1
|
de Lima MHDCT, Avelino MEL, Cavalcanti MRN, Perazzo MDF, de Moraes SLD, Lopes DS. Unraveling applications of gold nanoparticles in dentistry: A scoping review. J Dent 2025; 156:105685. [PMID: 40081729 DOI: 10.1016/j.jdent.2025.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVES This review aims is to map the available evidence regarding the applications of gold nanoparticles (AuNps) in dentistry. MATERIALS AND METHODS This scoping review protocol followed the guidelines of the Joanna Briggs Institute and the PRISMA-ScR. Two authors independently performed all steps in the study selection and data extraction phases. DATA AND SOURCES Through a search across Medline, Embase, Web of Science, Scopus, and a manual search, this review identified studies that analyzed the use of gold nanoparticles in dentistry. ELIGIBILITY CRITERIA Original research full-text articles (experimental and observational studies), in all languages, on the application of gold nanoparticles in chemical and biological aspects of Dentistry. STUDY SELECTION From 1268 records identified, 34 studies fulfilled the eligibility criteria. China and India had the largest number of publications in AuNPs (11.76 %, both). 88.23 % of studies were conducted in vitro, and operative dentistry was the most prevalent specialty (47.05 %). Concerning the outcomes, studies focused on evaluating the antimicrobial properties of AuNPs, (38.23 %), material development and characterization (35.29 %), clinical or technological applications (20,58 %), and physical and mechanical properties (14.7 %). CONCLUSION Gold nanoparticles have vast potential for various applications in dentistry and biomedicine, with particular emphasis on their antibacterial and antibiofilm properties, which are the most studied. However, despite the large number of preclinical studies conducted, there is still a lack of established standards for the use of these nanoparticles, highlighting the need to develop protocols to guide new in vivo and in vitro studies before advancing to clinical trials. CLINICAL SIGNIFICANCE Gold nanoparticles show potential in dentistry due to their antibacterial and antibiofilm properties, as well as their ability to enhance the physical and mechanical characteristics of dental materials.
Collapse
Affiliation(s)
| | - Maria Eduarda Lemos Avelino
- Department of Dentistry, UPE - Faculty of Dentistry, University of Pernambuco, Street Arnóbio Marques, 310, Santo Amaro, 50100-130, Recife, Pernambuco, Brazil.
| | - Marcela Rosa Nogueira Cavalcanti
- Department of Dentistry, UPE - Faculty of Dentistry, University of Pernambuco, Street Arnóbio Marques, 310, Santo Amaro, 50100-130, Recife, Pernambuco, Brazil.
| | - Matheus de França Perazzo
- Faculty of Dentistry, Federal University of Goiás, Avenue Universitária, University east sector, Goiânia, GO, Brazil.
| | - Sandra Lucia Dantas de Moraes
- Department of Dentistry, UPE - Faculty of Dentistry, University of Pernambuco, Street Arnóbio Marques, 310, Santo Amaro, 50100-130, Recife, Pernambuco, Brazil.
| | - Daniela Siqueira Lopes
- Department of Dentistry, UPE - Faculty of Dentistry, University of Pernambuco, Street Arnóbio Marques, 310, Santo Amaro, 50100-130, Recife, Pernambuco, Brazil.
| |
Collapse
|
2
|
Yuan Y, Intajak P, Sakaguchi N, Ting S, Zhang H, Ikeda T, Hoshika S, Sano H, Tomokiyo A. Colloidal platinum nanoparticles enhance resin-dentin bonding durability. Dent Mater 2024; 40:2034-2042. [PMID: 39358193 DOI: 10.1016/j.dental.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/16/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES This study aims to investigate the effect of colloidal platinum nanoparticles (CPN) on the durability of resin-dentin bonding performance with contemporary adhesives. METHODS Sixty non-carious human maxillary premolars were subjected to microtensile bond strength (µTBS) testing and divided into two main groups: CPN-treated and untreated. Within each group, specimens were randomly allocated to Clearfil Megabond 2 (MB2), Scotchbond Universal Plus Adhesive with self-etch mode (SE-SUP), and etch-and-rinse mode (ER-SUP) subgroups (n = 10/group). CPN was applied to dentin in the MB2 and SE-SUP groups for 20 s, followed by rinsing before adhesive application. In the ER-SUP group, CPN was applied after etch-and-rinse. The µTBS was tested after 24 h, 6 months, and 1 year, and the fracture modes were observed using SEM. The µTBS data were analyzed using a two-way ANOVA and post-hoc Tukey HSD test (α = 0.05). An additional twelve premolars underwent TEM/STEM/EDX for ultra-morphological observations. RESULTS The application of CPN significantly prevented a decline in the µTBS of both the MB2 and SE-SUP groups. No significant decrease was observed in the ER-SUP group, either with aging or CPN application. Ultra-morphological images revealed platinum nanoparticles attaching to the collagen fibrils of the hybrid layer regardless of aging. It was highlighted that the nanoparticles attached to the banded collagen in the aging groups were observed. SIGNIFICANCE CPN exhibits the potential in enhancing the longevity of resin-dentin bonding in SE mode.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo 060-080, Japan.
