1
|
Ferreira CA, Schneider PN, Carneiro LT, Mendonça BS, Nestal de Moraes G. Importin α/β inhibition as a strategy to modulate cancer drug resistance and XIAP nuclear translocation. Biochem Biophys Res Commun 2025; 751:151409. [PMID: 39919389 DOI: 10.1016/j.bbrc.2025.151409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
Shuttling from the cytoplasm to the nucleus is a regulated cellular process which involves the recognition of nuclear localization signal-containing proteins by importins. Nuclear-cytoplasmic protein transport is found aberrant in cancer, which impacts subcellular localization of proteins that modulate drug responses and cell growth. We have previously demonstrated that the classically cytoplasmic antiapoptotic XIAP protein is associated with breast cancer chemoresistance and poorer clinical outcomes, when mis localized in the nucleus. Nevertheless, little is known about the mechanisms of XIAP nuclear translocation. In this study, we compared importin expression and response to importin inhibitors in cancer cellular models with distinct drug sensitivity phenotypes and subcellular localization of XIAP. Remarkably, importins α1, α5 and β1 were found differentially expressed among drug sensitive and resistant cell lines, as well as primary breast tumors compared to normal tissues. Interestingly, nuclear XIAP-expressing cancer cells exhibiting resistance to both docetaxel and doxorubicin have shown pronounced sensitivity to importin inhibition. Pharmacological intervention of nuclear transport revealed that XIAP can shuttle from the cytoplasm to the nucleus dependently on the importins α/β1 classical pathway. Last, we have shown that INI-43-mediated inhibition of importins α/β1 potentiates the cytotoxic effects of chemotherapy in drug refractory cells. These findings indicate that targeting protein nuclear import via importins α and β1 might be of potential clinical benefit for drug resistance tumors, particularly when combined with conventional chemotherapy.
Collapse
Affiliation(s)
- C A Ferreira
- Laboratório de Sinalização e Biologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 2° Andar, H2-003, Cidade Universitária, 21 941 599, Rio de Janeiro, RJ, Brazil.
| | - P N Schneider
- Laboratório de Sinalização e Biologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 2° Andar, H2-003, Cidade Universitária, 21 941 599, Rio de Janeiro, RJ, Brazil.
| | - L T Carneiro
- Laboratório de Sinalização e Biologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 2° Andar, H2-003, Cidade Universitária, 21 941 599, Rio de Janeiro, RJ, Brazil.
| | - B S Mendonça
- Laboratório de Sinalização e Biologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 2° Andar, H2-003, Cidade Universitária, 21 941 599, Rio de Janeiro, RJ, Brazil.
| | - G Nestal de Moraes
- Laboratório de Sinalização e Biologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, 2° Andar, H2-003, Cidade Universitária, 21 941 599, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Soto-Ponce A, De Ita M, Castro-Obregón S, Cortez D, Landesman Y, Magaña JJ, Gonzalo S, Zavaleta T, Soberano-Nieto A, Unzueta J, Arrieta-Cruz I, Nava P, Candelario-Martínez A, García-Aguirre I, Cisneros B. Targeting CRM1 for Progeria Syndrome Therapy. Aging Cell 2025:e14495. [PMID: 39871520 DOI: 10.1111/acel.14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease caused by progerin, a mutant variant of lamin A. Progerin anchors aberrantly to the nuclear envelope disrupting a plethora of cellular processes, which in turn elicits senescence. We previously showed that the chromosomal region maintenance 1 (CRM1)-driven nuclear export pathway is abnormally enhanced in patient-derived fibroblasts, due to overexpression of CRM1. Interestingly, pharmacological inhibition of CRM1 using leptomycin B rescues the senescent phenotype of HGPS fibroblasts, delineating CRM1 as a potential therapeutic target against HGPS. As a proof of concept, we analyzed the beneficial effects of pharmacologically modulating CRM1 in dermal fibroblasts from HGPS patients and the LMNAG609G/G609G mouse, using the first-in-class selective inhibitor of CRM1 termed selinexor. Remarkably, treatment of HGPS fibroblasts with selinexor mitigated senescence and promoted progerin clearance via autophagy, while at the transcriptional level restored the expression of numerous differentially-expressed genes and rescued cellular processes linked to aging. In vivo, oral administration of selinexor to the progeric mouse resulted in decreased progerin immunostaining in the liver and aorta, decreased progerin levels in most liver, lung and kidney samples analyzed by immunoblotting, and improved aortic histopathology. Collectively our data indicate that selinexor exerts its geroprotective action by at least two mechanisms: normalizing the nucleocytoplasmic partition of proteins with a downstream effect on the aging-associated transcriptome and decreasing progerin levels. Further investigation of the overall effect of selinexor on LmnaG609G/G609G mouse physiology, with emphasis in cardiovascular function is warranted, to determine its therapeutic utility for HGPS and aging-associated disorders characterized by CRM1 overactivity.
Collapse
Affiliation(s)
- Adriana Soto-Ponce
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Ciudad de México, Mexico
| | - Marlon De Ita
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Ciudad de México, Mexico
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSSS, Ciudad de México, Mexico
| | - Susana Castro-Obregón
- Instituto de Fisiología Celular, UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Diego Cortez
- Centro de Ciencias Genómicas, UNAM, Cuernavaca, Mexico
| | | | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ), Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra (INR-LGII), Ciudad de México, Mexico
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ciudad de México, Mexico
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Tania Zavaleta
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Ciudad de México, Mexico
| | - Angelica Soberano-Nieto
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Ciudad de México, Mexico
| | - Juan Unzueta
- Unidad Iztapalapa, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Isabel Arrieta-Cruz
- Departamento de Investigación Básica, División de Investigación, Instituto Nacional de Geriatría, Secretaría de Salud, Ciudad de México, Mexico
| | - Porfirio Nava
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, Mexico
| | - Aurora Candelario-Martínez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, Mexico
| | - Ian García-Aguirre
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ciudad de México, Mexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Ciudad de México, Mexico
| |
Collapse
|
3
|
Chen YT, Tu WJ, Ye ZH, Wu CC, Ueng SH, Yu KJ, Chen CL, Peng PH, Yu JS, Chang YH. Integration of the cancer cell secretome and transcriptome reveals potential noninvasive diagnostic markers for bladder cancer. Proteomics Clin Appl 2024; 18:e202300033. [PMID: 38196148 DOI: 10.1002/prca.202300033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE Bladder cancer (BLCA) is a major cancer of the genitourinary system. Although cystoscopy is the standard protocol for diagnosing BLCA clinically, this procedure is invasive and expensive. Several urine-based markers for BLCA have been identified and investigated, but none has shown sufficient sensitivity and specificity. These observations underscore the importance of discovering novel BLCA biomarkers and developing a noninvasive method for detection of BLCA. Exploring the cancer secretome is a good starting point for the development of noninvasive biomarkers for cancer diagnosis. EXPERIMENTAL DESIGN In this study, we established a comprehensive secretome dataset of five representative BLCA cell lines, BFTC905, TSGH8301, 5637, MGH-U1, and MGH-U4, by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Expression of BLCA-specific secreted proteins at the transcription level was evaluated using the Oncomine cancer microarray database. RESULTS The expressions of four candidates-COMT, EWSR1, FUSIP1, and TNPO2-were further validated in clinical human specimens. Immunohistochemical analyses confirmed that transportin-2 was highly expressed in tumor cells relative to adjacent noncancerous cells in clinical tissue specimens from BLCA patients, and was significantly elevated in BLCA urine compared with that in urine samples from aged-matched hernia patients (controls). CONCLUSIONS Collectively, our findings suggest TNPO2 as a potential noninvasive tumor-stage or grade discriminator for BLCA management.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Kidney Research Center, Department of Nephrology, LinKou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Ju Tu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Zong-Han Ye
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shir-Hwa Ueng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
| | - Kai-Jie Yu
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Lun Chen
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Hua Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jau-Song Yu
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Ying-Hsu Chang
- Department of Urology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Kodiha M, Azad N, Chu S, Crampton N, Stochaj U. Oxidative stress and signaling through EGFR and PKA pathways converge on the nuclear transport factor RanBP1. Eur J Cell Biol 2024; 103:151376. [PMID: 38011756 DOI: 10.1016/j.ejcb.2023.151376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Nuclear protein trafficking requires the soluble transport factor RanBP1. The subcellular distribution of RanBP1 is dynamic, as the protein shuttles between the nucleus and cytoplasm. To date, the signaling pathways regulating RanBP1 subcellular localization are poorly understood. During interphase, RanBP1 resides mostly in the cytoplasm. We show here that oxidative stress concentrates RanBP1 in the nucleus, and our study defines the underlying mechanisms. Specifically, RanBP1's cysteine residues are not essential for its oxidant-induced relocation. Furthermore, our pharmacological approaches uncover that signaling mediated by epidermal growth factor receptor (EGFR) and protein kinase A (PKA) control RanBP1 localization during stress. In particular, pharmacological inhibitors of EGFR or PKA diminish the oxidant-dependent relocation of RanBP1. Mutant analysis identified serine 60 and tyrosine 103 as regulators of RanBP1 nuclear accumulation during oxidant exposure. Taken together, our results define RanBP1 as a target of oxidative stress and a downstream effector of EGFR and PKA signaling routes. This positions RanBP1 at the intersection of important cellular signaling circuits.
Collapse
Affiliation(s)
- Mohamed Kodiha
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada
| | - Nabila Azad
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada
| | - Siwei Chu
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada
| | - Noah Crampton
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada
| | - Ursula Stochaj
- Department of Physiology McGill University, Montreal H3G 1Y6, Canada.
| |
Collapse
|
5
|
Huang Q, Zhao R, Xu L, Hao X, Tao S. Treatment of multiple myeloma with selinexor: a review. Ther Adv Hematol 2024; 15:20406207231219442. [PMID: 38186637 PMCID: PMC10771077 DOI: 10.1177/20406207231219442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
Over the last 20 years, breakthroughs in accessible therapies for the treatment of multiple myeloma (MM) have been made. Nevertheless, patients with MM resistant to immunomodulatory drugs, proteasome inhibitors, and anti-CD38 monoclonal antibodies have a very poor outcome. Therefore, it is necessary to explore new drugs for the treatment of MM. This review summarizes the mechanism of action of selinexor, relevant primary clinical trials, and recent developments in both patients with relapsed/refractory myeloma and patients with newly diagnosed myeloma. Selinexor may be useful for the treatment of refractory MM.
