Growth BiologyN.N. Petrov Institute of OncologySaint‐PetersburgRussia
| | - Elvina Kh. Bakaeva
- Department of Tumor Growth BiologyN.N. Petrov Institute of OncologySaint‐PetersburgRussia
| | - Ilya V. Bizin
- Department of Tumor Growth BiologyN.N. Petrov Institute of OncologySaint‐PetersburgRussia
| | | | - Evgeny N. Imyanitov
- Department of Tumor Growth BiologyN.N. Petrov Institute of OncologySaint‐PetersburgRussia,Department of Medical GeneticsSt.‐Petersburg Pediatric Medical UniversitySaint‐PetersburgRussia,Department of OncologyI.I. Mechnikov North‐Western Medical UniversitySaint‐PetersburgRussia
| |
Collapse
|
21
|
Kabbage M, Ben Aissa-Haj J, Othman H, Jaballah-Gabteni A, Laarayedh S, Elouej S, Medhioub M, Kettiti HT, Khsiba A, Mahmoudi M, BelFekih H, Maaloul A, Touinsi H, Hamzaoui L, Chelbi E, Abdelhak S, Boubaker MS, Azzouz MM. A Rare MSH2 Variant as a Candidate Marker for Lynch Syndrome II Screening in Tunisia: A Case of Diffuse Gastric Carcinoma. Genes (Basel) 2022; 13:genes13081355. [PMID: 36011265 PMCID: PMC9407052 DOI: 10.3390/genes13081355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Several syndromic forms of digestive cancers are known to predispose to early-onset gastric tumors such as Hereditary Diffuse Gastric Cancer (HDGC) and Lynch Syndrome (LS). LSII is an extracolonic cancer syndrome characterized by a tumor spectrum including gastric cancer (GC). In the current work, our main aim was to identify the mutational spectrum underlying the genetic predisposition to diffuse gastric tumors occurring in a Tunisian family suspected of both HDGC and LS II syndromes. We selected the index case “JI-021”, which was a woman diagnosed with a Diffuse Gastric Carcinoma and fulfilling the international guidelines for both HDGC and LSII syndromes. For DNA repair, a custom panel targeting 87 candidate genes recovering the four DNA repair pathways was used. Structural bioinformatics analysis was conducted to predict the effect of the revealed variants on the functional properties of the proteins. DNA repair genes panel screening identified two variants: a rare MSH2 c.728G>A classified as a variant with uncertain significance (VUS) and a novel FANCD2 variant c.1879G>T. The structural prediction model of the MSH2 variant and electrostatic potential calculation showed for the first time that MSH2 c.728G>A is likely pathogenic and is involved in the MSH2-MLH1 complex stability. It appears to affect the MSH2-MLH1 complex as well as DNA-complex stability. The c.1879G>T FANCD2 variant was predicted to destabilize the protein structure. Our results showed that the MSH2 p.R243Q variant is likely pathogenic and is involved in the MSH2-MLH1 complex stability, and molecular modeling analysis highlights a putative impact on the binding with MLH1 by disrupting the electrostatic potential, suggesting the revision of its status from VUS to likely pathogenic. This variant seems to be a shared variant in the Mediterranean region. These findings emphasize the importance of testing DNA repair genes for patients diagnosed with diffuse GC with suspicion of LSII and colorectal cancer allowing better clinical surveillance for more personalized medicine.
Collapse
Affiliation(s)
- Maria Kabbage
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Correspondence:
| | - Jihenne Ben Aissa-Haj
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg 2000, South Africa;
| | - Amira Jaballah-Gabteni
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Sarra Laarayedh
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Sahar Elouej
- Marseille Medical Genetics, Aix Marseille University, INSERM, 13007 Marseille, France;
| | - Mouna Medhioub
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Haifa Tounsi Kettiti
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Amal Khsiba
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Moufida Mahmoudi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Houda BelFekih
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Department of Oncology, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Afifa Maaloul
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
| | - Hassen Touinsi
- Department of Surgery, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia;
| | - Lamine Hamzaoui
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Emna Chelbi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Department of Pathology, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Mohamed Samir Boubaker
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Mohamed Mousaddak Azzouz
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| |
Collapse
|
22
|
Brahim SM, Zein EE, Bonnet C, Hamed CT, Salame M, Zein MV, Khyatti M, Tolba A, Houmeida A. Screening of BRCA1/2 variants in Mauritanian breast cancer patients. BMC Cancer 2022; 22:802. [PMID: 35858847 PMCID: PMC9301826 DOI: 10.1186/s12885-022-09903-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND STUDY AIM Carrying a pathogenic BRCA1/2 variant increases greatly young women's risk of developing breast cancer (BC). This study aimed to provide the first genetic data on BC in Mauritania. METHODS Using NGS based screening; we searched for BRCA1/2 variants in DNA samples from 137 patients diagnosed for hereditary BC. RESULTS We identified 16 pathogenic or likely pathogenic (PV) variants carried by 38 patients. Two predominant BRCA1 PV variants were found: c.815_824dup and c.4986 + 6 T > C in 13 and 7 patients, respectively. Interestingly, three novels BRCA1/2 predicted pathogenic variants have also been detected. Notably, no specific distribution of BRCA1/2 variants was observed regarding triple negative breast cancer (TNBC) or patient gender status. CONCLUSIONS In this first genetic profiling of BC in Mauritania, we identified a substantial number of BRCA1/2 pathogenic variants. This finding could be important in the future diagnosis and prevention policy of hereditary BC in Mauritania.