| | - Papichaya Intajak
- Department of Conservative Dentistry and Prosthodontics, Faculty of Dentistry, Srinakharinwirot University, 114 Sukhumvit 23, Wattana, Bangkok 10110, Thailand
| | - Norihito Sakaguchi
- Laboratory of Integrated Function Materials, Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo 060-080, Japan
| | - Shihchun Ting
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, No. 195 Dongfeng West Road, Guangzhou, Guangdong Province 510000, China
| | - Hongbo Zhang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Qingdao, Shandong Province 266001, China
| | - Takatsumi Ikeda
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo 060-080, Japan
| | - Shuhei Hoshika
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo 060-080, Japan
| | - Hidehiko Sano
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo 060-080, Japan
| | - Atsushi Tomokiyo
- Department of Restorative Dentistry, Faculty of Dental Medicine, Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo 060-080, Japan
| |
Collapse
|
3
|
Jongrungsomran S, Pissuwan D, Yavirach A, Rungsiyakull C, Rungsiyakull P. The Integration of Gold Nanoparticles into Dental Biomaterials as a Novel Approach for Clinical Advancement: A Narrative Review. J Funct Biomater 2024; 15:291. [PMID: 39452589 PMCID: PMC11508227 DOI: 10.3390/jfb15100291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Gold nanoparticles (AuNPs) have gained significant attention in the biomedical field owing to their versatile properties. AuNPs can be customized by modifying their size, shape and surface characteristics. In recent years, extensive research has explored the integration of AuNPs into various dental materials, including titanium, polymethylmethacrylate (PMMA) and resin composites. This review aims to summarize the advancements in the application of modified AuNPs in dental materials and to assess their effects on related cellular processes in the dental field. Relevant articles published in English on AuNPs in association with dental materials were identified through a systematic search of the PubMed/MEDLINE, Embase, Scopus and ScienceDirect databases from January 2014 to April 2024. Future prospects for the utilization of AuNPs in the field of dentistry are surveyed.
Collapse
Affiliation(s)
- Saharat Jongrungsomran
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (A.Y.)
| | - Dakrong Pissuwan
- Nanobiotechnology and Nanobiomaterials Research Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Apichai Yavirach
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (A.Y.)
| | - Chaiy Rungsiyakull
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pimduen Rungsiyakull
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (A.Y.)
| |
Collapse
|
4
|
Li S, Liu Y, Wu Y, Ren L, Lu Y, Yamaguchi S, Lu Q, Hu C, Li D, Jiang N. An Outlook on Platinum-Based Active Ingredients for Dermatologic and Skincare Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1303. [PMID: 39120408 PMCID: PMC11314049 DOI: 10.3390/nano14151303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Platinum-based materials exhibit a broad spectrum of biological activities, including antioxidant, anti-inflammatory, antimicrobial, and pro-collagen synthesis properties, making them particularly useful for various biomedical applications. This review summarizes the biological effects and therapeutic potential of platinum-based active ingredients in dermatological and skincare applications. We discuss their synthesis methods and their antioxidant, anti-inflammatory, antimicrobial, and collagen synthesis properties, which play essential roles in treating skin conditions including psoriasis and acne, as well as enhancing skin aesthetics in anti-aging products. Safety and sustainability concerns, including the need for green synthesis and comprehensive toxicological assessments to ensure safe topical applications, are also discussed. By providing an up-to-date overview of current research, we aim to highlight both the potential and the current challenges of platinum-based active ingredients in advancing dermatology and skincare solutions.
Collapse
Affiliation(s)
- Shining Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yizhou Liu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Wu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lu Ren
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Yongjie Lu
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | | | - Qipeng Lu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuangang Hu
- State Key Laboratory of Organic–Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongcui Li
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 511434, China
| | - Naisheng Jiang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Darvish S, Budala DG, Goriuc A. Antibacterial Properties of an Experimental Dental Resin Loaded with Gold Nanoshells for Photothermal Therapy Applications. J Funct Biomater 2024; 15:100. [PMID: 38667557 PMCID: PMC11051398 DOI: 10.3390/jfb15040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
This study explored the chemical and antibacterial properties of a dental resin loaded with gold nanoshells (AuNPs) in conjunction with photothermal therapy (PTT) as a novel method against Streptococcus mutans (S. mutans) to prevent secondary caries. First, a 20-h minimum inhibitory concentration (MIC) assay was performed on solutions of AuNPs with planktonic S. mutans under an LED device and laser at 660 nm. Next, resin blends containing 0, 1 × 1010, or 2 × 1010 AuNPs/mL were fabricated, and the degree of conversion (DC) was measured using an FTIR spectroscopy. Lastly, a colony forming unit (CFU) count was performed following 24 h growth of S. mutans on 6 mm diameter resin disks with different light treatments of an LED device and a laser at 660 nm. The MIC results only showed a reduction in S. mutans at AuNP concentrations less than 3.12 µg/mL under a laser illumination level of 95.5 J/cm2 compared to the dark treatment (p < 0.010 for each). CFU and DC results showed no significant dependence on any light treatment studied. The AuNPs expressed antibacterial effects following PPT against planktonic S. mutans but not in a polymerized dental adhesive resin. Future studies should focus on different shapes, structure, and concentrations of AuNPs loaded in a resin blend.