Collapse
Affiliation(s)
- Qianlei Huang
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, Haikou, China
| | - Ranran Zhao
- Department of Hematology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lu Xu
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, Haikou, China
| | - Xinbao Hao
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, Haikou, China
| | - Shi Tao
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, 31 Longhua Road, Haikou 570102, China
| |
Collapse
|
6
|
Newell S, van der Watt PJ, Leaner VD. Therapeutic targeting of nuclear export and import receptors in cancer and their potential in combination chemotherapy. IUBMB Life 2024; 76:4-25. [PMID: 37623925 PMCID: PMC10952567 DOI: 10.1002/iub.2773] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 08/26/2023]
Abstract
Systemic modalities are crucial in the management of disseminated malignancies and liquid tumours. However, patient responses and tolerability to treatment are generally poor and those that enter remission often return with refractory disease. Combination therapies provide a methodology to overcome chemoresistance mechanisms and address dose-limiting toxicities. A deeper understanding of tumorigenic processes at the molecular level has brought a targeted therapy approach to the forefront of cancer research, and novel cancer biomarkers are being identified at a rapid rate, with some showing potential therapeutic benefits. The Karyopherin superfamily of proteins is soluble receptors that mediate nucleocytoplasmic shuttling of proteins and RNAs, and recently, nuclear transport receptors have been recognized as novel anticancer targets. Inhibitors against nuclear export have been approved for clinical use against certain cancer types, whereas inhibitors against nuclear import are in preclinical stages of investigation. Mechanistically, targeting nucleocytoplasmic shuttling has shown to abrogate oncogenic signalling and restore tumour suppressor functions through nuclear sequestration of relevant proteins and mRNAs. Hence, nuclear transport inhibitors display broad spectrum anticancer activity and harbour potential to engage in synergistic interactions with a wide array of cytotoxic agents and other targeted agents. This review is focussed on the most researched nuclear transport receptors in the context of cancer, XPO1 and KPNB1, and highlights how inhibitors targeting these receptors can enhance the therapeutic efficacy of standard of care therapies and novel targeted agents in a combination therapy approach. Furthermore, an updated review on the therapeutic targeting of lesser characterized karyopherin proteins is provided and resistance to clinically approved nuclear export inhibitors is discussed.
Collapse
Affiliation(s)
- Stella Newell
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Virna D. Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- UCT/SAMRC Gynaecological Cancer Research CentreUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
7
|
Nguyen TT, Rajakannu P, Pham MDT, Weman L, Jucht A, Buri MC, Van Dommelen K, Hegi ME. Epigenetic silencing of HTATIP2 in glioblastoma contributes to treatment resistance by enhancing nuclear translocation of the DNA repair protein MPG. Mol Oncol 2023; 17:1744-1762. [PMID: 37491696 PMCID: PMC10483604 DOI: 10.1002/1878-0261.13494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023] Open
Abstract
Glioblastoma, the most malignant brain tumor in adults, exhibits characteristic patterns of epigenetic alterations that await elucidation. The DNA methylome of glioblastoma revealed recurrent epigenetic silencing of HTATIP2, which encodes a negative regulator of importin β-mediated cytoplasmic-nuclear protein translocation. Its deregulation may thus alter the functionality of cancer-relevant nuclear proteins, such as the base excision repair (BER) enzyme N-methylpurine DNA glycosylase (MPG), which has been associated with treatment resistance in GBM. We found that induction of HTATIP2 expression in GBM cells leads to a significant shift of predominantly nuclear to cytoplasmic MPG, whereas depletion of endogenous HTATIP2 results in enhanced nuclear MPG localization. Reduced nuclear MPG localization, prompted by HTATIP2 expression or by depletion of MPG, yielded less phosphorylated-H2AX-positive cells upon treatment with an alkylating agent. This suggested reduced MPG-mediated formation of apurinic/apyrimidinic sites, leaving behind unrepaired DNA lesions, reflecting a reduced capacity of BER in response to the alkylating agent. Epigenetic silencing of HTATIP2 may thus increase nuclear localization of MPG, thereby enhancing the capacity of the glioblastoma cells to repair treatment-related lesions and contributing to treatment resistance.
Collapse
Affiliation(s)
- Thi Tham Nguyen
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Premnath Rajakannu
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Minh Diêu Thanh Pham
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Leo Weman
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Alexander Jucht
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Michelle C. Buri
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Kristof Van Dommelen
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
| | - Monika E. Hegi
- Neuroscience Research Center and Service of NeurosurgeryLausanne University Hospital (CHUV) and University of LausanneEpalingesSwitzerland
- Lundin Family Brain Tumor CenterLausanne University Hospital (CHUV) and University of LausanneSwitzerland
| |
Collapse
|
8
|
Herceg S, Janoštiak R. Diagnostic and Prognostic Profiling of Nucleocytoplasmic Shuttling Genes in Hepatocellular Carcinoma. Folia Biol (Praha) 2023; 69:133-148. [PMID: 38410971 DOI: 10.14712/fb2023069040133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
One of the key features of eukaryotic cells is the separation of nuclear and cytoplasmic compartments by a double-layer nuclear envelope. This separation is crucial for timely regulation of gene expression, mRNA biogenesis, cell cycle, and differentiation. Since transcription takes place in the nucleus and the major part of translation in the cytoplasm, proper distribution of biomolecules between these two compartments is ensured by nucleocytoplasmic shuttling proteins - karyopherins. Karyopherins transport biomolecules through nuclear pores bidirectionally in collaboration with Ran GTPases and utilize GTP as the source of energy. Different karyopherins transport different cargo molecules that play important roles in the regulation of cell physiology. In cancer cells, this nucleocytoplasmic transport is significantly dysregulated to support increased demands for the import of cell cycle-promoting biomolecules and export of cell cycle inhibitors and mRNAs. Here, we analysed genomic, transcriptomic and proteomic data from published datasets to comprehensively profile karyopherin genes in hepatocellular carcinoma. We have found out that expression of multiple karyopherin genes is increased in hepatocellular carcinoma in comparison to the normal liver, with importin subunit α-1, exportin 2, importin subunit β-1 and importin 9 being the most over-expressed. More-over, we have found that increased expression of these genes is associated with higher neoplasm grade as well as significantly worse overall survival of liver cancer patients. Taken together, our bioinformatic data-mining analysis provides a comprehensive geno-mic and transcriptomic landscape of karyopherins in hepatocellular carcinoma and identifies potential members that could be targeted in order to develop new treatment regimens.
Collapse
Affiliation(s)
- Samuel Herceg
- BIOCEV - First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radoslav Janoštiak
- BIOCEV - First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
9
|
Subcellular localization of X-linked inhibitor of apoptosis protein (XIAP) in cancer: does that matter? BBA ADVANCES 2022; 2:100050. [PMID: 37082602 PMCID: PMC10074912 DOI: 10.1016/j.bbadva.2022.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
X-linked inhibitor of apoptosis protein (XIAP) finely tunes the balance between survival and death to control homeostasis. XIAP is found aberrantly expressed in cancer, which has been shown to promote resistance to therapy-induced apoptosis and confer poor outcome. Despite its predominant cytoplasmic localization in human tissues, growing evidence implicates the expression of XIAP in other subcellular compartments in sustaining cancer hallmarks. Herein, we review our current knowledge on the prognostic role of XIAP localization and discuss molecular mechanisms underlying differential biological functions played in each compartment. The comprehension of XIAP subcellular shuttling and functional dynamics might provide the rationale for future anticancer therapeutics.
Collapse
|
10
|
Faecal Proteomics and Functional Analysis of Equine Melanocytic Neoplasm in Grey Horses. Vet Sci 2022; 9:vetsci9020094. [PMID: 35202347 PMCID: PMC8875177 DOI: 10.3390/vetsci9020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Equine melanocytic neoplasm (EMN) is a common disease in older grey horses. The purpose of this study was to examine the potential proteins throughout EMN stages from faecal proteomic outlining using functional analysis. Faecal samples were collected from the rectum of 25 grey horses divided into three groups; normal group without EMN (n = 10), mild EMN (n = 6) and severe EMN (n = 9). Based on the results, 5910 annotated proteins out of 8509 total proteins were assessed from proteomic profiling. We observed differentially expressed proteins (DEPs) between the normal group and the EMN group, and 109 significant proteins were obtained, of which 28 and 81 were involved in metabolic and non-metabolic functions, respectively. We found 10 proteins that play a key role in lipid metabolism, affecting the tumour microenvironment and, consequently, melanoma progression. Interestingly, FOSL1 (FOS like 1, AP-1 transcription factor subunit) was considered as a potential highly expressed protein in a mild EMN group involved in melanocytes cell and related melanoma. Diacylglycerol kinase (DGKB), TGc domain-containing protein (Tgm2), structural maintenance of chromosomes 4 (SMC4) and mastermind-like transcriptional coactivator 2 (MAML2) were related to lipid metabolism, facilitating melanoma development in the severe-EMN group. In conclusion, these potential proteins can be used as candidate biomarkers for the monitoring of early EMN, the development of EMN, further prevention and treatment.
Collapse
|
11
|
Nuclear Transporting Factor 2 as a Novel Biomarker of Head and Neck Squamous Cell Carcinoma and Associated with T/B Cell Receptor Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2885323. [PMID: 35155672 PMCID: PMC8837431 DOI: 10.1155/2022/2885323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022]
Abstract
Objective This study is aimed at exploring the role of nuclear transporting factor 2 (NUTF2) in head and neck squamous cell carcinoma (HNSCC) based on The Cancer Genome Atlas (TCGA) database. Methods We obtained 528 HNSCC patients' clinical data from TCGA and performed expression level analysis of NUTF2. Gene Sets Enrichment Analysis (GSEA) was conducted to identify NUTF2-associated regulatory mechanisms in HNSCC. In addition, several other tools were used to enrich the regulatory network. Results We found that NUTF2 was significantly upregulated (P < 0.001) in HNSCC. We then observed that higher NUTF2 is associated with poorer overall survival and disease-free survival. Further, by using Cox analyses, we determined high NUTF2 as an independent risk factor of predicting poorer overall survival. Tumor immune infiltration analysis revealed a significantly negative correlation between NUTF2 expression and the level of tumor infiltrated CD8+ T cell and B cell, suggesting that NUTF2 may be involved in the immune regulation of HNSCC. Gene sets related to T/B cell receptor signaling pathways were differentially enriched based on the NUTF2 expression phenotype. KEGG pathways were used to show that NUTF2 may affect proliferation, differentiation, and immune response of T/B cell through regulating PI3K/AKT, NFκB, MAPK, and Calcium signaling pathways. Conclusion NUTF2 might be a valuable biomarker for HNSCC and correlated with T/B cell receptor signaling pathway.
Collapse
|
12
|
Salvi A, Young AN, Huntsman AC, Pergande MR, Korkmaz MA, Rathnayake RA, Mize BK, Kinghorn AD, Zhang X, Ratia K, Schirle M, Thomas JR, Brittain SM, Shelton C, Aldrich LN, Cologna SM, Fuchs JR, Burdette JE. PHY34 inhibits autophagy through V-ATPase V0A2 subunit inhibition and CAS/CSE1L nuclear cargo trafficking in high grade serous ovarian cancer. Cell Death Dis 2022; 13:45. [PMID: 35013112 PMCID: PMC8748433 DOI: 10.1038/s41419-021-04495-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022]
Abstract
PHY34 is a synthetic small molecule, inspired by a compound naturally occurring in tropical plants of the Phyllanthus genus. PHY34 was developed to have potent in vitro and in vivo anticancer activity against high grade serous ovarian cancer (HGSOC) cells. Mechanistically, PHY34 induced apoptosis in ovarian cancer cells by late-stage autophagy inhibition. Furthermore, PHY34 significantly reduced tumor burden in a xenograft model of ovarian cancer. In order to identify its molecular target/s, we undertook an unbiased approach utilizing mass spectrometry-based chemoproteomics. Protein targets from the nucleocytoplasmic transport pathway were identified from the pulldown assay with the cellular apoptosis susceptibility (CAS) protein, also known as CSE1L, representing a likely candidate protein. A tumor microarray confirmed data from mRNA expression data in public databases that CAS expression was elevated in HGSOC and correlated with worse clinical outcomes. Overexpression of CAS reduced PHY34 induced apoptosis in ovarian cancer cells based on PARP cleavage and Annexin V staining. Compounds with a diphyllin structure similar to PHY34 have been shown to inhibit the ATP6V0A2 subunit of V(vacuolar)-ATPase. Therefore, ATP6V0A2 wild-type and ATP6V0A2 V823 mutant cell lines were tested with PHY34, and it was able to induce cell death in the wild-type at 246 pM while the mutant cells were resistant up to 55.46 nM. Overall, our data demonstrate that PHY34 is a promising small molecule for cancer therapy that targets the ATP6V0A2 subunit to induce autophagy inhibition while interacting with CAS and altering nuclear localization of proteins.