Collapse
Affiliation(s)
- Selma Mohamed Brahim
- Unité de Recherche sur les Biomarqueurs dans la Population Mauritanienne. UNA-FST. Unité URBPM Nouakchott-Mauritanie, Nouakchott-Mauritanie, France
- Centre National d'Oncologie (CNO). Unité de Recherche et d'Enseignement, Nouakchott-Mauritanie, France
| | - Ekht Elbenina Zein
- Centre National d'Oncologie (CNO). Unité de Recherche et d'Enseignement, Nouakchott-Mauritanie, France
| | - Crystel Bonnet
- Institut de l'Audition, Institut Pasteur, Inserm, Paris, France
| | | | - Malak Salame
- Unité de Recherche sur les Biomarqueurs dans la Population Mauritanienne. UNA-FST. Unité URBPM Nouakchott-Mauritanie, Nouakchott-Mauritanie, France
| | - Mohamed Vall Zein
- Centre National d'Oncologie (CNO). Unité de Recherche et d'Enseignement, Nouakchott-Mauritanie, France
| | - Meriem Khyatti
- Institut Pasteur du Maroc. Laboratoire Oncologie et Thérapie Cellulaire, Casablanca -aroc, Morocco
| | - Ahmedou Tolba
- Centre National d'Oncologie (CNO). Unité de Recherche et d'Enseignement, Nouakchott-Mauritanie, France
| | - Ahmed Houmeida
- Unité de Recherche sur les Biomarqueurs dans la Population Mauritanienne. UNA-FST. Unité URBPM Nouakchott-Mauritanie, Nouakchott-Mauritanie, France.
| |
Collapse
|
23
|
Low BRCA1/2 germline mutation rate in a French-Canadian population with a diagnosis of epithelial tubo-ovarian carcinoma. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2022; 44:1047-1053. [PMID: 35779836 DOI: 10.1016/j.jogc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/20/2022]
|
24
|
Elalaoui SC, Laarabi FZ, Afif L, Lyahyai J, Ratbi I, Jaouad IC, Doubaj Y, Sahli M, Ouhenach M, Sefiani A. Mutational spectrum of BRCA1/2 genes in Moroccan patients with hereditary breast and/or ovarian cancer, and review of BRCA mutations in the MENA region. Breast Cancer Res Treat 2022; 194:187-198. [PMID: 35578052 DOI: 10.1007/s10549-022-06622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Breast cancer (BC) is the most common form of female cancer around the world. BC is mostly sporadic, and rarely hereditary. These hereditary forms are mostly BRCA1- and BRCA2-associated hereditary breast and ovarian cancer syndrome. BRCA1 and BRCA2 genes are large and had some recurrent mutations specific to some populations. Through this work we analyze the most recurrent mutations in Moroccan population and compared them to a large review of other BRCA1/2 spectrum mutations in the MENA region. METHODS We report in this work a series of 163 unrelated patients (the largest series of Moroccan patients) with familial breast and/or ovarian cancer, selected among patients referred to our oncogenetic outpatient clinic, from 2006 to 2021. To identify genetic variants in these two genes, different genetic analysis strategies have been carried out, using Sanger Sequencing DNA or Target Panel Sequencing. RESULTS Pathogenic variants were identified in 27.6% of patients. The most frequent mutation identified in our patients was the c.1310_1313delAAGA, BRCA2 (33%), and three other mutations seem more frequent in the Moroccan population (33%) of all reported patients: c.798_799delTT, BRCA1; and c.3279delC, BRCA1; and c.7234_7235insG in BRCA2 gene. CONCLUSION Through this work, we emphasize the importance of screening for BRCA1 and BRCA2 recurrent mutations in Moroccan patients. Other MENA (MENA: English-language acronym referring to the Middle East and North Africa region) countries had also some recurrent BRCA mutations, which will allow a fast and unexpensive first line genetic analysis and a precise molecular diagnosis. This will allow an adapted follow-up of the patients and a pre-symptomatic diagnosis of their relatives.
Collapse
Affiliation(s)
- Siham Chafai Elalaoui
- Génomique et Epidémiologie Moléculaire des Maladies Génétiques (G2MG), Centre GENOPATH, Faculté de Médecine et de Pharmacie, Mohammed V University, Rabat, Morocco. .,Département de Génétique Médicale, Institut National d'Hygiène, 27 Avenue Ibn Batouta, B.P 769, 11400, Rabat, Morocco.