Collapse
Affiliation(s)
- Shayan Darvish
- Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Dana-Gabriela Budala
- Department of Prosthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Ancuta Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania;
| |
Collapse
|
6
|
Pimentel BNADS, De Annunzio SR, Assis M, Barbugli PA, Longo E, Vergani CE. Biocompatibility and inflammatory response of silver tungstate, silver molybdate, and silver vanadate microcrystals. Front Bioeng Biotechnol 2023; 11:1215438. [PMID: 37545886 PMCID: PMC10399690 DOI: 10.3389/fbioe.2023.1215438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Silver tungstate (α-Ag2WO4), silver molybdate (β-Ag2MoO4), and silver vanadate (α-AgVO3) microcrystals have shown interesting antimicrobial properties. However, their biocompatibility is not yet fully understood. Cytotoxicity and the inflammatory response of silver-containing microcrystals were analyzed in THP-1 and THP-1 differentiated as macrophage-like cells, with the alamarBlue™ assay, flow cytometry, confocal microscopy, and ELISA. The present investigation also evaluated redox signaling and the production of cytokines (TNFα, IL-1β, IL-6, and IL-8) and matrix metalloproteinases (MMP-8 and -9). The results showed that α-AgVO3 (3.9 μg/mL) did not affect cell viability (p > 0.05). α-Ag2WO4 (7.81 μg/mL), β-Ag2MoO4 (15.62 μg/mL), and α-AgVO3 (15.62 μg/mL) slightly decreased cell viability (p ≤ 0.003). All silver-containing microcrystals induced the production of O2 - and this effect was mitigated by Reactive Oxygen Species (ROS) scavenger and N-acetylcysteine (NAC). TNFα, IL-6 and IL-1β were not detected in THP-1 cells, while their production was either lower (p ≤ 0.0321) or similar to the control group (p ≥ 0.1048) for macrophage-like cells. The production of IL-8 by both cellular phenotypes was similar to the control group (p ≥ 0.3570). The release of MMP-8 was not detected in any condition in THP-1 cells. Although MMP-9 was released by THP-1 cells exposed to α-AgVO3 (3.9 μg/mL), no significant difference was found with control (p = 0.7). Regarding macrophage-like cells, the release of MMP-8 and -9 decreased in the presence of all microcrystals (p ≤ 0.010). Overall, the present work shows a promising biocompatibility profile of, α-Ag2WO4, β-Ag2MoO4, and α-AgVO3 microcrystals.
Collapse
Affiliation(s)
| | | | - Marcelo Assis
- Departament of Physical and Analytical Chemistry, University Jaume I (UJI), Castelló, Spain
| | | | - Elson Longo
- CDMF, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | | |
Collapse
|
7
|
Green Synthesis of Platinum Nanoparticles by Nymphaea tetragona flower Extract and their skin lightening, antiaging effects. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
8
|
Khairullina E, Tumkin II, Stupin DD, Smikhovskaia AV, Mereshchenko AS, Lihachev AI, Vasin AV, Ryazantsev MN, Panov MS. Laser-Assisted Surface Modification of Ni Microstructures with Au and Pt toward Cell Biocompatibility and High Enzyme-Free Glucose Sensing. ACS OMEGA 2021; 6:18099-18109. [PMID: 34308043 PMCID: PMC8296552 DOI: 10.1021/acsomega.1c01880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/16/2021] [Indexed: 05/10/2023]
Abstract
We investigated the influence of morphology of Ni microstructures modified with Au and Pt on their cell biocompatibility and electrocatalytic activity toward non-enzymatic glucose detection. Synthesis and modification were carried out using a simple and inexpensive approach based on the method of laser-induced deposition of metal microstructures from a solution on the surface of various dielectrics. Morphological analysis of the fabricated materials demonstrated that the surface of the Ni electrode has a hierarchical structure with large-scale 10 μm pores and small-scale 10 nm irregularities. In turn, the Ni-Pt surface has large-scale cavities, small-scale pores (1-1.5 μm), and a few tens of nanometer particles opposite to Ni-Au that reveals no obvious hierarchical structure. These observations were supported by impedance spectroscopy confirming the hierarchy of the surface topography of Ni and Ni-Pt structures. We tested the biocompatibility of the fabricated Ni-based electrodes with the HeLa cells. It was shown that the Ni-Au electrode has a much better cell adhesion than Ni-Pt with a more complex morphology. On the contrary, porous Ni and Ni-Pt electrodes with a more developed surface area than that of Ni-Au have better catalytic performance toward enzymeless glucose sensing, revealing greater sensitivity, selectivity, and stability. In this regard, modification of Ni with Pt led to the most prominent results providing rather good glucose detection limits (0.14 and 0.19 μA) and linear ranges (10-300 and 300-1500 μA) as well as the highest sensitivities of 18,570 and 2929 μA mM-1 cm-2. We also proposed some ideas to clarify the observed behavior and explain the influence of morphology of the fabricated electrodes on their electrocatalytic activity and biocompatibility.