Collapse
Affiliation(s)
- Amrita Salvi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Alexandria N Young
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Andrew C Huntsman
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Melissa A Korkmaz
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | - Brittney K Mize
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Kiira Ratia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Markus Schirle
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jason R Thomas
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Scott M Brittain
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Claude Shelton
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Leslie N Aldrich
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
13
|
Pasha T, Zatorska A, Sharipov D, Rogelj B, Hortobágyi T, Hirth F. Karyopherin abnormalities in neurodegenerative proteinopathies. Brain 2021; 144:2915-2932. [PMID: 34019093 PMCID: PMC8194669 DOI: 10.1093/brain/awab201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative proteinopathies are characterized by progressive cell loss that is preceded by the mislocalization and aberrant accumulation of proteins prone to aggregation. Despite their different physiological functions, disease-related proteins like tau, α-synuclein, TAR DNA binding protein-43, fused in sarcoma and mutant huntingtin, all share low complexity regions that can mediate their liquid-liquid phase transitions. The proteins' phase transitions can range from native monomers to soluble oligomers, liquid droplets and further to irreversible, often-mislocalized aggregates that characterize the stages and severity of neurodegenerative diseases. Recent advances into the underlying pathogenic mechanisms have associated mislocalization and aberrant accumulation of disease-related proteins with defective nucleocytoplasmic transport and its mediators called karyopherins. These studies identify karyopherin abnormalities in amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's disease, and synucleinopathies including Parkinson's disease and dementia with Lewy bodies, that range from altered expression levels to the subcellular mislocalization and aggregation of karyopherin α and β proteins. The reported findings reveal that in addition to their classical function in nuclear import and export, karyopherins can also act as chaperones by shielding aggregation-prone proteins against misfolding, accumulation and irreversible phase-transition into insoluble aggregates. Karyopherin abnormalities can, therefore, be both the cause and consequence of protein mislocalization and aggregate formation in degenerative proteinopathies. The resulting vicious feedback cycle of karyopherin pathology and proteinopathy identifies karyopherin abnormalities as a common denominator of onset and progression of neurodegenerative disease. Pharmacological targeting of karyopherins, already in clinical trials as therapeutic intervention targeting cancers such as glioblastoma and viral infections like COVID-19, may therefore represent a promising new avenue for disease-modifying treatments in neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Terouz Pasha
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Anna Zatorska
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Daulet Sharipov
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Boris Rogelj
- Jozef Stefan Institute, Department of Biotechnology, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia
| | - Tibor Hortobágyi
- ELKH-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
- King's College London, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Frank Hirth
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| |
Collapse
|
14
|
Zhang J, Zhang X, Wang L, Kang C, Li N, Xiao Z, Dai L. Multiomics-based analyses of KPNA2 highlight its multiple potentials in hepatocellular carcinoma. PeerJ 2021; 9:e12197. [PMID: 34616632 PMCID: PMC8462373 DOI: 10.7717/peerj.12197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022] Open
Abstract
Dysregulation and prognostic roles of Karyopherin α2 (KPNA2) were reported in many malignancies including hepatocellular carcinoma (HCC). A multi-omics analysis of KPNA2 is needed to gain a deeper understanding of its multilevel molecular characteristics and provide novel clues for HCC diagnosis, prognosis, and target therapy. Herein multi-omic alterations of KPNA2 were analyzed at genetic, epigenetic, transcript, and protein levels with evaluation of their relevance with clinicopathological features of HCC by integrative analyses. The significant correlations of KPNA2 expression with its gene copy number variation (CNV) and methylation status were shown through Spearman correlation analyses. With Cox regression, Kaplan-Meier survival, and receiver operating characteristic (ROC) analyses, based on the factors of KPNA2 CNV, methylation, expression, and tumor stage, risk models for HCC overall survival (OS) and disease-free survival (DFS) were constructed which could discriminate the 1-year, 3-year, and 5-year OS/DFS status effectively. With Microenvironment Cell Populations-counter (MCP-counter), the immune infiltrations of HCC samples were evaluated and their associations with KPNA2 were shown. KPNA2 expression in liver was found to be influenced by low fat diet and presented significant correlations with fatty acid metabolism and fatty acid synthase activity in HCC. KPNA2 was detected lowered in HCC patient's plasma by enzyme linked immunosorbent assay (ELISA), consistent with its translocation to nuclei of HCC cells. In conclusion, KPNA2 multilevel dysregulation in HCC and its correlations with immune infiltration and the fatty acid metabolism pathway indicated its multiple roles in HCC. The clinicopathological significance of KPNA2 was highlighted through the in-depth analyses at multilevels.
Collapse
Affiliation(s)
- Jinzhong Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, Henan Province, China
| | - Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, Henan Province, China.,NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lingxiao Wang
- Department of Pathology, Henan Medical College, Zhengzhou, Henan Province, China
| | - Chunyan Kang
- Department of Pathology, Henan Medical College, Zhengzhou, Henan Province, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan Province, China
| | - Zhefeng Xiao
- NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
15
|
van der Watt PJ, Okpara MO, Wishart A, Parker MI, Soares NC, Blackburn JM, Leaner VD. Nuclear transport proteins are secreted by cancer cells and identified as potential novel cancer biomarkers. Int J Cancer 2021; 150:347-361. [PMID: 34591985 DOI: 10.1002/ijc.33832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022]
Abstract
Previous studies have identified increased expression of members of the nuclear transport protein family in cancer cells. Recently, certain nuclear transport proteins have been reported to be secreted by cells and found in the serum. The aims of our study were to investigate the levels of multiple nuclear transport proteins secreted from cancer cells, and to determine their potential as diagnostic markers for cervical and oesophageal cancer. Mass spectrometry identified 10 nuclear transport proteins in the secretome and exosomes of cultured cancer cells, and Western blot analysis confirmed increased secreted levels in cancer cells compared to normal. To investigate their presence in patient serum, enzyme-linked immunosorbent assays were performed and revealed significantly increased levels of KPNβ1, CRM1, CAS, IPO5 and TNPO1 in cervical and oesophageal cancer patient serum compared to non-cancer controls. Significantly elevated KPNα2 and RAN levels were also identified in oesophageal cancer serum samples. Logistics regression analyses revealed IPO5 and TNPO1 to be the best performing individual candidate biomarkers in discriminating between cancer cases and controls. The combination of KPNβ1, CRM1, KPNα2, CAS, RAN, IPO5 and TNPO1 as a panel of biomarkers had the highest diagnostic capacity with an area under the curve of 0.944 and 0.963, for cervical cancer and oesophageal cancer, and sensitivity of 92.5% at 86.8% specificity and 95.3% sensitivity at 87.5% specificity, respectively. These results suggest that nuclear transport proteins have potential as diagnostic biomarkers for cervical and oesophageal cancers, with a combination of protein family members being the best predictor.
Collapse
Affiliation(s)
- Pauline J van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michael O Okpara
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andrew Wishart
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - M Iqbal Parker
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nelson C Soares
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jonathan M Blackburn
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Virna D Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,SAMRC Gynaecology Cancer Research Centre, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
von Fallois M, Kosyna FK, Mandl M, Landesman Y, Dunst J, Depping R. Selinexor decreases HIF-1α via inhibition of CRM1 in human osteosarcoma and hepatoma cells associated with an increased radiosensitivity. J Cancer Res Clin Oncol 2021; 147:2025-2033. [PMID: 33856525 PMCID: PMC8164574 DOI: 10.1007/s00432-021-03626-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/30/2021] [Indexed: 10/29/2022]
Abstract
BACKGROUND The nuclear pore complexes (NPCs) are built of about 30 different nucleoporins and act as key regulators of molecular traffic between the cytoplasm and the nucleus for sizeable proteins (> 40 kDa) which must enter the nucleus. Various nuclear transport receptors are involved in import and export processes of proteins through the nuclear pores. The most prominent nuclear export receptor is chromosome region maintenance 1 (CRM1), also known as exportin 1 (XPO1). One of its cargo proteins is the prolyl hydroxylase 2 (PHD2) which is involved in the initiation of the degradation of hypoxia-inducible factors (HIFs) under normoxia. HIFs are proteins that regulate the cellular adaptation under hypoxic conditions. They are involved in many aspects of cell viability and play an important role in the hypoxic microenvironment of cancer. In cancer, CRM1 is often overexpressed thus being a putative target for the development of new cancer therapies. The newly FDA-approved pharmaceutical Selinexor (KPT-330) selectively inhibits nuclear export via CRM1 and is currently tested in additional Phase-III clinical trials. In this study, we investigated the effect of CRM1 inhibition on the subcellular localization of HIF-1α and radiosensitivity. METHODS Human hepatoma cells Hep3B and human osteosarcoma cells U2OS were treated with Selinexor. Intranuclear concentration of HIF-1α protein was measured using immunoblot analysis. Furthermore, cells were irradiated with 2-8 Gy after treatment with Selinexor compared to untreated controls. RESULTS Selinexor significantly reduced the intranuclear level of HIF-1α protein in human hepatoma cells Hep3B and human osteosarcoma cells U2OS. Moreover, we demonstrated by clonogenic survival assays that Selinexor leads to dose-dependent radiosensitization in Hep3B-hepatoma and U2OS-osteosarcoma cells. CONCLUSION Targeting the HIF pathway by Selinexor might be an attractive tool to overcome hypoxia-induced radioresistance.