| | | | - Lamiae Afif
- Génomique et Epidémiologie Moléculaire des Maladies Génétiques (G2MG), Centre GENOPATH, Faculté de Médecine et de Pharmacie, Mohammed V University, Rabat, Morocco.,Département de Génétique Médicale, Institut National d'Hygiène, 27 Avenue Ibn Batouta, B.P 769, 11400, Rabat, Morocco
| | - Jaber Lyahyai
- Génomique et Epidémiologie Moléculaire des Maladies Génétiques (G2MG), Centre GENOPATH, Faculté de Médecine et de Pharmacie, Mohammed V University, Rabat, Morocco.,Département de Génétique Médicale, Institut National d'Hygiène, 27 Avenue Ibn Batouta, B.P 769, 11400, Rabat, Morocco
| | - Ilham Ratbi
- Génomique et Epidémiologie Moléculaire des Maladies Génétiques (G2MG), Centre GENOPATH, Faculté de Médecine et de Pharmacie, Mohammed V University, Rabat, Morocco.,Département de Génétique Médicale, Institut National d'Hygiène, 27 Avenue Ibn Batouta, B.P 769, 11400, Rabat, Morocco
| | - Imane Cherkaoui Jaouad
- Département de Génétique Médicale, Institut National d'Hygiène, 27 Avenue Ibn Batouta, B.P 769, 11400, Rabat, Morocco
| | - Yassamine Doubaj
- Département de Génétique Médicale, Institut National d'Hygiène, 27 Avenue Ibn Batouta, B.P 769, 11400, Rabat, Morocco
| | - Meryem Sahli
- Département de Génétique Médicale, Institut National d'Hygiène, 27 Avenue Ibn Batouta, B.P 769, 11400, Rabat, Morocco
| | - Mouna Ouhenach
- Département de Génétique Médicale, Institut National d'Hygiène, 27 Avenue Ibn Batouta, B.P 769, 11400, Rabat, Morocco
| | - Abdelaziz Sefiani
- Génomique et Epidémiologie Moléculaire des Maladies Génétiques (G2MG), Centre GENOPATH, Faculté de Médecine et de Pharmacie, Mohammed V University, Rabat, Morocco.,Département de Génétique Médicale, Institut National d'Hygiène, 27 Avenue Ibn Batouta, B.P 769, 11400, Rabat, Morocco
| |
Collapse
|
25
|
Discovery of BRCA1/BRCA2 Founder Variants by Haplotype Analysis. Cancer Genet 2022; 266-267:19-27. [DOI: 10.1016/j.cancergen.2022.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022]
|
26
|
Duzkale Teker N, Eyerci N. Double Heterozygous Mutations in the BRCA2 and ATM Genes: A Case Report and Review of the Literature. Breast Care (Basel) 2021; 16:412-417. [PMID: 34602949 DOI: 10.1159/000511430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/08/2020] [Indexed: 11/19/2022] Open
Abstract
Introduction Germline mutations of the BRCA1 and BRCA2 genes are responsible for about a quarter of hereditary breast cancers (BCs). In this study, we aimed to determine the importance of rare double heterozygous (DH) pathogenic variant carriership in BRCA2and ATM genes in a patient diagnosed with BC and pancreas cancer (PC). Case Report A 54-year-old female patient was diagnosed with BC at the age of 34 years and with PC at the age of 48 years. The multigene panel and next-generation sequencing technique were used to evaluate the status of the patient's cancer susceptibility genes. Pathogenic variants c.537dup (p.Ile180Tyrfs*3) in the BRCA2 gene and c.5065C>T (p.Gln1689Ter) in the ATM gene were detected as DH in the patient. Co-segregation analysis was performed on the relatives of the patient using Sanger sequencing. Discussion/Conclusion Multiple primary malignant neoplasms can be encountered more frequently in DH pathogenic variant carriers, and the diagnosis of malignancies can be made at an earlier age through surveillance guided by genetic testing. In this rare case, more patient studies are needed to determine the contribution of DH in BRCA2 and ATM genes to the phenotype.
Collapse
Affiliation(s)
- Neslihan Duzkale Teker
- Department of Medical Genetics, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| | - Nilnur Eyerci
- Department of Medical Biology, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
27
|
Patruno M, De Summa S, Resta N, Caputo M, Costanzo S, Digennaro M, Pilato B, Bagnulo R, Pantaleo A, Simone C, Natalicchio MI, De Matteis E, Tarantino P, Tommasi S, Paradiso A. Spectrum of Germline Pathogenic Variants in BRCA1/2 Genes in the Apulian Southern Italy Population: Geographic Distribution and Evidence for Targeted Genetic Testing. Cancers (Basel) 2021; 13:cancers13184714. [PMID: 34572941 PMCID: PMC8467705 DOI: 10.3390/cancers13184714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary BRCA1 and BRCA2 are two major high-penetrance breast/ovarian cancer predisposition genes, whose mutations can lead to high risk and early onset of breast and ovarian cancer. Numerous studies are focused on spectrum and prevalence of BRCA1/2 mutations worldwide. This is the first study that exclusively focused on native Apulian probands. We found that ten recurrent BRCA1/2 pathogenic variants account for more than half of the patients with proven HBOC syndrome from Apulia. Besides BRCA1 c.5266dupC, which is present in significant numbers in every Apulian province, the other PVs occur at a high frequency in some areas and not others. In-depth knowledge of the mutation spectrum of the target population and of the relatively small number of recurrent mutations is crucial to develop a specific cost-effective strategy for mutation screening and a program for breast–ovarian cancer control and prevention through more liberal, yet rational, genetic testing and counseling. Abstract BRCA1/2-associated hereditary breast and ovarian cancer is the most common form of hereditary breast and ovarian cancer and occurs in all ethnicities and racial populations. Different BRCA1/BRCA2 pathogenic variants (PVs) have been reported with a wide variety among populations. In this study, we retrospectively analyzed prevalence and geographic distribution of pathogenic germline BRCA1/2 variants in families from Apulia in southern Italy and evaluated the genotype–phenotype correlations. Data were collected from Oncogenetic Services present in Apulian hospitals and a shared database was built containing Apulian native probands (n = 2026) that had undergone genetic testing from 2004 to 2019. PVs were detected in 499 of 2026 (24.6%) probands and 68.5% of them (342 of 499) were in the BRCA1 gene. We found 65 different PVs in BRCA1 and 46 in BRCA2. There were 10 most recurrent PVs and their geographical distribution appears to be significantly specific for each province. We have assumed that these PVs are related to the historical and geopolitical changes that occurred in Apulia over time and/or to a “founder effect”. Broader knowledge of BRCA1/2 prevalence and recurring PVs in specific geographic areas could help establish more flexible genetic testing strategies that may enhance our ability to detect high-risk subjects.