Collapse
Affiliation(s)
| | - Ilya I. Tumkin
- Saint
Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Daniil D. Stupin
- Nanotechnology
Research and Education Centre RAS, Saint
Petersburg Academic University, 8/3 Khlopina Street, St. Petersburg 194021, Russia
| | | | - Andrey S. Mereshchenko
- Saint
Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexey I. Lihachev
- Ioffe
Institute, 26 Politekhnicheskaya, St. Petersburg 194021, Russian Federation
| | - Andrey V. Vasin
- Peter
the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya Str, 195251 St. Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Saint
Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
- Nanotechnology
Research and Education Centre RAS, Saint
Petersburg Academic University, 8/3 Khlopina Street, St. Petersburg 194021, Russia
| | - Maxim S. Panov
- Saint
Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
9
|
Sharmin S, Rahaman MM, Sarkar C, Atolani O, Islam MT, Adeyemi OS. Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon 2021; 7:e06456. [PMID: 33763612 PMCID: PMC7973307 DOI: 10.1016/j.heliyon.2021.e06456] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/04/2020] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
The scientific explorations of nanoparticles for their inherent therapeutic potencies as antimicrobial and antiviral agents due to increasing incidences of antibiotic resistance have gained more attention in recent time. This factor amongst others necessitates the search for newer and more effective antimicrobial agents. Several investigations have demonstrated the prospects of nanoparticles in the treatment of various microbial infections. The therapeutic applications of nanoparticles as either delivery agent or broad spectrum inhibition agents in viral and microbial investigations can no longer be overlooked. Their large surface area to volume ratio made them an indispensable substance as delivery agents in many respect. Various materials have been used for the synthesis of nanoparticles with unique properties channelised to meet specific therapeutic requirement. This review focuses on the antibacterial, antifungal, and antiviral potential of nanoparticles with their probable mechanism of action.
Collapse
Affiliation(s)
- Shabnam Sharmin
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Mizanur Rahaman
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Olubunmi Atolani
- Department of Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Mohammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Oluyomi Stephen Adeyemi
- Department of Biochemistry, Medicinal Biochemistry, Infectious Diseases, Nanomedicine & Toxicology Laboratory, Landmark University, P.M.B. 1001, Omu-Aran 251101, Kwara State, Nigeria
| |
Collapse
|
10
|
Shi Y, Ma X, Fang G, Tian X, Ge C. Matrix metalloproteinase inhibitors (MMPIs) as attractive therapeutic targets: Recent progress and current challenges. NANOIMPACT 2021; 21:100293. [PMID: 35559782 DOI: 10.1016/j.impact.2021.100293] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 06/15/2023]
Abstract
Matrix metalloproteinase (MMP) plays an essential role in many physiological and pathological processes. An increase in MMP activity contributes to excessive degradation and remodeling of the extracellular matrix (ECM), which has been correlated with invasion and metastasis of tumors. Matrix metalloproteinase inhibitor (MMPI) has been developed as an attractive therapeutic target for decades, suggesting inspiring therapeutic effects in preclinical studies. However, achieving specificity remains an important challenge in the development of MMPIs, limiting their clinical application and bringing about the risk of biosafety. Nanomaterials can be used as alternative candidates for MMPI design, providing a new strategy for this problem. This report reviewed the research about MMPIs, summarized their MMPs activity regulation mechanisms, and discussed their failures in clinical trials. Furthermore, we outlined several schemes of MMPIs screening and design. Finally, we reviewed the therapeutic application prospects of MMPIs and discussed the remaining challenges and solutions, which may offer new insights for the development of MMPIs studies.