Collapse
MESH Headings
- Apoptosis
- Bone Neoplasms/drug therapy
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Bone Neoplasms/radiotherapy
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/radiotherapy
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Hydrazines/pharmacology
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Karyopherins/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/radiotherapy
- Osteosarcoma/drug therapy
- Osteosarcoma/metabolism
- Osteosarcoma/pathology
- Osteosarcoma/radiotherapy
- Radiation Tolerance/drug effects
- Radiation-Sensitizing Agents/pharmacology
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Triazoles/pharmacology
- Tumor Cells, Cultured
- Exportin 1 Protein
Collapse
Affiliation(s)
- Moritz von Fallois
- Universität Zu Lübeck, Institut Für Physiologie, Working Group Hypoxia, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Friederike Katharina Kosyna
- Universität Zu Lübeck, Institut Für Physiologie, Working Group Hypoxia, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Markus Mandl
- Universität Zu Lübeck, Institut Für Physiologie, Working Group Hypoxia, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Yosef Landesman
- Karyopharm Therapeutics, 85 Wells Ave, Newton, MA, 02459, USA
| | - Jürgen Dunst
- Universitätsklinikum Schleswig-Holstein, Campus Kiel-Klinik für Strahlentherapie, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Reinhard Depping
- Universität Zu Lübeck, Institut Für Physiologie, Working Group Hypoxia, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
17
|
KPNB1 Inhibitor Importazole Reduces Ionizing Radiation-Increased Cell Surface PD-L1 Expression by Modulating Expression and Nuclear Import of IRF1. Curr Issues Mol Biol 2021; 43:153-162. [PMID: 34069326 PMCID: PMC8929148 DOI: 10.3390/cimb43010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is an immune checkpoint molecule that negatively regulates anti-tumor immunity. Recent reports indicate that anti-cancer treatments, such as radiation therapy, increase PD-L1 expression on the surface of tumor cells. We previously reported that the nuclear transport receptor karyopherin-β1 (KPNB1) is involved in radiation-increased PD-L1 expression on head-and-neck squamous cell carcinoma cells. However, the mechanisms underlying KPNB1-mediated, radiation-increased PD-L1 expression remain unknown. Thus, the mechanisms of radiation-increased, KPNB1-mediated PD-L1 expression were investigated by focusing on the transcription factor interferon regulatory factor 1 (IRF1), which is reported to regulate PD-L1 expression. Western blot analysis showed that radiation increased IRF1 expression. In addition, flow cytometry showed that IRF1 knockdown decreased cell surface PD-L1 expression of irradiated cells but had a limited effect on non-irradiated cells. These findings suggest that the upregulation of IRF1 after irradiation is required for radiation-increased PD-L1 expression. Notably, immunofluorescence and western blot analyses revealed that KPNB1 inhibitor importazole not only diffused nuclear localization of IRF1 but also decreased IRF1 upregulation by irradiation, which attenuated radiation-increased PD-L1 expression. Taken together, these findings suggest that KPNB1 mediates radiation-increased cell surface PD-L1 expression through both upregulation and nuclear import of IRF1.
Collapse
|
18
|
Sui M, Xiong M, Li Y, Zhou Q, Shen X, Jia D, Gou M, Sun Q. Cancer Therapy with Nanoparticle-Medicated Intracellular Expression of Peptide CRM1-Inhibitor. Int J Nanomedicine 2021; 16:2833-2847. [PMID: 33883894 PMCID: PMC8054660 DOI: 10.2147/ijn.s266398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Peptides can be rationally designed as non-covalent inhibitors for molecularly targeted therapy. However, it remains challenging to efficiently deliver the peptides into the targeted cells, which often severely affects their therapeutic efficiency. METHODS Herein, we created a novel non-covalent peptide inhibitor against nuclear export factor CRM1 by a structure-guided drug design method and targetedly delivered the peptide into cancer cells by a nanoparticle-mediated gene expression system for use as a cancer therapy. RESULTS The nuclear export signal (NES)-optimized CRM1 peptide inhibitor colocalized with CRM1 to the nuclear envelope and inhibited nuclear export in cancer cell lines in vitro. The crystal structures of the inhibitors complexed with CRM1 were solved. In contrast to the covalent inhibitors, the peptides were similarly effective against cells harboring the CRM1 C528S mutation. Moreover, a plasmid encoding the peptides was delivered by a iRGD-modified nanoparticle to efficiently target and transfect the cancer cells in vivo after intravenous administration. The peptides could be selectively expressed in the tumor, resulting in the efficient inhibition of subcutaneous melanoma xenografts without obvious systemic toxicity. DISCUSSION This work provides an effective strategy to design peptide-based molecularly targeted therapeutics, which could lead to the development of future targeted therapy.
Collapse
Affiliation(s)
- Min Sui
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, People’s Republic of China
| | - Meimei Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People’s Republic of China
| | - Yuling Li
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, People’s Republic of China
| | - Qiao Zhou
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, People’s Republic of China
| | - Xiaofei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People’s Republic of China
| | - Qingxiang Sun
- Department of Pathology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
19
|
KPNA2 interaction with CBX8 contributes to the development and progression of bladder cancer by mediating the PRDM1/c-FOS pathway. J Transl Med 2021; 19:112. [PMID: 33731128 PMCID: PMC7972191 DOI: 10.1186/s12967-021-02709-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/20/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Bladder cancer (BCa) is a common malignancy characterized by high heterogeneity, yet the current treatment modalities are limited. The aim of the present investigation was to unravel the functional role of Karyopherin alpha 2 (KPNA2), a tumor facilitator identified in multiple malignancies, in the progression of BCa. METHODS BCa tissues and adjacent normal tissues were surgically resected and analyzed from patients with BCa to determine the expression profile of KPNA2 and Chromobox 8 (CBX8) by RT-qPCR, Western blot analysis and immunohistochemistry. The relationship among KPNA2, CBX8 and PR domain zinc finger protein 1 (PRDM1) was explored by co-immunoprecipitation and chromatin-immunoprecipitation. The functions of KPNA2, CBX8 and PRDM1 on BCa cell proliferation, migration and invasion were evaluated. Next, a nude mouse model of BCa was established for validating the roles of KPNA2, CBX8 and PRDM1 in vivo. RESULTS KPNA2 and CBX8 were highly expressed in BCa and are in association with dismal oncologic outcomes of patients with BCa. KPNA2 promoted nuclear import of CBX8. CBX8 downregulated PRDM1 by recruiting BCOR in the promoter region of PRDM1. Overexpression of KPNA2 promoted the malignant behaviors of BCa cells, which was counteracted by silencing of CBX8. Overexpressing PRDM1 attenuated the progression of BCa by inhibiting c-FOS expression. The tumor-promoting effects of KPNA2 via the PRDM1/c-FOS pathway were also validated in vivo. CONCLUSION Collectively, our findings attached great importance to the interplay between KPNA2 and CBX8 in BCa in mediating the development and progression of BCa, thus offering a promising candidate target for better BCa patient management.
Collapse
|
20
|
New Insights into the Link between Melanoma and Thyroid Cancer: Role of Nucleocytoplasmic Trafficking. Cells 2021; 10:cells10020367. [PMID: 33578751 PMCID: PMC7916461 DOI: 10.3390/cells10020367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer remains a major public health concern, mainly because of the incompletely understood dynamics of molecular mechanisms for progression and resistance to treatments. The link between melanoma and thyroid cancer (TC) has been noted in numerous patients. Nucleocytoplasmic transport of oncogenes and tumor suppressor proteins is a common mechanism in melanoma and TC that promotes tumorigenesis and tumor aggressiveness. However, this mechanism remains poorly understood. Papillary TC (PTC) patients have a 1.8-fold higher risk for developing cutaneous malignant melanoma than healthy patients. Our group and others showed that patients with melanoma have a 2.15 to 2.3-fold increased risk of being diagnosed with PTC. The BRAF V600E mutation has been reported as a biological marker for aggressiveness and a potential genetic link between malignant melanoma and TC. The main mechanistic factor in the connection between these two cancer types is the alteration of the RAS-RAF-MEK-ERK signaling pathway activation and translocation. The mechanisms of nucleocytoplasmic trafficking associated with RAS, RAF, and Wnt signaling pathways in melanoma and TC are reviewed. In addition, we discuss the roles of tumor suppressor proteins such as p53, p27, forkhead O transcription factors (FOXO), and NF-KB within the nuclear and cytoplasmic cellular compartments and their association with tumor aggressiveness. A meticulous English-language literature analysis was performed using the PubMed Central database. Search parameters included articles published up to 2021 with keyword search terms melanoma and thyroid cancer, BRAF mutation, and nucleocytoplasmic transport in cancer.
Collapse
|
21
|
Meier T, Timm M, Montani M, Wilkens L. Gene networks and transcriptional regulators associated with liver cancer development and progression. BMC Med Genomics 2021; 14:41. [PMID: 33541355 PMCID: PMC7863452 DOI: 10.1186/s12920-021-00883-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Treatment options for hepatocellular carcinoma (HCC) are limited, and overall survival is poor. Despite the high frequency of this malignoma, its basic disease mechanisms are poorly understood. Therefore, the aim of this study was to use different methodological approaches and combine the results to improve our knowledge on the development and progression of HCC. METHODS Twenty-three HCC samples were characterized by histological, morphometric and cytogenetic analyses, as well as comparative genomic hybridization (aCGH) and genome-wide gene expression followed by a bioinformatic search for potential transcriptional regulators and master regulatory molecules of gene networks. RESULTS Histological evaluation revealed low, intermediate and high-grade HCCs, and gene expression analysis split them into two main sets: GE1-HCC and GE2-HCC, with a low and high proliferation gene expression signature, respectively. Array-based comparative genomic hybridization demonstrated a high level of chromosomal instability, with recurrent chromosomal gains of 1q, 6p, 7q, 8q, 11q, 17q, 19p/q and 20q in both HCC groups and losses of 1p, 4q, 6q, 13q and 18q characteristic for GE2-HCC. Gene expression and bioinformatics analyses revealed that different genes and gene regulatory networks underlie the distinct biological features observed in GE1-HCC and GE2-HCC. Besides previously reported dysregulated genes, the current study identified new candidate genes with a putative role in liver cancer, e.g. C1orf35, PAFAH1B3, ZNF219 and others. CONCLUSION Analysis of our findings, in accordance with the available published data, argues in favour of the notion that the activated E2F1 signalling pathway, which can be responsible for both inappropriate cell proliferation and initial chromosomal instability, plays a pivotal role in HCC development and progression. A dedifferentiation switch that manifests in exaggerated gene expression changes might be due to turning on transcriptional co-regulators with broad impact on gene expression, e.g. POU2F1 (OCT1) and NFY, as a response to accumulating cell stress during malignant development. Our findings point towards the necessity of different approaches for the treatment of HCC forms with low and high proliferation signatures and provide new candidates for developing appropriate HCC therapies.
Collapse
Affiliation(s)
- Tatiana Meier
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany.
| | - Max Timm
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany
- Clinic for Laryngology, Rhinology and Otology, Medical School Hanover, Hanover, Germany
| | - Matteo Montani
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ludwig Wilkens
- Institute of Pathology, Nordstadtkrankenhaus, Hanover, Germany
- Institute of Human Genetics, Medical School Hanover, Hanover, Germany
| |
Collapse
|
22
|
Chi RPA, van der Watt P, Wei W, Birrer MJ, Leaner VD. Inhibition of Kpnβ1 mediated nuclear import enhances cisplatin chemosensitivity in cervical cancer. BMC Cancer 2021; 21:106. [PMID: 33530952 PMCID: PMC7852134 DOI: 10.1186/s12885-021-07819-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Background Inhibition of nuclear import via Karyopherin beta 1 (Kpnβ1) shows potential as an anti-cancer approach. This study investigated the use of nuclear import inhibitor, INI-43, in combination with cisplatin. Methods Cervical cancer cells were pre-treated with INI-43 before treatment with cisplatin, and MTT cell viability and apoptosis assays performed. Activity and localisation of p53 and NFκB was determined after co-treatment of cells. Results Pre-treatment of cervical cancer cells with INI-43 at sublethal concentrations enhanced cisplatin sensitivity, evident through decreased cell viability and enhanced apoptosis. Kpnβ1 knock-down cells similarly displayed increased sensitivity to cisplatin. Combination index determination using the Chou-Talalay method revealed that INI-43 and cisplatin engaged in synergistic interactions. p53 was found to be involved in the cell death response to combination treatment as its inhibition abolished the enhanced cell death observed. INI-43 pre-treatment resulted in moderately stabilized p53 and induced p53 reporter activity, which translated to increased p21 and decreased Mcl-1 upon cisplatin combination treatment. Furthermore, cisplatin treatment led to nuclear import of NFκB, which was diminished upon pre-treatment with INI-43. NFκB reporter activity and expression of NFκB transcriptional targets, cyclin D1, c-Myc and XIAP, showed decreased levels after combination treatment compared to single cisplatin treatment and this associated with enhanced DNA damage. Conclusions Taken together, this study shows that INI-43 pre-treatment significantly enhances cisplatin sensitivity in cervical cancer cells, mediated through stabilization of p53 and decreased nuclear import of NFκB. Hence this study suggests the possible synergistic use of nuclear import inhibition and cisplatin to treat cervical cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07819-3.