Collapse
Affiliation(s)
- Margherita Patruno
- Center for Hereditary Tumors Research, Istituto Tumori Bari, Giovani Paolo II, IRCCS, 70124 Bari, Italy; (S.C.); (M.D.); (A.P.)
- Correspondence: (M.P.); (S.D.S.)
| | - Simona De Summa
- Molecular and Pharmacogenetics Diagnostic Laboratory, IRCCS-IstitutoTumori “Giovanni Paolo II”, 70124 Bari, Italy; (M.C.); (B.P.); (S.T.)
- Correspondence: (M.P.); (S.D.S.)
| | - Nicoletta Resta
- Medical Genetics Unit, Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital Bari, 70124 Bari, Italy; (N.R.); (R.B.); (A.P.); (C.S.)
| | - Mariapia Caputo
- Molecular and Pharmacogenetics Diagnostic Laboratory, IRCCS-IstitutoTumori “Giovanni Paolo II”, 70124 Bari, Italy; (M.C.); (B.P.); (S.T.)
| | - Silvia Costanzo
- Center for Hereditary Tumors Research, Istituto Tumori Bari, Giovani Paolo II, IRCCS, 70124 Bari, Italy; (S.C.); (M.D.); (A.P.)
| | - Maria Digennaro
- Center for Hereditary Tumors Research, Istituto Tumori Bari, Giovani Paolo II, IRCCS, 70124 Bari, Italy; (S.C.); (M.D.); (A.P.)
| | - Brunella Pilato
- Molecular and Pharmacogenetics Diagnostic Laboratory, IRCCS-IstitutoTumori “Giovanni Paolo II”, 70124 Bari, Italy; (M.C.); (B.P.); (S.T.)
| | - Rosanna Bagnulo
- Medical Genetics Unit, Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital Bari, 70124 Bari, Italy; (N.R.); (R.B.); (A.P.); (C.S.)
| | - Antonino Pantaleo
- Medical Genetics Unit, Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital Bari, 70124 Bari, Italy; (N.R.); (R.B.); (A.P.); (C.S.)
| | - Cristiano Simone
- Medical Genetics Unit, Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari, Policlinico Hospital Bari, 70124 Bari, Italy; (N.R.); (R.B.); (A.P.); (C.S.)
- Medical Genetics, National Institute of Gastroenterology “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
| | | | | | - Paolo Tarantino
- Medical Genetics Unit, “Vito Fazzi” Hospital, 73100 Lecce, Italy;
| | - Stefania Tommasi
- Molecular and Pharmacogenetics Diagnostic Laboratory, IRCCS-IstitutoTumori “Giovanni Paolo II”, 70124 Bari, Italy; (M.C.); (B.P.); (S.T.)
| | - Angelo Paradiso
- Center for Hereditary Tumors Research, Istituto Tumori Bari, Giovani Paolo II, IRCCS, 70124 Bari, Italy; (S.C.); (M.D.); (A.P.)
