1
|
Jastrząb P, Car H, Wielgat P. Cell membrane sialome machinery and regulation of receptor tyrosine kinases in gliomas: The functional relevance and therapeutic perspectives. Biomed Pharmacother 2025; 184:117921. [PMID: 39986236 DOI: 10.1016/j.biopha.2025.117921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
Gliomas are the most common primary brain tumors characterized by high aggressive potential, poor therapeutic response, and significantly reduced overall patient survival. Despite significant progress in the diagnosis and therapy of cancer, gliomas remain a clinical challenge due to the high molecular and cellular heterogeneity, which provides for multiple mechanisms of chemoresistance and adaptive plasticity. A better understanding of cellular regulatory mechanisms of intracellular signal transduction enables the development of targeted drug therapies and clinical application. The increasing evidence confirms the role of sialoglycans in the processing of cell membrane receptors via altered dimerization, activation, and autophosphorylation, which results in changes in cellular signaling and promotes cancer progression. Hence, the modified sialylation patterns, as a hallmark of cancer, have been described as modulators of chemotherapy effectiveness and drug resistance. The receptor tyrosine kinases (RTKs)-mediated signaling in glial tumors control cell growth, survival, migration, and angiogenesis. Here, we focus on the engagement of the sialome machinery in RTKs processing in gliomas and its importance as a suitable therapeutic target. The analysis of the sialylation pattern and its impact on the activity of growth factor receptors provides valuable insights into our understanding of the molecular and cellular complexity of glial tumors. This highlights the novel treatment approaches that could improve prognosis and patients' overall survival.
Collapse
Affiliation(s)
- Patrycja Jastrząb
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland; Department of Experimental Pharmacology, Medical University of Bialystok, ul. Szpitalna 37, Bialystok 15-295, Poland
| | - Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland.
| |
Collapse
|
2
|
Luo F, Sui L, Sun Y, Lai Z, Zhang C, Zhang G, Bi B, Yu S, Jin LH. Rab1 and Syntaxin 17 regulate hematopoietic homeostasis through β-integrin trafficking in Drosophila. J Genet Genomics 2025; 52:51-65. [PMID: 39542172 DOI: 10.1016/j.jgg.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Hematopoiesis is crucial for organismal health, and Drosophila serves as an effective genetic model due to conserved regulatory mechanisms with vertebrates. In larvae, hematopoiesis primarily occurs in the lymph gland, which contains distinct zones, including the cortical zone, intermediate zone, medullary zone, and posterior signaling center (PSC). Rab1 is vital for membrane trafficking and maintaining the localization of cell adhesion molecules, yet its role in hematopoietic homeostasis is not fully understood. This study investigates the effects of Rab1 dysfunction on β-integrin trafficking within circulating hemocytes and lymph gland cells. Rab1 impairment disrupts the endosomal trafficking of β-integrin, leading to its abnormal localization on cell membranes, which promotes lamellocyte differentiation and alters progenitor dynamics in circulating hemocytes and lymph glands, respectively. We also show that the mislocalization of β-integrin is dependent on the adhesion protein DE-cadherin. The reduction of β-integrin at cell boundaries in PSC cells leads to fewer PSC cells and lamellocyte differentiation. Furthermore, Rab1 regulates the trafficking of β-integrin via the Q-SNARE protein Syntaxin 17 (Syx17). Our findings indicate that Rab1 and Syx17 regulate distinct trafficking pathways for β-integrin in different hematopoietic compartments and maintain hematopoietic homeostasis of Drosophila.
Collapse
Affiliation(s)
- Fangzhou Luo
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Luwei Sui
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Ying Sun
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Zhixian Lai
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Chengcheng Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Gaoqun Zhang
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Bing Bi
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Shichao Yu
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| | - Li Hua Jin
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
3
|
Abalymov A, Pinchasik BE, Akasov RA, Lomova M, Parakhonskiy BV. Strategies for Anisotropic Fibrillar Hydrogels: Design, Cell Alignment, and Applications in Tissue Engineering. Biomacromolecules 2023; 24:4532-4552. [PMID: 37812143 DOI: 10.1021/acs.biomac.3c00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Efficient cellular alignment in biomaterials presents a considerable challenge, demanding the refinement of appropriate material morphologies, while ensuring effective cell-surface interactions. To address this, biomaterials are continuously researched with diverse coatings, hydrogels, and polymeric surfaces. In this context, we investigate the influence of physicochemical parameters on the architecture of fibrillar hydrogels that significantly orient the topography of flexible hydrogel substrates, thereby fostering cellular adhesion and spatial organization. Our Review comprehensively assesses various techniques for aligning polymer fibrils within hydrogels, specifically interventions applied during and after the cross-linking process. These methodologies include mechanical strains, precise temperature modulation, controlled fluidic dynamics, and chemical modulators, as well as the use of magnetic and electric fields. We highlight the intrinsic appeal of these methodologies in fabricating cell-aligning interfaces and discuss their potential implications within the fields of biomaterials and tissue engineering, particularly concerning the pursuit of optimal cellular alignment.