Collapse
Affiliation(s)
- Ying Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaochuan Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Ge Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Cuicui Ge
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
11
|
Bastos NA, Bitencourt SB, Martins EA, De Souza GM. Review of nano-technology applications in resin-based restorative materials. J ESTHET RESTOR DENT 2020; 33:567-582. [PMID: 33368974 DOI: 10.1111/jerd.12699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Nanotechnology has progressed significantly and particles as small as 3 nm are being employed in resin-based restorative materials to improve clinical performance. The goal of this review is to report the progress of nanotechnology in Restorative Dentistry by reviewing the advantages, limitations, and applications of resin-based restorative materials with nanoparticles. MATERIALS AND METHODS A literature review was conducted using PubMed/Medline, Scopus and Embase databases. In vitro, in vivo and in situ research studies published in English between 1999 and 2020, and which focused on the analysis of resin-based restorative materials containing nanoparticles were included. RESULTS A total of 140 studies were included in this review. Studies reported the effect of incorporating different types of nanoparticles on adhesive systems or resin composites. Mechanical, physical, and anti-bacterial properties were described. The clinical performance of resin-based restorative materials with nanoparticles was also reported. CONCLUSIONS The high surface area of nanoparticles exponentially increases the bioactivity of materials using bioactive nanofillers. However, the tendency of nanoparticles to agglomerate, the chemical instability of the developed materials and the decline of rheological properties when high ratios of nanoparticles are employed are some of the obstacles to overcome in the near future. CLINICAL SIGNIFICANCE In spite of the recent advancements of nanotechnology in resin-based restorative materials, some challenges need to be overcome before new nano-based restorative materials are considered permanent solutions to clinical problems.
Collapse
Affiliation(s)
- Natalia Almeida Bastos
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Sandro Basso Bitencourt
- Department of Dental Materials and Prosthodontics, Sao Paulo State University (UNESP), Araçatuba, Brazil
| | | | | |
Collapse
|
12
|
Bapat RA, Chaubal TV, Dharmadhikari S, Abdulla AM, Bapat P, Alexander A, Dubey SK, Kesharwani P. Recent advances of gold nanoparticles as biomaterial in dentistry. Int J Pharm 2020; 586:119596. [DOI: 10.1016/j.ijpharm.2020.119596] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
|
13
|
Boraschi D, Alijagic A, Auguste M, Barbero F, Ferrari E, Hernadi S, Mayall C, Michelini S, Navarro Pacheco NI, Prinelli A, Swart E, Swartzwelter BJ, Bastús NG, Canesi L, Drobne D, Duschl A, Ewart MA, Horejs-Hoeck J, Italiani P, Kemmerling B, Kille P, Prochazkova P, Puntes VF, Spurgeon DJ, Svendsen C, Wilde CJ, Pinsino A. Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000598. [PMID: 32363795 DOI: 10.1002/smll.202000598] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
The interaction of a living organism with external foreign agents is a central issue for its survival and adaptation to the environment. Nanosafety should be considered within this perspective, and it should be examined that how different organisms interact with engineered nanomaterials (NM) by either mounting a defensive response or by physiologically adapting to them. Herein, the interaction of NM with one of the major biological systems deputed to recognition of and response to foreign challenges, i.e., the immune system, is specifically addressed. The main focus is innate immunity, the only type of immunity in plants, invertebrates, and lower vertebrates, and that coexists with adaptive immunity in higher vertebrates. Because of their presence in the majority of eukaryotic living organisms, innate immune responses can be viewed in a comparative context. In the majority of cases, the interaction of NM with living organisms results in innate immune reactions that eliminate the possible danger with mechanisms that do not lead to damage. While in some cases such interaction may lead to pathological consequences, in some other cases beneficial effects can be identified.
Collapse
Affiliation(s)
- Diana Boraschi
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli, 80131, Italy
| | - Andi Alijagic
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, 90146, Italy
| | - Manon Auguste
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, 16126, Italy
| | - Francesco Barbero
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
| | - Eleonora Ferrari
- Center for Plant Molecular Biology - ZMBP, Eberhard-Karls University Tübingen, Tübingen, 72076, Germany
| | - Szabolcs Hernadi
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Craig Mayall
- Department of Biology, Biotechnical Faculty, University of Liubljana, Ljubljana, 1000, Slovenia
| | - Sara Michelini
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | | | | | - Elmer Swart
- UK Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
| | | | - Neus G Bastús
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, 16126, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Liubljana, Ljubljana, 1000, Slovenia
| | - Albert Duschl
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | | | - Jutta Horejs-Hoeck
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli, 80131, Italy
| | - Birgit Kemmerling
- Center for Plant Molecular Biology - ZMBP, Eberhard-Karls University Tübingen, Tübingen, 72076, Germany
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Petra Prochazkova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Victor F Puntes
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
- Vall d Hebron, Institut de Recerca (VHIR), Barcelona, 08035, Spain
| | | | - Claus Svendsen
- UK Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
| | | | - Annalisa Pinsino
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, 90146, Italy
| |
Collapse
|
14
|
Jeyaraj M, Gurunathan S, Qasim M, Kang MH, Kim JH. A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1719. [PMID: 31810256 PMCID: PMC6956027 DOI: 10.3390/nano9121719] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022]
Abstract
Platinum nanoparticles (PtNPs) are noteworthy scientific tools that are being explored in various biotechnological, nanomedicinal, and pharmacological fields. They are unique because of their large surface area and their numerous catalytic applications such as their use in automotive catalytic converters and as petrochemical cracking catalysts. PtNPs have been widely utilized not only in the industry, but also in medicine and diagnostics. PtNPs are extensively studied because of their antimicrobial, antioxidant, and anticancer properties. So far, only one review has been dedicated to the application of PtNPs to nanomedicine. However, no studies describe the synthesis, characterization, and biomedical application of PtNPs. Therefore, the aim of this review is to provide a comprehensive assessment of the current knowledge regarding the synthesis, including physical, chemical, and biological and toxicological effects of PtNPs on human health, in terms of both in vivo and in vitro experimental analysis. Special attention has been focused on the biological synthesis of PtNPs using various templates as reducing and stabilizing agents. Finally, we discuss the biomedical and other applications of PtNPs.