| |
Collapse
|
28
|
Hamdi Y, Mighri N, Boujemaa M, Mejri N, Ben Nasr S, Ben Rekaya M, Messaoud O, Bouaziz H, Berrazega Y, Rachdi H, Jaidane O, Daoud N, Zribi A, Ayari J, El Benna H, Labidi S, Ben Hassouna J, Haddaoui A, Rahal K, Benna F, Mrad R, Ben Ahmed S, Boussen H, Boubaker S, Abdelhak S. Identification of Eleven Novel BRCA Mutations in Tunisia: Impact on the Clinical Management of BRCA Related Cancers. Front Oncol 2021; 11:674965. [PMID: 34490083 PMCID: PMC8417726 DOI: 10.3389/fonc.2021.674965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
Background Breast cancer is the world's most common cancer among women. It is becoming an increasingly urgent problem in low- and middle-income countries (LMICs) where a large fraction of women is diagnosed with advanced-stage disease and have no access to treatment or basic palliative care. About 5-10% of all breast cancers can be attributed to hereditary genetic components and up to 25% of familial cases are due to mutations in BRCA1/2 genes. Since their discovery in 1994 and 1995, as few as 18 mutations have been identified in BRCA genes in the Tunisian population. The aim of this study is to identify additional BRCA mutations, to estimate their contribution to the hereditary breast and ovarian cancers in Tunisia and to investigate the clinicopathological signatures associated with BRCA mutations. Methods A total of 354 patients diagnosed with breast and ovarian cancers, including 5 male breast cancer cases, have been investigated for BRCA1/2 mutations using traditional and/or next generation sequencing technologies. Clinicopathological signatures associated with BRCA mutations have also been investigated. Results In the current study, 16 distinct mutations were detected: 10 in BRCA1 and 6 in BRCA2, of which 11 are described for the first time in Tunisia including 3 variations that have not been reported previously in public databases namely BRCA1_c.915T>A; BRCA2_c.-227-?_7805+? and BRCA2_c.249delG. Early age at onset, family history of ovarian cancer and high tumor grade were significantly associated with BRCA status. BRCA1 carriers were more likely to be triple negative breast cancer compared to BRCA2 carriers. A relatively high frequency of contralateral breast cancer and ovarian cancer occurrence was observed among BRCA carriers and was more frequent in patients carrying BRCA1 mutations. Conclusion Our study provides new insights into breast and ovarian cancer genetic landscape in the under-represented North African populations. The prevalence assessment of novel and recurrent BRCA1/2 pathogenic mutations will enhance the use of personalized treatment and precise screening strategies by both affected and unaffected North African cancer cases.
Collapse
Affiliation(s)
- Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Najah Mighri
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nesrine Mejri
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Sonia Ben Nasr
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | - Mariem Ben Rekaya
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,UR17ES15, Oncotheranostic Biomarkers, Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Olfa Messaoud
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hanen Bouaziz
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Yosra Berrazega
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Haifa Rachdi
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Olfa Jaidane
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Nouha Daoud
- Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Aref Zribi
- Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | - Jihene Ayari
- Department of Medical Oncology, Military Hospital of Tunis, Tunis, Tunisia
| | - Houda El Benna
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Soumaya Labidi
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Jamel Ben Hassouna
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | | | - Khaled Rahal
- Surgical Oncology Department, Salah Azaiez Institute of Cancer, Tunis, Tunisia
| | - Farouk Benna
- Department of Radiation Oncology, University of Tunis, Tunis, Tunisia
| | - Ridha Mrad
- Department of Human Genetics, Charles Nicolle Hospital, Tunis, Tunisia
| | - Slim Ben Ahmed
- Faculty of Medicine of Sousse Department of Medical Oncology Farhat Hached University Hospital University of Sousse, Sousse, Tunisia
| | - Hamouda Boussen
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Medical Oncology Department, Abderrahman Mami Hospital, Faculty of Medicine Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR20IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
29
|
Abdel-Razeq H, Abujamous L, Abunasser M, Edaily S, Bater R. Prevalence and predictors of germline BRCA1 and BRCA2 mutations among young patients with breast cancer in Jordan. Sci Rep 2021; 11:14906. [PMID: 34290354 PMCID: PMC8295261 DOI: 10.1038/s41598-021-94403-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
BRCA1 and BRCA2 mutations are not uncommon in breast cancer patients. Western studies show that such mutations are more prevalent among younger patients. This study evaluates the prevalence of germline mutations in BRCA1 and BRCA2 among breast cancer patients diagnosed at age 40 or younger in Jordan. Blood samples of patients with breast cancer diagnosed at age 40 years or younger were obtained for DNA extraction and BRCA sequencing. Mutations were classified as benign/likely benign (non-carrier), pathogenic/likely pathogenic variant (carrier) and variant of uncertain significance (VUS). Genetic testing and counseling were completed on 616 eligible patients. Among the whole group, 75 (12.2%) had pathogenic or likely pathogenic variants; two of the BRCA2 mutations were novel. In multivariate analysis, triple-negative disease (Odd Ratio [OR]: 5.37; 95% CI 2.88-10.02, P < 0.0001), breast cancer in ≥ 2 family members (OR: 4.44; 95% CI 2.52-7.84, P < 0.0001), and a personal history ≥ 2 primary breast cancers (OR: 3.43; 95% CI 1.62-7.24, P = 0.001) were associated with higher mutation rates. In conclusion, among young Jordanian patients with breast cancer, mutation rates are significantly higher in patients with triple-negative disease, personal history of breast cancer and those with two or more close relatives with breast cancer.
Collapse
Affiliation(s)
- Hikmat Abdel-Razeq
- Department of Internal Medicine, King Hussein Cancer Center, Queen Rania Al Abdullah Street, P.O. Box: 1269, Amman, 11941, Jordan.