Collapse
Affiliation(s)
- Anatolii Abalymov
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bat-El Pinchasik
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Roman A Akasov
- Sechenov University and Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 101000 Moscow, Russia
| | - Maria Lomova
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bogdan V Parakhonskiy
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Hu Q, Saleem K, Pandey J, Charania AN, Zhou Y, He C. Cell Adhesion Molecules in Fibrotic Diseases. Biomedicines 2023; 11:1995. [PMID: 37509634 PMCID: PMC10377070 DOI: 10.3390/biomedicines11071995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Mechanisms underlying the pathogenesis of tissue fibrosis remain incompletely understood. Emerging evidence suggests that cell adhesion molecules (CAMs) are critical in fibrotic progression in many organs, including lung, kidney, skin, and liver. CAMs promote cell-cell and cell-extracellular matrix (ECM) interactions to maintain tissue architecture and normal function in homeostasis. However, dysregulated expression and function of CAMs can lead to chronic inflammation and tissue fibrosis. The major families of CAMs include integrins, cadherins, selectins, and immunoglobulins. Here, we review the role of the CAMs in fibrosis development across various organs with a focus on integrins and cadherins, and discuss their respective roles in the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Qianjiang Hu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Komal Saleem
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jyotsana Pandey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Arzoo N. Charania
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Zhou X, Zhu H, Luo C, Xiao H, Zou X, Zou J, Zhang G. Targeting integrin α5β1 in urological tumors: opportunities and challenges. Front Oncol 2023; 13:1165073. [PMID: 37483505 PMCID: PMC10358839 DOI: 10.3389/fonc.2023.1165073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Urological tumors, such as prostate cancer, renal cell carcinoma, and bladder cancer, have shown a significant rise in prevalence in recent years and account for a significant proportion of malignant tumors. It has been established that metastasis to distant organs caused by urological tumors is the main cause of death, although the mechanisms underlying metastasis have not been fully elucidated. The fibronectin receptor integrin α5β1 reportedly plays an important role in distant metastasis and is closely related to tumor development. It is widely thought to be an important cancer mediator by interacting with different ligands, mediating tumor adhesion, invasion, and migration, and leading to immune escape. In this paper, we expound on the relationship and regulatory mechanisms of integrin α5β1 in these three cancers. In addition, the clinical applications of integrin α5β1 in these cancers, especially against treatment resistance, are discussed. Last but not least, the possibility of integrin α5β1 as a potential target for treatment is examined, with new ideas for future research being proposed.
Collapse
Affiliation(s)
- Xuming Zhou
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hezhen Zhu
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Cong Luo
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Huan Xiao
- The First Clinical College, Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, China
| | - Guoxi Zhang
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, China
| |
Collapse
|
6
|
Agarwal R, Iezhitsa I. Advances in targeting the extracellular matrix for glaucoma therapy: current updates. Expert Opin Ther Targets 2023; 27:1217-1229. [PMID: 38069479 DOI: 10.1080/14728222.2023.2293748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023]
Abstract
INTRODUCTION Elevated intraocular pressure (IOP) is a well-recognized risk factor for development of primary open angle glaucoma (POAG), a leading cause of irreversible blindness. Ocular hypertension is associated with excessive extracellular matrix (ECM) deposition in trabecular meshwork (TM) resulting in increased aqueous outflow resistance and elevated IOP. Hence, therapeutic options targeting ECM remodeling in TM to lower IOP in glaucomatous eyes are of considerable importance. AREAS COVERED This paper discusses the complex process of ECM regulation in TM and explores promising therapeutic targets. The role of Transforming Growth Factor-β as a central player in ECM deposition in TM is discussed. We elaborate the key regulatory processes involved in its activation, release, signaling, and cross talk with other signaling pathways including Rho GTPase, Wnt, integrin, cytokines, and renin-angiotensin-aldosterone. Further, we summarize the therapeutic agents that have been explored to target ECM dysregulation in TM. EXPERT OPINION Targeting molecular pathways to reduce ECM deposition and/or enhance its degradation are of considerable significance for IOP lowering. Challenges lie in pinpointing specific targets and designing drug delivery systems to precisely interact with pathologically active/inactive signaling. Recent advances in monoclonal antibodies, fusion molecules, and vectored nanotechnology offer potential solutions.