Collapse
Affiliation(s)
| | | | | | | | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology and Humanized Pig Center (SRC), Konkuk Institute of Technology, Konkuk University, Seoul 05029, Korea; (M.J.); (S.G.); (M.Q.); (M.-H.K.)
| |
Collapse
|
15
|
Gurunathan S, Jeyaraj M, Kang MH, Kim JH. The Effects of Apigenin-Biosynthesized Ultra-Small Platinum Nanoparticles on the Human Monocytic THP-1 Cell Line. Cells 2019; 8:E444. [PMID: 31083475 PMCID: PMC6562931 DOI: 10.3390/cells8050444] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
Generally, platinum nanoparticles (PtNPs) are considered non-toxic; however, toxicity depends on the size, dose, and physico-chemical properties of materials. Owing to unique physico-chemical properties, PtNPs have emerged as a material of interest for several biomedical applications, particularly therapeutics. The adverse effect of PtNPs on the human monocytic cell line (THP-1) is not well-established and remains elusive. Exposure to PtNPs may trigger oxidative stress and eventually lead to inflammation. To further understand the toxicological properties of PtNPs, we studied the effect of biologically synthesized ultra-small PtNPs on cytotoxicity, genotoxicity, and proinflammatory responses in the human monocytic cell line (THP-1). Our observations clearly indicated that PtNPs induce cytotoxicity in a dose-dependent manner by reducing cell viability and proliferation. The cytotoxicity of THP-1 cells correlated with an increase in the leakage of lactate dehydrogenase, generation of reactive oxygen species, and production of malondialdehyde, nitric oxide, and carbonylated proteins. The involvement of mitochondria in cytotoxicity and genotoxicity was confirmed by loss of mitochondrial membrane potential, lower ATP level, and upregulation of proapoptotic and downregulation of antiapoptotic genes. Decreases in the levels of antioxidants such as reduced glutathione (GSH), oxidized glutathione (GSH: GSSG), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and thioredoxin (TRX) were indicative of oxidative stress. Apoptosis was confirmed with the significant upregulation of key apoptosis-regulating genes. Oxidative DNA damage was confirmed by the increase in the levels of 8-oxodG and 8-oxoG and upregulation of DNA damage and repair genes. Finally, the proinflammatory responses to PtNPs was determined by assessing the levels of multiple cytokines such as interleukin-1β (IL-1β), IL-6, IL-8, tumor necrosis factor-α (TNF-α), granulocyte-macrophage colony-stimulating factor (GM-CSF), and monocyte chemoattractant protein 1 (MCP-1). All the cytokines were significantly upregulated in a dose-dependent manner. Collectively, these observations suggest that THP-1 cells were vulnerable to biologically synthesized ultra-small PtNPs.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul -05029, Korea.
| | - Muniyandi Jeyaraj
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul -05029, Korea.
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul -05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul -05029, Korea.
| |
Collapse
|
16
|
Labrador-Rached CJ, Browning RT, Braydich-Stolle LK, Comfort KK. Toxicological Implications of Platinum Nanoparticle Exposure: Stimulation of Intracellular Stress, Inflammatory Response, and Akt Signaling In Vitro. J Toxicol 2018; 2018:1367801. [PMID: 30364051 PMCID: PMC6188585 DOI: 10.1155/2018/1367801] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/17/2018] [Indexed: 12/28/2022] Open
Abstract
Due to their distinctive physicochemical properties, platinum nanoparticles (PtNPs) have emerged as a material of interest for a number of biomedical therapeutics. However, in some instances NP exposure has been correlated to health and safety concerns, including cytotoxicity, activation of cellular stress, and modification to normal cell functionality. As PtNPs have induced differential cellular responses in vitro, the goal of this study was to further characterize the behavior and toxicological potential of PtNPs within a HepG2 liver model. This study identified that a high PtNP dosage induced HepG2 cytotoxicity. However, lower, subtoxic PtNP concentrations were able to elicit multiple stress responses, secretion of proinflammatory cytokines, and modulation of insulin-like growth factor-1 dependent signal transduction. Taken together, this work suggests that PtNPs would not be overtly toxic for acute exposures, but sustained cellular interactions might produce long term health consequences.