- School of Medicine, University of Jordan, Amman, Jordan.
| | - Lama Abujamous
- Department of Cell Therapy & Applied Genomic, King Hussein Cancer Center, Amman, Jordan
| | - Mahmoud Abunasser
- Department of Internal Medicine, King Hussein Cancer Center, Queen Rania Al Abdullah Street, P.O. Box: 1269, Amman, 11941, Jordan
| | - Sara Edaily
- Department of Internal Medicine, King Hussein Cancer Center, Queen Rania Al Abdullah Street, P.O. Box: 1269, Amman, 11941, Jordan
| | - Rayan Bater
- Department of Internal Medicine, King Hussein Cancer Center, Queen Rania Al Abdullah Street, P.O. Box: 1269, Amman, 11941, Jordan
| |
Collapse
|
30
|
Doddato G, Valentino F, Giliberti A, Papa FT, Tita R, Bruno LP, Resciniti S, Fallerini C, Benetti E, Palmieri M, Mencarelli MA, Fabbiani A, Bruttini M, Orrico A, Baldassarri M, Fava F, Lopergolo D, Lo Rizzo C, Lamacchia V, Mannucci S, Pinto AM, Currò A, Mancini V, Mari F, Renieri A, Ariani F. Exome sequencing in BRCA1-2 candidate familias: the contribution of other cancer susceptibility genes. Front Oncol 2021; 11:649435. [PMID: 34026625 PMCID: PMC8139251 DOI: 10.3389/fonc.2021.649435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Hereditary Breast and Ovarian Cancer (HBOC) syndrome is a condition in which the risk of breast and ovarian cancer is higher than in the general population. The prevalent pathogenesis is attributable to inactivating variants of the BRCA1-2 highly penetrant genes, however, other cancer susceptibility genes may also be involved. By Exome Sequencing (WES) we analyzed a series of 200 individuals selected for genetic testing in BRCA1-2 genes according to the updated National Comprehensive Cancer Network (NCCN) guidelines. Analysis by MLPA was performed to detect large BRCA1-2 deletions/duplications. Focusing on BRCA1-2 genes, data analysis identified 11 cases with pathogenic variants (4 in BRCA1 and 7 in BRCA1-2) and 12 with uncertain variants (7 in BRCA1 and 5 in BRCA2). Only one case was found with a large BRCA1 deletion. Whole exome analysis allowed to characterize pathogenic variants in 21 additional genes: 10 genes more traditionally associated to breast and ovarian cancer (ATM, BRIP1, CDH1, PALB2, PTEN, RAD51C, and TP53) (5% diagnostic yield) and 11 in candidate cancer susceptibility genes (DPYD, ERBB3, ERCC2, MUTYH, NQO2, NTHL1, PARK2, RAD54L, and RNASEL). In conclusion, this study allowed a personalized risk assessment and clinical surveillance in an increased number of HBOC families and to broaden the spectrum of causative variants also to candidate non-canonical genes.
Collapse
Affiliation(s)
- Gabriella Doddato
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Floriana Valentino
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Annarita Giliberti
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Filomena Tiziana Papa
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Rossella Tita
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Lucia Pia Bruno
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sara Resciniti
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Fallerini
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Benetti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maria Palmieri
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Alessandra Fabbiani
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alfredo Orrico
- Molecular Diagnosis and Characterization of Pathogenic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese and Clinical Genetics, ASL Toscana SudEst. Ospedale della Misericordia, Grosseto, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Fava
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Diego Lopergolo
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Caterina Lo Rizzo
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Vittoria Lamacchia
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Sara Mannucci
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Anna Maria Pinto
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Aurora Currò
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Virginia Mancini
- Unit of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesca Ariani
- Medical Genetics, University of Siena, Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
31
|
Majidzadeh-A K, Zarinfam S, Abdoli N, Yadegari F, Esmaeili R, Farahmand L, Teimourzadeh A, Taghizadeh M, Salehi M, Zamani M. A comprehensive reference for BRCA1/2 genes pathogenic variants in Iran: published, unpublished and novel. Fam Cancer 2021; 21:137-142. [PMID: 33754277 DOI: 10.1007/s10689-021-00242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/04/2021] [Indexed: 11/27/2022]
Abstract
BRCA1 and BRCA2 are two prominent genes that account for about 20-40% of inherited breast cancer. Mutations in these genes are often associated with clustering of especially early-onset cancers in the family. The spectrum of BRCA variants showed a significant difference between geographic regions and ethnicities. The frequency and spectrum of BRCA mutations in Iran, a country in southwest Asia, have not yet been thoroughly studied. Here, for the first time, all published and not published BRCA pathogenic variants are presented. Among 1040 high risk families (1258 cases) which were detected, 116 families were found to carry pathogenic variants in either BRCA1 or BRCA2. Altogether 89 distinct types of pathogenic variants have been detected in Iran, including 41 in BRCA1 and 48 in BRCA2. 16 out of 89 mutations had not been previously reported in Iran and are presented for the first time in this article, among which 4 mutations are novel worldwide. 20% of families had one of the seven most commonly observed mutations, including c.81-1G > C, c.66_67delAG, c.4609C>T, c.1568delT, c.1961delA, in BRCA1 and: c.3751_3752insA, c.8585dupT in BRCA2. Combining the data from published articles and our study which has not been published before, a comprehensive table is created as a reference for entire BRCA pathogenic variants and their frequencies in Iran.
