1
|
Santos LC, dos Anjos Cordeiro JM, Cunha MCDSG, Santos BR, de Oliveira LS, da Silva AL, Barbosa EM, Niella RV, de Freitas GJC, Santos DDA, Serakides R, Ocarino NDM, Borges SC, de Lavor MSL, Silva JF. Kisspeptin-10 Improves Testicular Redox Status but Does Not Alter the Unfolded Protein Response (UPR) That Is Downregulated by Hypothyroidism in a Rat Model. Int J Mol Sci 2024; 25:1514. [PMID: 38338793 PMCID: PMC10855899 DOI: 10.3390/ijms25031514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 02/12/2024] Open
Abstract
Hypothyroidism compromises the testicular redox status and is associated with reduced sperm quality and infertility in men. In this regard, studies have demonstrated the antioxidant potential of kisspeptin in reproductive and metabolic diseases. In this study, we evaluate the effects of kisspeptin-10 (Kp10) on the testicular redox, as well as mediators of the unfolded protein response (UPR) in adult rats with hypothyroidism. Adult male Wistar rats were randomly separated into the Control (n = 15), Hypo (n = 13) and Hypo + Kp10 (n = 14) groups, and hypothyroidism was induced with 6-propyl-2-thiouracil (PTU) for three months. In the last month, half of the hypothyroid animals received Kp10. Testis samples were collected for enzymatic, immunohistochemical and/or gene evaluation of mediators of oxidative stress (TBARs, lipid hydroperoxides (LOOH), ROS, peroxynitrite, SOD, CAT and GPX), endoplasmic reticulum stress (GRP78, ATF6, PERK, CHOP, HO-1 and sXBP1) and antiapoptocytes (BCL-2). Hypothyroidism increased apoptosis index, TBARS and LOOH concentrations, and reduced testicular gene expression of Sod1, Sod2 and Gpx1, as well as the expression of Grp78, Atf6, Ho1 and Chop. Treatment with Kp10, in turn, reduced testicular apoptosis and the production of peroxynitrite, while increased SOD1 and GPX ½ expression, and enzymatic activity of CAT, but did not affect the lower expression of UPR mediators caused by hypothyroidism. This study demonstrated that hypothyroidism causes oxidative stress and dysregulated the UPR pathway in rat testes and that, although Kp10 does not influence the low expression of UPR mediators, it improves the testicular redox status, configuring it as an important antioxidant factor in situations of thyroid dysfunction.
Collapse
Affiliation(s)
- Luciano Cardoso Santos
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| | - Jeane Martinha dos Anjos Cordeiro
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| | - Maria Clara da Silva Galrão Cunha
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| | - Bianca Reis Santos
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| | - Luciana Santos de Oliveira
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| | - Adriana Lopes da Silva
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| | - Erikles Macêdo Barbosa
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| | - Raquel Vieira Niella
- Veterinary Hospital, Department of Agricultural and Environmental Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (R.V.N.); (M.S.L.d.L.)
| | - Gustavo José Cota de Freitas
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.J.C.d.F.); (D.d.A.S.)
| | - Daniel de Assis Santos
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.J.C.d.F.); (D.d.A.S.)
| | - Rogéria Serakides
- Department of Veterinary Clinic and Surgery, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.S.); (N.d.M.O.)
| | - Natália de Melo Ocarino
- Department of Veterinary Clinic and Surgery, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.S.); (N.d.M.O.)
| | - Stephanie Carvalho Borges
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| | - Mário Sérgio Lima de Lavor
- Veterinary Hospital, Department of Agricultural and Environmental Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (R.V.N.); (M.S.L.d.L.)
| | - Juneo Freitas Silva
- Electron Microscopy Center, Department of Biological Sciences, State University of Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil; (L.C.S.); (J.M.d.A.C.); (M.C.d.S.G.C.); (B.R.S.); (L.S.d.O.); (A.L.d.S.); (E.M.B.); (S.C.B.)