Collapse
Affiliation(s)
- Ru-Pin Alicia Chi
- Division of Medical Biochemistry & Structural Biology, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Pauline van der Watt
- Division of Medical Biochemistry & Structural Biology, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Wei Wei
- Pfizer, Andover, MA, 01810, USA
| | - Michael J Birrer
- University of Arkansas Medical Sciences, D Winthrop P. Rockefeller Cancer Institute, Little Rock, AR, USA
| | - Virna D Leaner
- Division of Medical Biochemistry & Structural Biology, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
23
|
Ishikawa C, Senba M, Mori N. Importin β1 regulates cell growth and survival during adult T cell leukemia/lymphoma therapy. Invest New Drugs 2020; 39:317-329. [PMID: 32959166 DOI: 10.1007/s10637-020-01007-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
There is no cure for adult T cell leukemia/lymphoma (ATLL) associated with human T cell leukemia virus type 1 (HTLV-1), and novel targeted strategies are needed. NF-κB and AP-1 are crucial for ATLL, and both are transported to the nucleus by an importin (IPO)α/β heterodimeric complex to activate target genes. In this study, we aimed to elucidate the function of IPOβ1 in ATLL. The expression of IPOβ1 was analyzed by western blotting and RT-PCR. Cell growth, viability, cell cycle, apoptosis and intracellular signaling cascades were examined by the water-soluble tetrazolium-8 assay, flow cytometry and western blotting. Xenograft tumors in severe combined immune deficient mice were used to evaluate the growth of ATLL cells in vivo. IPOβ1 was upregulated in HTLV-1-infected T cell lines. Further, IPOβ1 knockdown or the IPOβ1 inhibitor importazole and the IPOα/β1 inhibitor ivermectin reduced HTLV-1-infected T cell proliferation. However, the effect of inhibitors on uninfected T cells was less pronounced. Further, in HTLV-1-infected T cell lines, inhibitors suppressed NF-κB and AP-1 nuclear transport and DNA binding, induced apoptosis and poly (ADP-ribose) polymerase cleavage, and activated caspase-3, caspase-8 and caspase-9. Inhibitors also mediated G1 cell cycle arrest. Moreover, the expression of NF-κB- and AP-1-target proteins involved in cell cycle and apoptosis was reduced. In vivo, the IPOα/β1 inhibitor ivermectin decreased ATLL tumor burden without side effects. IPOβ1 mediated NF-κB and AP-1 translocation into ATLL cell nuclei, thereby regulating cell growth and survival, which provides new insights for targeted ATLL therapies. Thus, ivermectin, an anti-strongyloidiasis medication, could be a potent anti-ATLL agent.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan.,Division of Health Sciences, Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Masachika Senba
- Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan.
| |
Collapse
|
24
|
Lei Y, An Q, Zhang Y, Luo P, Luo Y, Shen X, Jia D, Sun Q. Engineering chromosome region maintenance 1 fragments that bind to nuclear export signals. Protein Sci 2020; 29:1366-1372. [PMID: 31495993 PMCID: PMC7255508 DOI: 10.1002/pro.3724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 02/05/2023]
Abstract
Chromosome region maintenance 1 (CRM1) exports nuclear export signal (NES) containing cargos from nucleus to cytoplasm and plays critical roles in cancer and viral infections. Biochemical and biophysical studies on this protein were often obstructed by its low purification yield and stability. With the help of PROSS server and NES protection strategy, we successfully designed three small fragments of CRM1, each made of four HEAT repeats and capable of binding to NESs in the absence of RanGTP. One of the fragments, C7, showed dramatically improved purification yield, thermostability, mechanostability, and resistance to protease digestion. We showed by isothermal titration that the protein kinase inhibitor NES binds to C7 at 1.18 μM affinity. Direct binding to C7 by several reported CRM1 inhibitors derived from plants were verified using pull-down assays. These fragments might be useful for the development of CRM1 inhibitors towards treatment of related diseases. The strategy applied here might help to tackle similar problems encountered in different fields.
Collapse
Affiliation(s)
- Yuqin Lei
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University, and Collaborative Innovation Centre of BiotherapyChengduChina
| | - Qi An
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University, and Collaborative Innovation Centre of BiotherapyChengduChina
| | - Yuqing Zhang
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University, and Collaborative Innovation Centre of BiotherapyChengduChina
| | - Ping Luo
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University, and Collaborative Innovation Centre of BiotherapyChengduChina
| | - Youfu Luo
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University, and Collaborative Innovation Centre of BiotherapyChengduChina
| | - Xiaofei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of NeurologyWest China Second University Hospital, Sichuan UniversityChengduChina
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of NeurologyWest China Second University Hospital, Sichuan UniversityChengduChina
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University, and Collaborative Innovation Centre of BiotherapyChengduChina
| |
Collapse
|
25
|
Karyopherin-β1 Regulates Radioresistance and Radiation-Increased Programmed Death-Ligand 1 Expression in Human Head and Neck Squamous Cell Carcinoma Cell Lines. Cancers (Basel) 2020; 12:cancers12040908. [PMID: 32276424 PMCID: PMC7226044 DOI: 10.3390/cancers12040908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Nuclear transport receptors, such as karyopherin-β1 (KPNB1), play important roles in the nuclear-cytoplasmic transport of macromolecules. Recent evidence indicates the involvement of nuclear transport receptors in the progression of cancer, making these receptors promising targets for the treatment of cancer. Here, we investigated the anticancer effects of KPNB1 blockage or in combination with ionizing radiation on human head and neck squamous cell carcinoma (HNSCC). HNSCC cell line SAS and Ca9-22 cells were used in this study. Importazole, an inhibitor of KPNB1, or knockdown of KPNB1 by siRNA transfection were applied for the blockage of KPNB1 functions. The roles of KPNB1 on apoptosis induction and cell surface expression levels of programmed death-ligand 1 (PD-L1) in irradiated HNSCC cells were investigated. The major findings of this study are that (i) blockage of KPNB1 specifically enhanced the radiation-induced apoptosis and radiosensitivity of HNSCC cells; (ii) importazole elevated p53-upregulated modulator of apoptosis (PUMA) expression via blocking the nuclear import of SCC-specific oncogene ΔNp63 in HNSCC cells; and (iii) blockage of KPNB1 attenuated the upregulation of cell surface PD-L1 expression on irradiated HNSCC cells. Taken together, these results suggest that co-treatment with KPNB1 blockage and ionizing radiation is a promising strategy for the treatment of HNSCC.
Collapse
|
26
|
Frączyk T, Bonna A, Stefaniak E, Wezynfeld NE, Bal W. Peptide Bond Cleavage by Ni(II) Ions within the Nuclear Localization Signal Sequence. Chem Biodivers 2019; 17:e1900652. [PMID: 31869504 DOI: 10.1002/cbdv.201900652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022]
Abstract
Nickel is harmful to humans, being both carcinogenic and allergenic. However, the mechanisms of this toxicity are still unresolved. We propose that Ni(II) ions disintegrate proteins by hydrolysis of peptide bonds preceding the Ser/Thr-Xaa-His sequences. Such sequences occur in nuclear localization signals (NLSs) of human phospholipid scramblase 1, Sam68-like mammalian protein 2, and CLK3 kinase. We performed spectroscopic experiments showing that model nonapeptides derived from these NLSs bind Ni(II) at physiological pH. We also proved that these sequences are prone to Ni(II) hydrolysis. Thus, the aforementioned NLSs may be targets for nickel toxicity. This implies that Ni(II) ions disrupt the transport of some proteins from cytoplasm to cell nucleus.
Collapse
Affiliation(s)
- Tomasz Frączyk
- Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Nowogrodzka 59, 02-006, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Arkadiusz Bonna
- Department of Biochemistry, University of Cambridge, Tennis Court Road, CB2 1QW, Cambridge, United Kingdom
| | - Ewelina Stefaniak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Nina E Wezynfeld
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.,Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| |
Collapse
|
27
|
Ernst S, Müller-Newen G. Nucleocytoplasmic Shuttling of STATs. A Target for Intervention? Cancers (Basel) 2019; 11:cancers11111815. [PMID: 31752278 PMCID: PMC6895884 DOI: 10.3390/cancers11111815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins are transcription factors that in the latent state are located predominantly in the cytoplasm. Activation of STATs through phosphorylation of a single tyrosine residue results in nuclear translocation. The requirement of tyrosine phosphorylation for nuclear accumulation is shared by all STAT family members but mechanisms of nuclear translocation vary between different STATs. These differences offer opportunities for specific intervention. To achieve this, the molecular mechanisms of nucleocytoplasmic shuttling of STATs need to be understood in more detail. In this review we will give an overview on the various aspects of nucleocytoplasmic shuttling of latent and activated STATs with a special focus on STAT3 and STAT5. Potential targets for cancer treatment will be identified and discussed.