Collapse
Affiliation(s)
- Keivan Majidzadeh-A
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No 146, South Gandhi Ave, Vanak Sq., P.O.BOX: 1517964311, Tehran, Iran.
| | - Shiva Zarinfam
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No 146, South Gandhi Ave, Vanak Sq., P.O.BOX: 1517964311, Tehran, Iran
| | - Nasrin Abdoli
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No 146, South Gandhi Ave, Vanak Sq., P.O.BOX: 1517964311, Tehran, Iran
| | - Fatemeh Yadegari
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No 146, South Gandhi Ave, Vanak Sq., P.O.BOX: 1517964311, Tehran, Iran
| | - Rezvan Esmaeili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No 146, South Gandhi Ave, Vanak Sq., P.O.BOX: 1517964311, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Azin Teimourzadeh
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No 146, South Gandhi Ave, Vanak Sq., P.O.BOX: 1517964311, Tehran, Iran
| | - Mahdieh Taghizadeh
- Department of Medical Genetics, Tarbiat Modares University, Tehran, Iran
| | - Mansoor Salehi
- Department of Genetics and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohamad Zamani
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, No 146, South Gandhi Ave, Vanak Sq., P.O.BOX: 1517964311, Tehran, Iran
| |
Collapse
|
32
|
Ben Ayed-Guerfali D, Ben Kridis-Rejab W, Ammous-Boukhris N, Ayadi W, Charfi S, Khanfir A, Sellami-Boudawara T, Frikha M, Daoud J, Mokdad-Gargouri R. Novel and recurrent BRCA1/BRCA2 germline mutations in patients with breast/ovarian cancer: a series from the south of Tunisia. J Transl Med 2021; 19:108. [PMID: 33726785 PMCID: PMC7962399 DOI: 10.1186/s12967-021-02772-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background The incidence of breast cancer (BC) and/or ovarian cancer (OC) is increasing in Tunisia especially in young women and mostly those with family history. However, the spectrum of BRCA mutations remains little explored in Tunisian patients in particular in the southern region. Methods We sequenced the entire coding regions of BRCA1and BRCA2 genes using next generation sequencing (NGS) in 134 selected patients with BC and/or OC. Results Among the 134 patients, 19 (14.17%) carried pathogenic mutations (10 are BRCA1 mutation carriers and 9 are BRCA2 mutation carriers) that are mainly frameshift index (76.9%). Interestingly, 5 out of the 13 variants (38.46%) were found at least twice in unrelated patients, as the c.1310-1313 delAAGA in BRCA2 and the c.5030_5033 delCTAA that has been identified in 4/98 BC patients and in 3/15 OC patients from unrelated families with strong history of cancer. Besides recurrent mutations, 6 variant (4 in BRCA1 and 2 in BRCA2) were not reported previously. Furthermore, 3 unrelated patients carried the VUS c.9976A > T, (K3326*) in BRCA2 exon 27. BRCA carriers correlated significantly with tumor site (p = 0.029) and TNBC cases (p = 0.008). In the groups of patients aged between 31 and 40, and 41–50 years, BRCA1 mutations occurred more frequently in patients with OC than those with BC, and conversely BRCA2 carriers are mostly affected with BC (p = 0.001, and p = 0.044 respectively). Conclusions The overall frequency of the BRCA germline mutations was 14.17% in patients with high risk of breast/ovarian cancer. We identified recurrent mutations as the c.1310_1313 delAAGA in BRCA2 gene and the c.5030_5033 delCTAA in BRCA1 gene that were found in 4% and 20% of familial BC and OC respectively. Our data will contribute in the implementation of genetic counseling and testing for families with high-risk of BC and/or OC.
Collapse
Affiliation(s)
- Dorra Ben Ayed-Guerfali
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia
| | | | - Nihel Ammous-Boukhris
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia
| | - Wajdi Ayadi
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia
| | - Slim Charfi
- Department of Anatomo-pathology, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Afef Khanfir
- Department of Oncology, Habib Bourguiba Hospital, Sfax, Tunisia
| | | | - Mounir Frikha
- Department of Oncology, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Jamel Daoud
- Department of Radiotherapy, Habib Bourguiba Hospital, Sfax, Tunisia
| | - Raja Mokdad-Gargouri
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia.
| |
Collapse
|
33
|
Analysis of Italian BRCA1/2 Pathogenic Variants Identifies a Private Spectrum in the Population from the Bergamo Province in Northern Italy. Cancers (Basel) 2021; 13:cancers13030532. [PMID: 33573335 PMCID: PMC7866799 DOI: 10.3390/cancers13030532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The Italian population is characterized by a high genetic heterogeneity mostly due to its long history of migration and colonization and to its geographical conformation. Consistently, several BRCA1/2 pathogenic variants (PVs) have been reported to be recurrent or even founder in defined geographical areas including the Bergamo province in Northern Italy. In this study, we retrospectively analyzed the data from 1019 women affected with breast cancer with BRCA1/2 PVs. We compared the BRCA1/2 PVs spectrum found in the carrier individuals from the Bergamo province (BGP) with that of the general Italian population. We found that the majority of the BGP PVs had a local origin and remained confined to the BGP or to the surrounding Lombardy region. We also observed that the BGP BRCA1/2 PV spectrum is private and conserved comprising a smaller number of variants with an average higher frequency with respect to that of carrier individuals from the rest of Italy. Abstract Germline pathogenic variants (PVs) in the BRCA1 or BRCA2 genes cause high breast cancer risk. Recurrent or founder PVs have been described worldwide including some in the Bergamo province in Northern Italy. The aim of this study was to compare the BRCA1/2 PV spectra of the Bergamo and of the general Italian populations. We retrospectively identified at five Italian centers 1019 BRCA1/2 PVs carrier individuals affected with breast cancer and representative of the heterogeneous national population. Each individual was assigned to the Bergamo or non-Bergamo cohort based on self-reported birthplace. Our data indicate that the Bergamo BRCA1/2 PV spectrum shows less heterogeneity with fewer different variants and an average higher frequency compared to that of the rest of Italy. Consistently, four PVs explained about 60% of all carriers. The majority of the Bergamo PVs originated locally with only two PVs clearly imported. The Bergamo BRCA1/2 PV spectrum appears to be private. Hence, the Bergamo population would be ideal to study the disease risk associated with local PVs in breast cancer and other disease-causing genes. Finally, our data suggest that the Bergamo population is a genetic isolate and further analyses are warranted to prove this notion.