| |
Collapse
|
2
|
Tavakoli A, Aliakbari F, Soleimani Mehranjani M. Kisspeptin decreases the adverse effects of human ovarian vitrification by regulating ROS-related apoptotic occurrences. ZYGOTE 2023; 31:537-543. [PMID: 37655529 DOI: 10.1017/s0967199423000412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Kisspeptin is characterized as a neuropeptide with a pivotal function in female and male infertility, and its antioxidant properties have been demonstrated. In this study, the effects of kisspeptin on the improvement of the vitrification and thawing results of human ovarian tissues were investigated. In this work, 12 ovaries from patients who underwent hysterectomy were collected laparoscopically, and then 32 samples from each of their tissues were taken. Haematoxylin and eosin (H&E) staining was performed to check the normality of the ovarian tissue and, subsequently, the samples were allocated randomly into four groups, including: (1) fresh (control), (2) vitrification, (3) vitrified + 1 μM kisspeptin, and (4) vitrified + 10 μM kisspeptin groups. After vitrification, thawing, and tissue culture processes, H&E staining for tissue quality assessment, terminal deoxynucleotidyl transferase dUTP nick end labelling assay for apoptosis evaluation, and malondialdehyde (MDA), superoxide dismutase (SOD), and ferric reducing ability of plasma tests for oxidative stress appraisal were carried out. Our histological results showed incoherency of ovarian tissue morphology in the vitrification group compared with other groups. Other findings implicated increased apoptosis rate and MDA concentration and reduced SOD activity and total antioxidant capacity (TAC) in the vitrification group compared with the control group (P < 0.05). Moreover, decreased apoptosis rate and MDA concentration, and increased TAC and SOD function were observed in the vitrification with kisspeptin groups (1 μM and 10 μM) compared with the vitrified group (P < 0.05). Our reports express that kisspeptin is an effective agent to overcome the negative effects of vitrification by regulating reactive oxygen species-related apoptotic processes.
Collapse
Affiliation(s)
- Anahita Tavakoli
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Fereshteh Aliakbari
- Fereshteh Aliakbari, Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Santos LC, Dos Anjos Cordeiro JM, da Silva Santana L, Barbosa EM, Santos BR, Mendonça LD, Cunha MCDSG, Machado WM, Santana LR, Kersul MG, Henriques PC, Lopes RA, Snoeck PPDN, Szawka RE, Silva JF. Kisspeptin treatment reverses high prolactin levels and improves gonadal function in hypothyroid male rats. Sci Rep 2023; 13:16819. [PMID: 37798396 PMCID: PMC10556046 DOI: 10.1038/s41598-023-44056-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
We evaluated whether the administration of kisspeptin-10 (Kp10) is capable of restoring gonadal function in hypothyroid male rats. Hypothyroidism was induced with 6-propyl-2-thiouracil (PTU) for three months. In the last month, half of the hypothyroid animals were treated with Kp10. Hypothyroidism reduced testicular and sex gland mass, decreased the proliferation of the seminiferous epithelium, and compromised sperm morphology, motility, and vigor. A decrease in plasma LH and testosterone levels and an increase in prolactin secretion were observed in the hypothyroid rats. Hypothyroidism reduced Kiss1 and Kiss1r protein and gene expression and Star and Cyp11a1 mRNA levels in the testis. Furthermore, it reduced Lhb, Prl, and Drd2 and increased Tshb and Gnrhr expression in the pituitary. In the hypothalamus, hypothyroidism increased Pdyn and Kiss1r while reducing Gnrh1. Kp10 treatment in hypothyroid rats restored testicular and seminal vesicle morphology, improved sperm morphology and motility, reversed high prolactin levels, and increased LH and testosterone levels. In addition, Kp10 increased testicular expression of Kiss1, Kiss1r, Fshr, and Nr5a1 and pituitary Kiss1 expression. Our findings describe the inhibitory effects of hypothyroidism on the male gonadal axis and sperm quality and demonstrate that Kp10 treatment reverses high prolactin levels and improves gonadal function and sperm quality in hypothyroid rats.