Collapse
Affiliation(s)
- Sabrina Ernst
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52074 Aachen, Germany;
- Confocal Microscopy Facility, Interdisciplinary Center for Clinical Research IZKF, RWTH Aachen University, 52074 Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, 52074 Aachen, Germany;
- Correspondence:
| |
Collapse
|
28
|
Mistriotis P, Wisniewski EO, Bera K, Keys J, Li Y, Tuntithavornwat S, Law RA, Perez-Gonzalez NA, Erdogmus E, Zhang Y, Zhao R, Sun SX, Kalab P, Lammerding J, Konstantopoulos K. Confinement hinders motility by inducing RhoA-mediated nuclear influx, volume expansion, and blebbing. J Cell Biol 2019; 218:4093-4111. [PMID: 31690619 PMCID: PMC6891075 DOI: 10.1083/jcb.201902057] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/28/2019] [Accepted: 09/18/2019] [Indexed: 11/22/2022] Open
Abstract
Cells migrate in vivo through complex confining microenvironments, which induce significant nuclear deformation that may lead to nuclear blebbing and nuclear envelope rupture. While actomyosin contractility has been implicated in regulating nuclear envelope integrity, the exact mechanism remains unknown. Here, we argue that confinement-induced activation of RhoA/myosin-II contractility, coupled with LINC complex-dependent nuclear anchoring at the cell posterior, locally increases cytoplasmic pressure and promotes passive influx of cytoplasmic constituents into the nucleus without altering nuclear efflux. Elevated nuclear influx is accompanied by nuclear volume expansion, blebbing, and rupture, ultimately resulting in reduced cell motility. Moreover, inhibition of nuclear efflux is sufficient to increase nuclear volume and blebbing on two-dimensional surfaces, and acts synergistically with RhoA/myosin-II contractility to further augment blebbing in confinement. Cumulatively, confinement regulates nuclear size, nuclear integrity, and cell motility by perturbing nuclear flux homeostasis via a RhoA-dependent pathway.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Emily O Wisniewski
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Kaustav Bera
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Jeremy Keys
- Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Yizeng Li
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD.,Department of Mechanical Engineering, Kennesaw State University, Marietta, GA
| | - Soontorn Tuntithavornwat
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Robert A Law
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Nicolas A Perez-Gonzalez
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Eda Erdogmus
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Runchen Zhao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Sean X Sun
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD
| | - Jan Lammerding
- Meinig School of Biomedical Engineering and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD .,Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD.,Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD.,Department of Oncology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
29
|
Verrico A, Rovella P, Di Francesco L, Damizia M, Staid DS, Le Pera L, Schininà ME, Lavia P. Importin-β/karyopherin-β1 modulates mitotic microtubule function and taxane sensitivity in cancer cells via its nucleoporin-binding region. Oncogene 2019; 39:454-468. [PMID: 31492900 DOI: 10.1038/s41388-019-0989-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/27/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022]
Abstract
The nuclear transport receptor importin-β/karyopherin-β1 is overexpressed in cancers that display genomic instability. It is regarded as a promising cancer target and inhibitors are being developed. In addition to its role in nucleo-cytoplasmic transport, importin-β regulates mitosis, but the programmes and pathways in which it operates are defined only in part. To unravel importin-β's mitotic functions we have developed cell lines expressing either wild-type or a mutant importin-β form in characterised residues required for nucleoporin binding. Both forms similarly disrupted spindle pole organisation, while only wild-type importin-β affected microtubule plus-end function and microtubule stability. A proteome-wide search for differential interactors identified a set of spindle regulators sensitive to mutations in the nucleoporin-binding region. Among those, HURP (hepatoma up-regulated protein) is an importin-β interactor and a microtubule-stabilising factor. We found that induction of wild type, but not mutant importin-β, under the same conditions that destabilise mitotic microtubules, delocalised HURP, indicating that the spatial distribution of HURP along the spindle requires importin-β's nucleoporin-binding residues. Concomitantly, importin-β overexpression sensitises cells to taxanes and synergistically increases mitotic cell death. Thus, the nucleoporin-binding domain is dispensable for importin-β function in spindle pole organisation, but regulates microtubule stability, at least in part via HURP, and renders cells vulnerable to certain microtubule-targeting drugs.
Collapse
Affiliation(s)
- Annalisa Verrico
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy.,Institut Jacques Monod, UMR7592 CNRS-Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Paola Rovella
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy
| | - Laura Di Francesco
- Department of Biochemical Sciences "Alessandro Rossi-Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Michela Damizia
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy.,Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - David Sasah Staid
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy.,Department of Biochemical Sciences "Alessandro Rossi-Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Loredana Le Pera
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR Consiglio Nazionale delle Ricerche, 70126, Bari, Italy
| | - M Eugenia Schininà
- Department of Biochemical Sciences "Alessandro Rossi-Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy. .,Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy.
| |
Collapse
|
30
|
Soond SM, Kozhevnikova MV, Frolova AS, Savvateeva LV, Plotnikov EY, Townsend PA, Han YP, Zamyatnin AA. Lost or Forgotten: The nuclear cathepsin protein isoforms in cancer. Cancer Lett 2019; 462:43-50. [PMID: 31381961 DOI: 10.1016/j.canlet.2019.07.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
While research into the role of cathepsins has been progressing at an exponential pace over the years, research into their respective isoform proteins has been less frenetic. In view of the functional and biological potential of such protein isoforms in model systems for cancer during their initial discovery, much later they have offered a new direction in the field of cathepsin basic and applied research. Consequently, the analysis of such isoforms has laid strong foundations in revealing other important regulatory aspects of the cathepsin proteins in general. In this review article, we address these key aspects of cathepsin isoform proteins, with particular emphasis on how they have shaped what is now known in the context of nuclear cathepsin localization and what potential these hold as nuclear-based therapeutic targets in cancer.
Collapse
Affiliation(s)
- Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation.
| | - Maria V Kozhevnikova
- Hospital Therapy Department № 1, Sechenov First Moscow State Medical University , 6-1 Bolshaya Pirogovskaya str, Moscow, 119991, Russian Federation.
| | - Anastasia S Frolova
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russian Federation.
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation.
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russian Federation.
| | - Paul A Townsend
- Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre; and the NIHR Manchester Biomedical Research Centre, Manchester, UK.
| | - Yuan-Ping Han
- College of Life Sciences Sichuan University, Chengdu, Sichuan, PO 6100064, People's Republic of China.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, Moscow, 119991, Russian Federation; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russian Federation.
| |
Collapse
|
31
|
Jans DA, Martin AJ, Wagstaff KM. Inhibitors of nuclear transport. Curr Opin Cell Biol 2019; 58:50-60. [PMID: 30826604 DOI: 10.1016/j.ceb.2019.01.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/11/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
Central to eukaryotic cell function, transport into and out of the nucleus is largely mediated by members of the Importin (IMP) superfamily of transporters of α- and β-types. The first inhibitor of nuclear transport, leptomycin B (LMB), was shown to be a specific inhibitor of the IMPβ homologue Exportin 1 (EXP1) almost 20 years ago, but it has only been in the last five or so years that new inhibitors of nuclear export as well as import have been identified and characterised. Of utility in biological research, these inhibitors include those that target-specific EXPs/IMPs, with accompanying toxicity profiles, as well as agents that specifically target particular nuclear import cargoes. Both types of inhibitors have begun to be tested in preclinical/clinical studies, with particular focus on limiting various types of cancer or treating viral infection, and the most advanced agent targeting EXP1 (Selinexor) has progressed successfully through >40 clinical trials for a range of high-grade cancers and is approaching FDA approval for a number of indications. Selectively inhibiting the nucleocytoplasmic trafficking of specific proteins of interest remains a challenge, but progress in the area of the host-pathogen interface holds promise for the future.
Collapse
Affiliation(s)
- David A Jans
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| | - Alexander J Martin
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Kylie M Wagstaff
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| |
Collapse
|
32
|
Oh JH, Lee JY, Yu S, Cho Y, Hur S, Nam KT, Kim MH. RAE1 mediated ZEB1 expression promotes epithelial-mesenchymal transition in breast cancer. Sci Rep 2019; 9:2977. [PMID: 30814639 PMCID: PMC6393568 DOI: 10.1038/s41598-019-39574-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Breast cancer metastasis accounts for most of the deaths from breast cancer. Since epithelial-mesenchymal transition (EMT) plays an important role in promoting metastasis of cancer, many mechanisms regarding EMT have been studied. We previously showed that Ribonucleic acid export 1 (RAE1) is dysregulated in breast cancer and its overexpression leads to aggressive breast cancer phenotypes by inducing EMT. Here, we evaluated the functional capacity of RAE1 in breast cancer metastasis by using a three-dimensional (3D) culture system and xenograft models. Furthermore, to investigate the mechanisms of RAE1-driven EMT, in vitro studies were carried out. The induction of EMT with RAE1-overexpression was confirmed under the 3D culture system and in vivo system. Importantly, RAE1 mediates upregulation of an EMT marker ZEB1, by binding to the promoter region of ZEB1. Knockdown of ZEB1 in RAE1-overexpressing cells suppressed invasive and migratory behaviors, accompanied by an increase in epithelial and a decrease in mesenchymal markers. Taken together, these data demonstrate that RAE1 contributes to breast cancer metastasis by regulating a key EMT-inducing factor ZEB1 expression, suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Ji Hoon Oh
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, 03722, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ji-Yeon Lee
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Sungsook Yu
- Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Yejin Cho
- Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Sumin Hur
- Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, 03722, Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
33
|
Yang J, Guo Y, Lu C, Zhang R, Wang Y, Luo L, Zhang Y, Chu CH, Wang KJ, Obbad S, Yan W, Li X. Inhibition of Karyopherin beta 1 suppresses prostate cancer growth. Oncogene 2019; 38:4700-4714. [PMID: 30742095 PMCID: PMC6565446 DOI: 10.1038/s41388-019-0745-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/10/2018] [Accepted: 01/26/2019] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) initiation and progression requires activation of numerous oncogenic signaling pathways. Nuclear-cytoplasmic transport of oncogenic factors is mediated by Karyopherin proteins during cell transformation. However, the role of nuclear transporter proteins in PCa progression has not been well defined. Here, we report that the KPNB1, a key member of Karyopherin beta subunits, is highly expressed in advanced prostate cancers. Further study showed that targeting KPNB1 suppressed the proliferation of prostate cancer cells. The knockdown of KPNB1 reduced nuclear translocation of c-Myc, the expression of downstream cell cycle modulators, and phosphorylation of regulator of chromatin condensation 1 (RCC1), a key protein for spindle assembly during mitosis. Meanwhile, CHIP assay demonstrated the binding of c-Myc to KPNB1 promoter region, which indicated a positive feedback regulation of KPNB1 expression mediated by the c-Myc. In addition, NF-κB subunit p50 translocation to nuclei was blocked by KPNB1 inhibition, which led to an increase in apoptosis and a decrease in tumor sphere formation of PCa cells. Furthermore, subcutaneous xenograft tumor models with a stable knockdown of KPNB1 in C42B PCa cells validated that the inhibition of KPNB1 could suppress the growth of prostate tumor in vivo. Moreover, the intravenously administration of importazole, a specific inhibitor for KPNB1, effectively reduced PCa tumor size and weight in mice inoculated with PC3 PCa cells. In summary, our data established the functional link between KPNB1 and PCa prone c-Myc, NF-kB, and cell cycle modulators. More importantly, inhibition of KPNB1 could be a new therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Jian Yang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yuqi Guo
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Cuijie Lu
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Ruohan Zhang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yaoyu Wang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Liang Luo
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yanli Zhang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Catherine H Chu
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Katherine J Wang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Sabrine Obbad
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Wenbo Yan
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Xin Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA. .,Department of Urology, New York University Langone Medical Center, New York, NY, 10016, USA. .,Perlmutter Cancer Institute, New York University Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
34
|
Jans DA, Sobolev AS. Editorial: Targeted Subcellular Delivery of Anti-cancer Agents. Front Pharmacol 2019; 9:1577. [PMID: 30723414 PMCID: PMC6349720 DOI: 10.3389/fphar.2018.01577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/31/2018] [Indexed: 11/22/2022] Open
Affiliation(s)
- David A. Jans
- Department of Biochemistry and Molecular Biology, Nuclear Signalling Laboratory, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- *Correspondence: David A. Jans
| | - Alexander S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
35
|
Spits M, Janssen LJ, Voortman LM, Kooij R, Neefjes ACM, Ovaa H, Neefjes J. Homeostasis of soluble proteins and the proteasome post nuclear envelope reformation in mitosis. J Cell Sci 2019; 132:jcs.225524. [DOI: 10.1242/jcs.225524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
Upon Nuclear envelope (NE) fragmentation in the prometaphase the nuclear and cytosolic proteomes blend and must be redefined to reinstate homeostasis. Using a molecular GFP ladder, we show that in early mitosis, condensed chromatin excludes cytosolic proteins. When the NE reforms tightly around condensed chromatin in late mitosis, large GFP multimers are automatically excluded from the nucleus. This can be circumvented by limiting DNA condensation with Q15, a Condensin II inhibitor. Soluble small and other NLS-targeted proteins then swiftly enter the expanding nuclear space. We then examined the proteasome, located in cytoplasm and nucleus. A significant fraction of 20S proteasomes is imported by importin IPO5 within 20 minutes following reformation of the nucleus, after which import comes to an abrupt halt. This suggests that maintaining the nuclear-cytosol distribution after mitosis requires chromatin condensation to exclude cytosolic material from the nuclear space and specialized machineries for nuclear import of large protein complexes such as the proteasome.