Collapse
|
34
|
Abu-Helalah M, Azab B, Mubaidin R, Ali D, Jafar H, Alshraideh H, Drou N, Awidi A. BRCA1 and BRCA2 genes mutations among high risk breast cancer patients in Jordan. Sci Rep 2020; 10:17573. [PMID: 33067490 PMCID: PMC7568559 DOI: 10.1038/s41598-020-74250-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Familial breast cancer is estimated to account for 15-20% of all cases of breast cancer. Surveillance for familial breast cancer is well-established world-wide. However, this service does not exist in Jordan, due to the scarcity of information with regard to the genetic profiling of these patients, and therefore lack of recommendations for policy-makers. As such, patients with very strong family history of breast or ovarian cancers are not screened routinely; leading to preventable delay in diagnosis. Whole coding sequencing for BCRA1/BCRA2 using next-generation sequencing (NGS)/Ion PGM System was performed. Sanger sequencing were then used to confirm the pathogenic variants detected by NGS. In this study, 192 breast cancer patients (and 8 ovarian cancer cases) were included. The prevalence of recurrent pathogenic mutations was 14.5%, while the prevalence of newly detected mutations was 3.5%. Two novel pathogenic mutations were identified in BRCA2 genes. The common mutations in the Ashkenazi population used for screening may not apply in the Jordanian population, as previously reported mutations were not prevalent, and other new mutations were identified. These data will aid to establish a specific screening test for BRCA 1/BRCA2 in the Jordanian population.
Collapse
Affiliation(s)
- Munir Abu-Helalah
- Department of Public Health, Faculty of Medicine, Mutah University, Karak, Jordan.,Faculty of Medicine, Al-Faisal University, Riyadh, Kingdom of Saudi Arabia
| | - Belal Azab
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan.,Department of Pathology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Rasmi Mubaidin
- Radiation Therapy Department, Al-Bashir Hospital, Ministry of Health, Amman, Jordan
| | - Dema Ali
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan.,Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Hussam Alshraideh
- Industrial Engineering Department, University of Science and Technology, Irbid, Jordan.,Industrial Engineering Department, American University of Sharjah, Sharjah, UAE
| | - Nizar Drou
- NYU Abu Dhabi Center for Genomics and System Biology, Abu Dhabi, UAE
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan. .,Department of Medicine, School of Medicine, The University of Jordan, Amman, Jordan.
| |
Collapse
|
35
|
Vietri MT, Caliendo G, D'Elia G, Resse M, Casamassimi A, Minucci PB, Cioffi M, Molinari AM. BRCA and PALB2 mutations in a cohort of male breast cancer with one bilateral case. Eur J Med Genet 2020; 63:103883. [PMID: 32058061 DOI: 10.1016/j.ejmg.2020.103883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Male Breast Cancer (MBC) is a rare disease, about 1% of all breast cancers worldwide and less than 1% of cancers occurring in men. The bilateral male breast cancer (bMBC) is extremely rare. Germline mutations of BRCA1/BRCA2 genes are associated with a significantly increased risk of cancer in MBC; the role of PALB2 remains to be clarified. Our main goal was to provide contribution on characterization of BRCA1/BRCA2 and PALB2 mutations in MBC patients. METHODS We observed 28 MBC cases; one of them was a bMBC. Screening for BRCA1, BRCA2 and PALB2 genes was performed on all 28 MBC patients. Mutational analysis was extended to family members of mutated patients. RESULTS In our study, the MBC incidence was 5.2% and for bMBC was 3.6%. Mutation analysis showed pathogenic mutations in 11/28 (39.3%) patients; 2/28 (7.1%) displayed a mutation in BRCA1, 8/28 (28.6%) in BRCA2 and 1/28 (3.6%) in PALB2. Out of 11 mutated patients, one (9.1%) reported a double mutation in BRCA2. Personal history of other cancers was reported in 2/28 (7.1%) patients affected by bladder cancer. A first/second degree family history of breast/ovarian and other cancers occurred in 23/28 (82.1%) patients. CONCLUSION Our findings indicate BRCA2 as the main MBC susceptibility gene and describe an increased risk of bMBC and bladder cancer in mutated patients. The identification of mutations in MBC susceptibility genes supports the usage of oncology prevention programs in affected patients and their relatives carrying the mutation.
Collapse
Affiliation(s)
- Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy; U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| | - Gemma Caliendo
- U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Giovanna D'Elia
- U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Marianna Resse
- U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | | | - Michele Cioffi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy; U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Anna Maria Molinari
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy; U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| |
Collapse
|