Collapse
Affiliation(s)
- Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Jeane Martinha Dos Anjos Cordeiro
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Larissa da Silva Santana
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Erikles Macêdo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Letícia Dias Mendonça
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Maria Clara da Silva Galrão Cunha
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - William Morais Machado
- Laboratorio de Reprodução Animal, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Larissa Rodrigues Santana
- Laboratorio de Reprodução Animal, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Maíra Guimarães Kersul
- Laboratorio de Reprodução Animal, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Patrícia Costa Henriques
- Laboratorio de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofisica, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Roberta Araújo Lopes
- Laboratorio de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofisica, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Paola Pereira das Neves Snoeck
- Laboratorio de Reprodução Animal, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Raphael Escorsim Szawka
- Laboratorio de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofisica, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil.
| |
Collapse
|
4
|
Santos BR, Cordeiro JMDA, Santos LC, Santana LDS, Nascimento AEDJ, Silva JF. Kisspeptin Suppresses Inflammasome-NLRP3 Activation and Pyroptosis Caused by Hypothyroidism at the Maternal-Fetal Interface of Rats. Int J Mol Sci 2023; 24:ijms24076820. [PMID: 37047793 PMCID: PMC10095583 DOI: 10.3390/ijms24076820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 04/14/2023] Open
Abstract
Gestational diseases such as preeclampsia and gestational diabetes cause inflammasome activation and pyroptosis in the placenta and changes in placental kisspeptin levels. Although maternal hypothyroidism also reduces the kisspeptin/Kiss1R system at the maternal-fetal interface, there is still no information on whether this dysfunction causes inflammasome activation and pyroptosis in the placenta or influences the modulatory role of kisspeptin in these processes. This study aimed to evaluate whether hypothyroidism activates the inflammasome-NLRP3 pathway and pyroptosis at the maternal-fetal interface of rats and whether kisspeptin can modulate these processes. Hypothyroidism was induced in Wistar rats by the administration of propylthiouracil. Kisspeptin-10 (Kp10) treatment began on the 8th day of gestation (DG). Gene and/or protein expressions of NLRP3, Caspase 1, IL-1β, IL-18, and Gasdermin D (Gsmd) were evaluated in the deciduae and placentae at the 18th DG. Hypothyroidism increased the decidual and placental stainings of NLRP3, IL-1β, and Gasdermin D, and increased the gene expressions of Nlrp3, Ilβ, and Il18 in the placenta and of Gsmd in the decidua. Treatment with Kp10 suppressed the increase in NLRP3/Nlrp3, IL-1β, Il18, and Gasdermin D/Gsmd caused by hypothyroidism at the maternal-fetal interface. However, Kp10 increased the placental gene expressions of Casp1 and Il1β. The findings demonstrated that maternal hypothyroidism activated the inflammasome-NLRP3 pathway and pyroptosis at the maternal-fetal interface of rats and that treatment with Kp10 was able to block these processes, thus suggesting that kisspeptin analogues may be promising in the treatment of gestational diseases that involve inflammasome activation and pyroptosis.