Collapse
Affiliation(s)
| | - Rebecca T. Browning
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
- Molecular Bioeffects Branch, Bioeffects Division, Airmen Systems Directorate, Wright-Patterson Air Force Base, OH 45433, USA
| | - Laura K. Braydich-Stolle
- Molecular Bioeffects Branch, Bioeffects Division, Airmen Systems Directorate, Wright-Patterson Air Force Base, OH 45433, USA
| | - Kristen K. Comfort
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469, USA
- Integrative Science and Engineering Center, University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
17
|
Wissel K, Brandes G, Pütz N, Angrisani GL, Thieleke J, Lenarz T, Durisin M. Platinum corrosion products from electrode contacts of human cochlear implants induce cell death in cell culture models. PLoS One 2018; 13:e0196649. [PMID: 29763442 PMCID: PMC5953457 DOI: 10.1371/journal.pone.0196649] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 04/17/2018] [Indexed: 12/18/2022] Open
Abstract
Despite the technological progress made with cochlear implants (CI), impedances and their diagnosis remain a focus of interest. Increases in impedance have been related to technical defects of the electrode as well as inflammatory and/or fibrosis along the electrode. Recent studies have demonstrated highly increased impedances as the result of corroded platinum (Pt) electrode contacts. This in vitro study examined the effects of Pt ions and compounds generated by corrosion of the electrode contacts of a human CI on cell metabolism. Since traces of solid Pt in surrounding cochlear tissues have been reported, the impact of commercially available Pt nanoparticles (Pt-NP, size 3 nm) on the cell culture model was also determined. For this purpose, the electrode contacts were electrically stimulated in a 0.5% aqueous NaCl solution for four weeks and the mass fraction of the platinum dissolute (Pt-Diss) was determined by mass spectrometry (ICP-MS). Metabolic activity of the murine fibroblasts (NIH 3T3) and the human neuroblastoma (SH-SY5Y) cells was determined using the WST-1 assay following exposure to Pt-Diss and Pt-NP. It was found that 5–50 μg/ml of the Pt-NP did not affect the viability of both cell types. In contrast, 100 μg/ml of the nanoparticles caused significant loss in metabolic activity. Furthermore, transmission electron microscopy (TEM) revealed mitochondrial swelling in both cell types indicating cytotoxicity. Additionally, TEM demonstrated internalized Pt-NP in NIH 3T3 cells in a concentration dependent manner, whereas endocytosis in SH-SY5Y cells was virtually absent. In comparison with the Pt-NP, the corrosion products (Pt-Diss) with concentrations between 1.64 μg/ml and 8.2 μg/ml induced cell death in both cell lines in a concentration dependent manner. TEM imaging revealed both mitochondrial disintegration and swelling of the endoplasmic reticulum, suggesting that Pt ions trigger cytotoxicity in both NIH 3T3 and SH-SY5Y cell lines by interacting with the respiratory chain.
Collapse
Affiliation(s)
- Kirsten Wissel
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence ‘Hearing 4 all’, NIFE, Hannover, Germany
- * E-mail:
| | - Gudrun Brandes
- Institute of Neuroanatomy and Cell Biology, Center of Anatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Nils Pütz
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Biotechnology Center, TU Dresden, Dresden, Germany
| | | | - Jan Thieleke
- Institute of Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence ‘Hearing 4 all’, NIFE, Hannover, Germany
| | - Martin Durisin
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Pedone D, Moglianetti M, De Luca E, Bardi G, Pompa PP. Platinum nanoparticles in nanobiomedicine. Chem Soc Rev 2018; 46:4951-4975. [PMID: 28696452 DOI: 10.1039/c7cs00152e] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress-dependent inflammatory diseases represent a major concern for the population's health worldwide. Biocompatible nanomaterials with enzymatic properties could play a crucial role in the treatment of such pathologies. In this respect, platinum nanoparticles (PtNPs) are promising candidates, showing remarkable catalytic activity, able to reduce the intracellular reactive oxygen species (ROS) levels and impair the downstream pathways leading to inflammation. This review reports a critical overview of the growing evidence revealing the anti-inflammatory ability of PtNPs and their potential applications in nanomedicine. It provides a detailed description of the wide variety of synthetic methods recently developed, with particular attention to the aspects influencing biocompatibility. Special attention has been paid to the studies describing the toxicological profile of PtNPs with an attempt to draw critical conclusions. The emerging picture suggests that the material per se is not causing cytotoxicity, while other physicochemical features related to the synthesis and surface functionalization may play a crucial role in determining the observed impairment of cellular functions. The enzymatic activity of PtNPs is also summarized, analyzing their action against ROS produced by pathological conditions within the cells. In particular, we extensively discuss the potential of these properties in nanomedicine to down-regulate inflammatory pathways or to be employed as diagnostic tools with colorimetric readout. A brief overview of other biomedical applications of nanoplatinum is also presented.