Collapse
Affiliation(s)
- Menno Spits
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Lennert J. Janssen
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Lenard M. Voortman
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Raymond Kooij
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Anna C. M. Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center LUMC, Leiden NL, USA
| |
Collapse
|
36
|
Islam S, Paek AL, Hammer M, Rangarajan S, Ruijtenbeek R, Cooke L, Weterings E, Mahadevan D. Drug-induced aneuploidy and polyploidy is a mechanism of disease relapse in MYC/BCL2-addicted diffuse large B-cell lymphoma. Oncotarget 2018; 9:35875-35890. [PMID: 30542505 PMCID: PMC6267596 DOI: 10.18632/oncotarget.26251] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/06/2018] [Indexed: 11/25/2022] Open
Abstract
Double-hit (DH) or double-expresser (DE) lymphomas are high-grade diffuse large B-cell lymphomas (DLBCL) that are mostly incurable with standard chemo-immunotherapy due to treatment resistance. The generation of drug-induced aneuploid/polyploid (DIAP) cells is a common effect of anti-DLBCL therapies (e.g. vincristine, doxorubicin). DIAP cells are thought to be responsible for treatment resistance, as they are capable of re-entering the cell cycle during off-therapy periods. Previously we have shown that combination of alisertib plus ibrutinib plus rituximab can partially abrogate DIAP cells and induce cell death. Here, we provide evidence that DIAP cells can re-enter the cell cycle and escape cell death during anti-DLBCL treatment. We also discuss MYC/BCL2 mediated molecular mechanism that underlie treatment resistance. We isolated aneuploid/polyploid populations of DH/DE-DLBCL cells after treatment with the aurora kinase (AK) inhibitor alisertib. Time-lapse microscopy of single polyploid cells revealed that following drug removal, a subset of these DIAP cells divide and proliferate by reductive cell divisions, including multipolar mitosis, meiosis-like nuclear fission and budding. Genomic, proteomic, and kinomic profiling demonstrated that alisertib-induced aneuploid/polyploid cells up-regulate DNA damage, DNA replication and immune evasion pathways. In addition, we identified amplified receptor tyrosine kinase and T-cell receptor signaling, as well as MYC-mediated dysregulation of the spindle assembly checkpoints RanGAP1, TPX2 and KPNA2. We infer that these factors contribute to treatment resistance of DIAP cells. These findings provide opportunities to develop novel DH/DE-DLBCL therapies, specifically targeting DIAP cells. Key Points ● MYC mediated upregulation of TPX2, KPNA2 and RanGAP1 dysregulate the spindle assembly checkpoint in drug-induced polyploid cells.● Drug-induced polyploid cells re-enter the cell cycle via multipolar mitosis, fission or budding, a mechanism of disease relapse.
Collapse
Affiliation(s)
- Shariful Islam
- Cancer Biology GIDP, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Andrew L Paek
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Michael Hammer
- Division of Biotechnology, University of Arizona Cancer Center, Tucson, AZ, USA
| | | | | | - Laurence Cooke
- Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Eric Weterings
- Department of Radiation Oncology, University of Arizona, Tucson, AZ, USA
| | - Daruka Mahadevan
- Department of Medicine, University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
37
|
Tang S, Lu C, Mo L, Wang X, Liang Z, Qin F, Liu Y, Liu Y, Huang H, Huang Y, Cai H, Xiao D, Guo S, Ouyang Y, Sun B, Li X. Hydrogen peroxide redistributes the localization of protein phosphatase methylesterase 1. Life Sci 2018; 213:166-173. [DOI: 10.1016/j.lfs.2018.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
|
38
|
Monteleone F, Taverna S, Alessandro R, Fontana S. SWATH-MS based quantitative proteomics analysis reveals that curcumin alters the metabolic enzyme profile of CML cells by affecting the activity of miR-22/IPO7/HIF-1α axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:170. [PMID: 30045750 PMCID: PMC6060558 DOI: 10.1186/s13046-018-0843-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/13/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Chronic myelogenous leukemia (CML) is a myeloproliferative disorder caused by expression of the chimeric BCR-ABL tyrosine kinase oncogene, resulting from the t(9;22) chromosomal translocation. Imatinib (gleevec, STI-571) is a selective inhibitor of BCR-ABL activity highly effective in the treatment of CML. However, even though almost all CML patients respond to treatment with imatinib or third generation inhibitors, these drugs are not curative and need to be taken indefinitely or until patients become resistant. Therefore, to get a definitive eradication of leukemic cells, it is necessary to find novel therapeutic combinations, for achieving greater efficacy and fewer side effects. Curcumin is an Indian spice with several therapeutic properties: anti-oxidant, analgesic, anti-inflammatory, antiseptic and anti-cancer. In cancer disease, it acts by blocking cell transformation, proliferation, and invasion and by inducing cell apoptosis. METHODS In the present study, the effect of a sub-toxic dose of curcumin on K562 cells was evaluated by using the technique of Sequential Window Activation of All Theoretical Mass Spectra (SWATH-MS). Bioinformatic analysis of proteomic data was performed to highlight the pathways mostly affected by the treatment. The involvement of Hypoxia inducible factor 1 α (HIF-1α) was assayed by evaluating its activation status and the modulation of importin 7 (IPO7) and miR-22 was assessed by quantitative PCR and western blot analysis. Finally, K562 cells transfected with miR-22 inhibitor were used to confirm the ability of curcumin to elicit miR-22 expression. RESULTS Our findings revealed that the most relevant effect induced by curcumin was a consistent decrease of several proteins involved in glucose metabolism, most of which were HIF-1α targets, concomitant with the up-regulation of functional and structural mitochondrial proteins. The mechanism by which curcumin affects metabolic enzyme profile was associated with the reduction of HIF-1α activity, due to the miR-22-mediated down-regulation of IPO7 expression. Finally, the ability of curcumin to enhance in vitro the efficiency of imatinib was reported. CONCLUSIONS In summary, our data indicates that the miR-22/IPO7/HIF-1α axis may be considered as a novel molecular target of curcumin adding new insights to better define therapeutic activity and anticancer properties of this natural compound. The MS proteomic data have been deposited to the ProteomeXchange with identifier <PXD007771>.
Collapse
Affiliation(s)
- Francesca Monteleone
- Department of Biopathology and Medical Biotechnologies - Section of Biology and Genetics, University of Palermo, Palermo, Italy
| | - Simona Taverna
- Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy
| | - Riccardo Alessandro
- Department of Biopathology and Medical Biotechnologies - Section of Biology and Genetics, University of Palermo, Palermo, Italy. .,Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council, Palermo, Italy.
| | - Simona Fontana
- Department of Biopathology and Medical Biotechnologies - Section of Biology and Genetics, University of Palermo, Palermo, Italy.
| |
Collapse
|
39
|
Lu M, Huang X, Chen Y, Fu Y, Xu C, Xiang W, Li C, Zhang S, Yu C. Aberrant KIF20A expression might independently predict poor overall survival and recurrence-free survival of hepatocellular carcinoma. IUBMB Life 2018; 70:328-335. [PMID: 29500859 DOI: 10.1002/iub.1726] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/07/2018] [Indexed: 12/20/2022]
Abstract
Kinesin family member 20A (KIF20A) is an essential regulator of cytokinesis. In this study, by performing a retrospective study based on data from the Cancer Genome Atlas (TCGA)-Liver and Hepatocellular Carcinoma (LIHC) cohort, we tried to assess the independent prognostic value of KIF20A in terms of overall survival (OS) and recurrence-free survival (RFS). Results showed that normal liver tissues had very low KIF20A expression compared with normal tissues in other cohorts in TCGA. However, the primary HCC tissues (N = 371) had significantly elevated KIF20A expression than normal liver tissues (N = 50). Immunohistochemistry (IHC) data showed that normal hepatocytes had weak KIF20A staining. In comparison, some HCC tissues had medium and strong KIF20A expression, with nuclear-enhanced staining. By grouping patients with primary HCC (N = 365) into high and low KIF20A expression groups, we found that the high expression group had a substantially higher proportion of high-grade tumors (G3/G4) (34/65, 52.3% vs. 96/295, 32.5%, P = 0.0027), advanced tumors (stage III/IV) (28/61, 45.9% vs. 59/280, 21.1%, P < 0.0001) and death (44/67, 65.7% vs. 86/298, 28.9%, P < 0.0001) compared with the low expression group. Kaplan-Meier curves of OS and RFS indicated that high KIF20A expression was associated with worse survival outcomes. Subgroup analysis confirmed the associations in G1/G2, G3/G4 tumors and in early and advanced stages. Following univariate and multivariate analysis revealed that KIF20A expression was an independent prognostic indicator for poor OS (HR: 1.304, 95%CI: 1.157-1.469, P < 0.001) and RFS (HR: 1.144, 95%CI: 1.028-1.272, P < 0.001). Based on these findings, we infer that KIF20A was aberrantly expressed in HCC tissues and its expression might independently predict poor OS and RFS. © 2018 IUBMB Life, 70(4):328-335, 2018.
Collapse
Affiliation(s)
- Mingqin Lu
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoying Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongping Chen
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yangyang Fu
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaona Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Xiang
- Department of Interventional Therapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Li
- Department of Interventional Therapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengguo Zhang
- Department of Infection and Liver Diseases, Liver Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chang Yu
- Department of Interventional Therapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
40
|
Stelma T, Leaner VD. KPNB1-mediated nuclear import is required for motility and inflammatory transcription factor activity in cervical cancer cells. Oncotarget 2018; 8:32833-32847. [PMID: 28427184 PMCID: PMC5464831 DOI: 10.18632/oncotarget.15834] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
Karyopherin β1 is a nuclear import protein involved in the transport of proteins containing a nuclear localisation sequence. Elevated Karyopherin β1 expression has been reported in cancer and transformed cells and is essential for cancer cell proliferation and survival. Transcription factors such as NFĸB and AP-1 contain a nuclear localisation sequence and initiate the expression of multiple factors associated with inflammation and cancer cell biology. Our study investigated the effect of inhibiting nuclear import via Karyopherin β1 on cancer cell motility and inflammatory signaling using siRNA and the novel small molecule, Inhibitor of Nuclear Import-43, INI-43. Inhibition of Karyopherin β1 led to reduced migration and invasion of cervical cancer cells. Karyopherin β1 is essential for the translocation of NFĸB into the nucleus as nuclear import inhibition caused its cytoplasmic retention and decreased transcriptional activity. A similar decrease was seen in AP-1 transcriptional activity upon Karyopherin β1 inhibition. Consequently reduced interleukin-6, interleukin-1 beta, tumour necrosis factor alpha and granulocyte macrophage colony stimulating factor expression, target genes of NFkB and AP-1, was observed. Migration studies inhibiting individual transcription factors suggested that INI-43 may affect a combination of signaling events. Our study provides further evidence that inhibiting KPNB1 has anti-cancer effects and shows promise as a chemotherapeutic target.