Collapse
Affiliation(s)
- Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil
| | - Jeane Martinha Dos Anjos Cordeiro
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil
| | - Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil
| | - Larissa da Silva Santana
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil
| | - Acácia Eduarda de Jesus Nascimento
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus 45662-900, Brazil
| |
Collapse
|
5
|
Santos BR, dos Anjos Cordeiro JM, Santos LC, Barbosa EM, Mendonça LD, Santos EO, de Macedo IO, de Lavor MSL, Szawka RE, Serakides R, Silva JF. Kisspeptin treatment improves fetal-placental development and blocks placental oxidative damage caused by maternal hypothyroidism in an experimental rat model. Front Endocrinol (Lausanne) 2022; 13:908240. [PMID: 35966095 PMCID: PMC9365946 DOI: 10.3389/fendo.2022.908240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Maternal hypothyroidism is associated with fetal growth restriction, placental dysfunction, and reduced kisspeptin/Kiss1R at the maternal-fetal interface. Kisspeptin affects trophoblastic migration and has antioxidant and immunomodulatory activities. This study aimed to evaluate the therapeutic potential of kisspeptin in the fetal-placental dysfunction of hypothyroid Wistar rats. Hypothyroidism was induced by daily administration of propylthiouracil. Kisspeptin-10 (Kp-10) treatment was performed every other day or daily beginning on day 8 of gestation. Feto-placental development, placental histomorphometry, and expression levels of growth factors (VEGF, PLGF, IGF1, IGF2, and GLUT1), hormonal (Dio2) and inflammatory mediators (TNFα, IL10, and IL6), markers of hypoxia (HIF1α) and oxidative damage (8-OHdG), antioxidant enzymes (SOD1, Cat, and GPx1), and endoplasmic reticulum stress mediators (ATF4, GRP78, and CHOP) were evaluated on day 18 of gestation. Daily treatment with Kp-10 increased free T3 and T4 levels and improved fetal weight. Both treatments reestablished the glycogen cell population in the junctional zone. Daily treatment with Kp-10 increased the gene expression levels of Plgf, Igf1, and Glut1 in the placenta of hypothyroid animals, in addition to blocking the increase in 8-OHdG and increasing protein and/or mRNA expression levels of SOD1, Cat, and GPx1. Daily treatment with Kp-10 did not alter the higher protein expression levels of VEGF, HIF1α, IL10, GRP78, and CHOP caused by hypothyroidism in the junctional zone compared to control, nor the lower expression of Dio2 caused by hypothyroidism. However, in the labyrinth zone, this treatment restored the expression of VEGF and IL10 and reduced the GRP78 and CHOP immunostaining. These findings demonstrate that daily treatment with Kp-10 improves fetal development and placental morphology in hypothyroid rats, blocks placental oxidative damage, and increases the expression of growth factors and antioxidant enzymes in the placenta.
Collapse
Affiliation(s)
- Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Jeane Martinha dos Anjos Cordeiro
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Erikles Macedo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Letícia Dias Mendonça
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Emilly Oliveira Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Isabella Oliveira de Macedo
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Mário Sergio Lima de Lavor
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
| | - Raphael Escorsim Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rogeria Serakides
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, Brazil
- *Correspondence: Juneo Freitas Silva,
| |
Collapse
|
6
|
Voluntary Exercise Attenuates Hyperhomocysteinemia, But Does not Protect Against Hyperhomocysteinemia-Induced Testicular and Epididymal Disturbances. Reprod Sci 2021; 29:277-290. [PMID: 34494235 DOI: 10.1007/s43032-021-00704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The hyperhomocysteinemia (HHcy) is toxic to the cells and associated with several diseases. Clinical studies have shown changes in plasma concentrations of Hcy after physical exercise. This study aimed to assess the effect of HHcy on testis, epididymis and sperm quality and to investigate whether voluntary exercise training protects this system against damage caused by HHcy in Swiss mice. In this study, 48 mice were randomly distributed in the control, HHcy, physical exercise, and HHcy combined with physical exercise groups. HHcy was induced by daily administration of dl-homocysteine thiolactone via gavage throughout the experimental period. Physical exercise was performed through voluntary running on the exercise wheels. The plasma concentrations of homocysteine (Hcy) and testosterone were determined. The testes and epididymis were used to assess the sperm count, histopathology, lipoperoxidation, cytokine levels, testicular cholesterol, myeloperoxidase, and catalase activity. Spermatozoa were analyzed for morphology, acrosome integrity, mitochondrial activity, and motility. In the testes, HHcy increased the number of abnormal seminiferous tubules, reduced the tubular diameter and the height of the germinal epithelium. In the epididymis, there was tissue remodeling in the head region. Ultimately, voluntary physical exercise training reduced plasma Hcy concentration but did not attenuate HHcy-induced testicular and epididymal disturbances.