Collapse
Affiliation(s)
- Deborah Pedone
- Istituto Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, Via Morego 30, 16163 Genova, Italy.
| | | | | | | | | |
Collapse
|
19
|
Fathima JB, Pugazhendhi A, Venis R. Synthesis and characterization of ZrO 2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microb Pathog 2017; 110:245-251. [PMID: 28666841 DOI: 10.1016/j.micpath.2017.06.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022]
Abstract
Nanomaterials are exerting a pull on deal with biological and pharmaceutical applications. Biomedical grade of zirconia reveals potential mechanical features of oxide ceramics. In this study, antimicrobial activity and anti-tooth decay applications of the synthesized NPs of ZrO2 were determined. The as-prepared ZrO2 NPs were characterized by UV-vis spectroscopy, FTIR and XRD, which determined the formation of ZrO2NPs and their crystalline nature. SEM analysis further revealed spherical shaped NPs and TEM analysis determined the size of the particles in the range of 15-21 nm, respectively. The antimicrobial activity of different concentrations of the synthesized ZrO2NPs was examined against gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa), respectively. The synthesized ZrO2NPs displayed a better inhibitory action against Pseudomonas aeruginosa (inhibition zone size of 20 mm) at the concentration of 100 μg/ml compared to other bacteria due to the negatively charged P. aeruginosa cell wall readily attracting positively charged ZrO2NPs and thereby inhibiting microbial actions. Moreover, the concentration of ZrO2NPs was directly proportional to their inhibitory actions against the tested microorganisms. Finally, the preventive role of ZrO2NPs in a tooth decay pathway has been elucidated. Hence, it could be concluded that the as-prepared ZrO2NPs possess viable biomedical applications.
Collapse
Affiliation(s)
- John Bani Fathima
- Department of Chemistry, St. Joseph's College, Tiruchirappalli, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- Green Processing, Bioremediation and Alternative Energies Research Group (GPBAE), Faculty of Environment and Labour Safety, Ton Duc Thang University (TDTU), Ho Chi Minh City, Viet Nam.
| | - Rose Venis
- Department of Chemistry, St. Joseph's College, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
20
|
Elkassas D, Arafa A. The innovative applications of therapeutic nanostructures in dentistry. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1543-1562. [PMID: 28232213 DOI: 10.1016/j.nano.2017.01.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/21/2017] [Accepted: 01/30/2017] [Indexed: 02/05/2023]
Abstract
Nanotechnology has paved multiple ways in preventing, reversing or restoring dental caries which is one of the major health care problems. Nanotechnology aided in processing variety of nanomaterials with innovative dental applications. Some showed antimicrobial effect helping in the preventive stage. Others have remineralizing potential intercepting early lesion progression as nanosized calcium phosphate, carbonate hydroxyapatite nanocrystals, nanoamorphous calcium phosphate and nanoparticulate bioactive glass particularly with provision of self-assembles protein that furnish essential role in biomimetic repair. The unique size of nanomaterials makes them fascinating carriers for dental products. Thus, it is recentlyclaimedthat fortifying the adhesives with nanomaterials that possess biological meritsdoes not only enhance the mechanical and physical properties of the adhesives, but also help to attain and maintain a durable adhesive joint and enhanced longevity. Accordingly, this review will focus on the current status and the future implications of nanotechnology in preventive and adhesive dentistry.
Collapse
Affiliation(s)
- Dina Elkassas
- Department of Operative Dentistry, Faculty of Oral and Dental Medicine, Misr International University, Egypt
| | - Abla Arafa
- Department of Pediatric Dentistry and Dental Public Health, Faculty of Oral and Dental Medicine, Misr International University, Egypt.
| |
Collapse
|
21
|
Comet assay: an essential tool in toxicological research. Arch Toxicol 2016; 90:2315-36. [DOI: 10.1007/s00204-016-1767-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|
22
|
Guo P, Tang L, Tang J, Zeng G, Huang B, Dong H, Zhang Y, Zhou Y, Deng Y, Ma L, Tan S. Catalytic reduction–adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon. J Colloid Interface Sci 2016; 469:78-85. [DOI: 10.1016/j.jcis.2016.01.063] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
|