Collapse
Affiliation(s)
- Tamara Stelma
- Division of Medical Biochemistry and Structural Biology, SAMRC Gynaecology Cancer Research Centre, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Virna D Leaner
- Division of Medical Biochemistry and Structural Biology, SAMRC Gynaecology Cancer Research Centre, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
41
|
Karyopherins in cancer. Curr Opin Cell Biol 2018; 52:30-42. [PMID: 29414591 DOI: 10.1016/j.ceb.2018.01.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/08/2018] [Accepted: 01/14/2018] [Indexed: 12/16/2022]
Abstract
Malfunction of nuclear-cytoplasmic transport contributes to many diseases including cancer. Defective nuclear transport leads to changes in both the physiological levels and temporal-spatial location of tumor suppressors, proto-oncogenes and other macromolecules that in turn affect the tumorigenesis process and drug sensitivity of cancer cells. In addition to their nuclear transport functions in interphase, Karyopherin nuclear transport receptors also have important roles in mitosis and chromosomal integrity. Therefore, alterations in the expressions or regular functions of Karyopherins may have substantial effects on the course and outcome of diseases.
Collapse
|
42
|
Trifonova RT, Barteneva NS. Quantitation of IRF3 Nuclear Translocation in Heterogeneous Cellular Populations from Cervical Tissue Using Imaging Flow Cytometry. Methods Mol Biol 2018; 1745:125-153. [PMID: 29476467 DOI: 10.1007/978-1-4939-7680-5_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Imaging flow cytometry (IFC) has become a powerful tool for studying the activation of transcriptional factors in heterogeneous cell populations in high-content imaging mode. With considerable interest to the clinical development of IFC, the question becomes how we can accelerate its application to solid tissues. We developed the first IFC-based procedure to quantify the nuclear translocation of interferon regulatory factor (IRF) 3, an important measure of induction of type I interferon antiviral response, in primary human immune cells including in solid tissues. After tissue digestion and protocol optimization by spectral flow cytometry, cell suspension is stained for intracellular IRF3 and acquired by IFC. Image analysis is performed using an optimized nuclear mask and similarity score parameter to correlate the location of IRF3 staining and a nuclear dye. The technique measures IRF3 activation at a single cell level and can detect small changes in the percent of activated cells providing objective quantitative data for statistical analysis.
Collapse
Affiliation(s)
- Radiana T Trifonova
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| | - Natasha S Barteneva
- PCMM-Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.
- Department of Biology, School of Sciences and Technology, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
43
|
Gravina GL, Mancini A, Colapietro A, Marampon F, Sferra R, Pompili S, Biordi LA, Iorio R, Flati V, Argueta C, Landesman Y, Kauffman M, Shacham S, Festuccia C. Pharmacological treatment with inhibitors of nuclear export enhances the antitumor activity of docetaxel in human prostate cancer. Oncotarget 2017; 8:111225-111245. [PMID: 29340049 PMCID: PMC5762317 DOI: 10.18632/oncotarget.22760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Background and aims Docetaxel (DTX) modestly increases patient survival of metastatic castration-resistant prostate cancer (mCRPC) due to insurgence of pharmacological resistance. Deregulation of Chromosome Region Maintenance (CRM-1)/ exportin-1 (XPO-1)-mediated nuclear export may play a crucial role in this phenomenon. Material and methods Here, we evaluated the effects of two Selective Inhibitor of Nuclear Export (SINE) compounds, selinexor (KPT-330) and KPT-251, in association with DTX by using 22rv1, PC3 and DU145 cell lines with their. DTX resistant derivatives. Results and conclusions We show that DTX resistance may involve overexpression of β-III tubulin (TUBB3) and P-glycoprotein as well as increased cytoplasmic accumulation of Foxo3a. Increased levels of XPO-1 were also observed in DTX resistant cells suggesting that SINE compounds may modulate DTX effectiveness in sensitive cells as well as restore the sensitivity to DTX in resistant ones. Pretreatment with SINE compounds, indeed, sensitized to DTX through increased tumor shrinkage and apoptosis by preventing DTX-induced cell cycle arrest. Basally SINE compounds induce FOXO3a activation and nuclear accumulation increasing the expression of FOXO-responsive genes including p21, p27 and Bim causing cell cycle arrest. SINE compounds-catenin and survivin supporting apoptosis. βdown-regulated Cyclin D1, c-myc, Nuclear sequestration of p-Foxo3a was able to reduce ABCB1 and TUBB3 H2AX levels, prolonged γ expression. Selinexor treatment increased DTX-mediated double strand breaks (DSB), and reduced the levels of DNA repairing proteins including DNA PKc and Topo2A. Our results provide supportive evidence for the therapeutic use of SINE compounds in combination with DTX suggesting their clinical use in mCRPC patients.
Collapse
Affiliation(s)
- Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy.,Department of Biotechnological and Applied Clinical Sciences, Division of Radiotherapy, University of L'Aquila, L'Aquila, Italy
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, Division of Human Anatomy, University of L'Aquila, L'Aquila, Italy
| | - Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, Division of Human Anatomy, University of L'Aquila, L'Aquila, Italy
| | - Leda Assunta Biordi
- Department of Biotechnological and Applied Clinical Sciences, Division of Molecular Pathology, University of L'Aquila, L'Aquila, Italy
| | - Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, Division of Applied Biology, University of L'Aquila, L'Aquila, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, Division of Molecular Pathology, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
44
|
Beck M, Schirmacher P, Singer S. Alterations of the nuclear transport system in hepatocellular carcinoma - New basis for therapeutic strategies. J Hepatol 2017; 67:1051-1061. [PMID: 28673770 DOI: 10.1016/j.jhep.2017.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the most prevalent human malignancies worldwide with rising incidence in industrialised countries, few therapeutic options and poor prognosis. To expand and improve therapeutic strategies, identification of drug targets involved in several liver cancer-related pathways is crucial. Virtually all signal transduction cascades cross the nuclear envelope and therefore require components of the nuclear transport system (NTS), including nuclear transport receptors (e.g. importins and exportins) and the nuclear pore complex. Accordingly, members of the NTS represent promising targets for therapeutic intervention. Selective inhibitors of nuclear export have already entered clinical trials for various malignancies. Herein, we review the current knowledge regarding alterations of the NTS and their potential for targeted therapy in HCC.
Collapse
Affiliation(s)
- Martin Beck
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Stephan Singer
- European Molecular Biology Laboratory, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Germany.
| |
Collapse
|
45
|
Gilistro E, de Turris V, Damizia M, Verrico A, Moroni S, De Santis R, Rosa A, Lavia P. Importin-β and CRM1 control a RANBP2 spatiotemporal switch essential for mitotic kinetochore function. J Cell Sci 2017; 130:2564-2578. [PMID: 28600321 DOI: 10.1242/jcs.197905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 06/05/2017] [Indexed: 12/30/2022] Open
Abstract
Protein conjugation with small ubiquitin-related modifier (SUMO) is a post-translational modification that modulates protein interactions and localisation. RANBP2 is a large nucleoporin endowed with SUMO E3 ligase and SUMO-stabilising activity, and is implicated in some cancer types. RANBP2 is part of a larger complex, consisting of SUMO-modified RANGAP1, the GTP-hydrolysis activating factor for the GTPase RAN. During mitosis, the RANBP2-SUMO-RANGAP1 complex localises to the mitotic spindle and to kinetochores after microtubule attachment. Here, we address the mechanisms that regulate this localisation and how they affect kinetochore functions. Using proximity ligation assays, we find that nuclear transport receptors importin-β and CRM1 play essential roles in localising the RANBP2-SUMO-RANGAP1 complex away from, or at kinetochores, respectively. Using newly generated inducible cell lines, we show that overexpression of nuclear transport receptors affects the timing of RANBP2 localisation in opposite ways. Concomitantly, kinetochore functions are also affected, including the accumulation of SUMO-conjugated topoisomerase-IIα and stability of kinetochore fibres. These results delineate a novel mechanism through which nuclear transport receptors govern the functional state of kinetochores by regulating the timely deposition of RANBP2.
Collapse
Affiliation(s)
- Eugenia Gilistro
- CNR National Research Council of Italy, Institute of Molecular Biology and Pathology (IBPM), ℅ Department of Biology and Biotechnology, Sapienza Università di Roma, Via degli Apuli 4, 00185 Rome, Italy
| | - Valeria de Turris
- Istituto Italiano di Tecnologia, Center for Life Nanoscience@Sapienza, Viale Regina Elena 291, 00161 Rome, Italy
| | - Michela Damizia
- CNR National Research Council of Italy, Institute of Molecular Biology and Pathology (IBPM), ℅ Department of Biology and Biotechnology, Sapienza Università di Roma, Via degli Apuli 4, 00185 Rome, Italy
| | - Annalisa Verrico
- CNR National Research Council of Italy, Institute of Molecular Biology and Pathology (IBPM), ℅ Department of Biology and Biotechnology, Sapienza Università di Roma, Via degli Apuli 4, 00185 Rome, Italy
| | - Sara Moroni
- CNR National Research Council of Italy, Institute of Molecular Biology and Pathology (IBPM), ℅ Department of Biology and Biotechnology, Sapienza Università di Roma, Via degli Apuli 4, 00185 Rome, Italy
| | - Riccardo De Santis
- Istituto Italiano di Tecnologia, Center for Life Nanoscience@Sapienza, Viale Regina Elena 291, 00161 Rome, Italy
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandro Rosa
- Istituto Italiano di Tecnologia, Center for Life Nanoscience@Sapienza, Viale Regina Elena 291, 00161 Rome, Italy
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Patrizia Lavia
- CNR National Research Council of Italy, Institute of Molecular Biology and Pathology (IBPM), ℅ Department of Biology and Biotechnology, Sapienza Università di Roma, Via degli Apuli 4, 00185 Rome, Italy
| |
Collapse
|
46
|
Wiedmann MM, Aibara S, Spring DR, Stewart M, Brenton JD. Structural and calorimetric studies demonstrate that the hepatocyte nuclear factor 1β (HNF1β) transcription factor is imported into the nucleus via a monopartite NLS sequence. J Struct Biol 2016; 195:273-281. [PMID: 27346421 PMCID: PMC4991853 DOI: 10.1016/j.jsb.2016.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 02/03/2023]
Abstract
The transcription factor hepatocyte nuclear factor 1β (HNF1β) is ubiquitously overexpressed in ovarian clear cell carcinoma (CCC) and is a potential therapeutic target. To explore potential approaches that block HNF1β transcription we have identified and characterised extensively the nuclear localisation signal (NLS) for HNF1β and its interactions with the nuclear protein import receptor, Importin-α. Pull-down assays demonstrated that the DNA binding domain of HNF1β interacted with a spectrum of Importin-α isoforms and deletion constructs tagged with eGFP confirmed that the HNF1β (229)KKMRRNR(235) sequence was essential for nuclear localisation. We further characterised the interaction between the NLS and Importin-α using complementary biophysical techniques and have determined the 2.4Å resolution crystal structure of the HNF1β NLS peptide bound to Importin-α. The functional, biochemical, and structural characterisation of the nuclear localisation signal present on HNF1β and its interaction with the nuclear import protein Importin-α provide the basis for the development of compounds targeting transcription factor HNF1β via its nuclear import pathway.
Collapse
Affiliation(s)
- Mareike M Wiedmann
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Shintaro Aibara
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Murray Stewart
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|