Collapse
|
7
|
Akkaya H. Kisspeptin-10 Administration Regulates
mTOR and AKT Activities and Oxidative Stress in Mouse Cardiac Tissue. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
KiSS1 in regulation of metastasis and response to antitumor drugs. Drug Resist Updat 2019; 42:12-21. [DOI: 10.1016/j.drup.2019.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
|
9
|
Güvenç M, Aksakal M. Ameliorating effect of kisspeptin-10 on methotrexate-induced sperm damages and testicular oxidative stress in rats. Andrologia 2018; 50:e13057. [PMID: 29862548 DOI: 10.1111/and.13057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/01/2022] Open
Abstract
The purpose of this study was to determine the kisspeptin-10 (Kiss) administration on the damages in testicular oxidant-antioxidant system, reproductive organ weights and some spermatological characteristics resulted from methotrexate (MTX) exposure. Group 1 (n:6) received saline only; group 2 (n:6) received 50 nmol/kg kisspeptin-10 for 10 days; group 3 (n:10) received single-dose methotrexate 20 mg/kg; and group 4 (n:10) received MTX 20 mg/kg single dose and, after 3 days, received kisspeptin-10, 50 nmol/kg, lasted for 10 days by intraperitoneal injection. At the end of the study, malondialdehyde levels were found to have increased following the application of MTX while showing a significant reduction in group 4 with Kiss administration. With respect to the spermatological parameters, administering MTX decreased motility and increased the rates of abnormal spermatozoa in group 2, while improvements were observed in group 4 in the form of increased motility in the spermatozoa and fewer abnormal spermatozoa. In addition, Kiss treatment provided statistically significant increases in the absolute weight of the seminal vesicles and the relative weights of the right cauda epididymis and seminal vesicles resulting from MTX administration. MTX administration damaged some spermatological parameters and increased oxidative stress when compared to the control group. However, Kiss treatment was observed to mitigate these adverse effects as demonstrated by the improvements in coadministration of Kiss and MTX when compared to the MTX group. It is concluded that Kiss treatment may reduce MTX-induced reproductive toxicity as a potential antioxidant compound.
Collapse
Affiliation(s)
- Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Mesut Aksakal
- Department of Physiology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
10
|
Hou Y, Wang X, Ping J, Lei Z, Gao Y, Ma Z, Jia C, Zhang Z, Li X, Jin M, Li X, Suo C, Zhang Y, Su J. Metabonomics Approach to Assessing the Modulatory Effects of Kisspeptin-10 on Liver Injury Induced by Heat Stress in Rats. Sci Rep 2017; 7:7020. [PMID: 28765538 PMCID: PMC5539146 DOI: 10.1038/s41598-017-06017-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 06/07/2017] [Indexed: 01/19/2023] Open
Abstract
The protective effects of Kisspeptin on heat-induced oxidative stress in rats were investigated by using a combination of biochemical parameters and metabonomics. Metabonomic analyses were performed using gas chromatography/mass spectrometry in conjunction with multivariate and univariate statistical analyses. At the end point of the heat stress experiment, histological observation, ultrastructural analysis and biochemical parameters were measured. Metabonomic analysis of liver tissue revealed that Kisspeptin mainly attenuated the alteration of purine metabolism and fatty acid metabolism pathways. Futhermore, Kisspeptin also increased the levels of GSH, T-AOC as well as SOD activities, and upregulated MDA levels. These results provide important mechanistic insights into the protective effects of Kisspeptin against heat-induced oxidative stress.
Collapse
Affiliation(s)
- Yuanlong Hou
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Xiaoyan Wang
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jihui Ping
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Zhihai Lei
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Yingdong Gao
- Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 320100, China
| | - Zhiyu Ma
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Cuicui Jia
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Zheng Zhang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Xiang Li
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Mengmeng Jin
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Xiaoliang Li
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Chuan Suo
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Ying Zhang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Juan Su
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China.
| |
Collapse
|