Collapse
Affiliation(s)
- Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Mieczkowski K, Popeda M, Lesniak D, Sadej R, Kitowska K. FGFR2 Controls Growth, Adhesion and Migration of Nontumorigenic Human Mammary Epithelial Cells by Regulation of Integrin β1 Degradation. J Mammary Gland Biol Neoplasia 2023; 28:9. [PMID: 37191822 DOI: 10.1007/s10911-023-09537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
The role of fibroblast growth factor receptor 2 (FGFR2), an important mediator of stromal paracrine and autocrine signals, in mammary gland morphogenesis and breast cancer has been extensively studied over the last years. However, the function of FGFR2 signalling in the initiation of mammary epithelial oncogenic transformation remains elusive. Here, FGFR2-dependent behaviour of nontumorigenic model of mammary epithelial cells was studied. In vitro analyses demonstrated that FGFR2 regulates epithelial cell communication with extracellular matrix (ECM) proteins. Silencing of FGFR2 significantly changed the phenotype of cell colonies in three-dimensional cultures, decreased integrins α2, α5 and β1 protein levels and affected integrin-driven processes, such as cell adhesion and migration. More detailed analysis revealed the FGFR2 knock-down-induced proteasomal degradation of integrin β1. Analysis of RNA-seq databases showed significantly decreased FGFR2 and ITGB1 mRNA levels in breast tumour samples, when compared to non-transformed tissues. Additionally, high risk healthy individuals were found to have disrupted correlation profiles of genes associated with FGFR2 and integrin signalling, cell adhesion/migration and ECM remodelling. Taken together, our results strongly suggest that FGFR2 loss with concomitant integrin β1 degradation is responsible for deregulation of epithelial cell-ECM interactions and this process may play an important role in the initiation of mammary gland epithelial tumorigenesis.
Collapse
Affiliation(s)
- Kamil Mieczkowski
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Marta Popeda
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
- Department of Pathomorphology, Medical University of Gdansk, Gdansk, Poland
| | - Dagmara Lesniak
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Rafal Sadej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Kamila Kitowska
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
8
|
Luthold C, Hallal T, Labbé DP, Bordeleau F. The Extracellular Matrix Stiffening: A Trigger of Prostate Cancer Progression and Castration Resistance? Cancers (Basel) 2022; 14:cancers14122887. [PMID: 35740556 PMCID: PMC9221142 DOI: 10.3390/cancers14122887] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Despite advancements made in diagnosis and treatment, prostate cancer remains the second most diagnosed cancer among men worldwide in 2020, and the first in North America and Europe. Patients with localized disease usually respond well to first-line treatments, however, up to 30% develop castration-resistant prostate cancer (CRPC), which is often metastatic, making this stage of the disease incurable and ultimately fatal. Over the last years, interest has grown into the extracellular matrix (ECM) stiffening as an important mediator of diseases, including cancers. While this process is increasingly well-characterized in breast cancer, a similar in-depth look at ECM stiffening remains lacking for prostate cancer. In this review, we scrutinize the current state of literature regarding ECM stiffening in prostate cancer and its potential association with disease progression and castration resistance.
Collapse
Affiliation(s)
- Carole Luthold
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada;
- Division of Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
| | - David P. Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
- Division of Urology, Department of Surgery, McGill University, Montréal, QC H4A 3J1, Canada
- Correspondence: (D.P.L.); (F.B.)
| | - François Bordeleau
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada;
- Division of Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: (D.P.L.); (F.B.)
| |
Collapse
|
9
|
Brandhorst D, Brandhorst H, Lee Layland S, Acreman S, Schenke-Layland K, Johnson PR. Basement membrane proteins improve human islet survival in hypoxia: Implications for islet inflammation. Acta Biomater 2022; 137:92-102. [PMID: 34653695 DOI: 10.1016/j.actbio.2021.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022]
Abstract
Enzymatic digestion of the pancreas during islet isolation is associated with disintegration of the islet basement membrane (IBM) that can cause reduction of functional and morphological islet integrity. Attempts to re-establish IBM by coating the surface of culture vessels with various IBM proteins (IBMP) have resulted in loss of islet phenotype and function. This study investigated the capability of Collagen-IV, Laminin-521 and Nidogen-1, utilised as single or combined media supplements, to protect human islets cultured in hypoxia. When individually supplemented to media, all IBMP significantly improved islet survival and in-vitro function, finally resulting in as much as a two-fold increase of islet overall survival. In contrast, combining IBMP enhanced the production of chemokines and reactive oxygen species diminishing all positive effects of individually added IBMP. This impact was concentration-dependent and concerned nearly all parameters of islet integrity. Predictive extrapolation of these findings to data from 116 processed human pancreases suggests that more than 90% of suboptimal pancreases could be rescued for clinical islet transplantation increasing the number of transplantable preparations from actual 25 to 40 when adding Nidogen-1 to pretransplant culture. This study suggests that media supplementation with essential IBMP protects human islets from hypoxia. Amongst those, certain IBMP may be incompatible when combined or applied at higher concentrations. STATEMENT OF SIGNIFICANCE: Pancreatic islet transplantation is a minimally-invasive treatment that can reverse type 1 diabetes in certain patients. It involves infusing of insulin-producing cell-clusters (islets) from donor pancreases. Unfortunately, islet extraction is associated with damage of the islet basement membrane (IBM) causing reduced islet function and cell death. Attempts to re-establish the IBM by coating the surface of culture vessels with IBM proteins (IBMP) have been unsuccessful. Instead, we dissolved the most relevant IBM components Collagen-IV, Laminin-521 and Nidogen-1 in media routinely used for clinical islet culture and transplantation. We found human islet survival and function was substantially improved by IBMP, particularly Nidogen-1, when exposed to a hypoxic environment as found in vivo. We also investigated IBMP combinations. Our present findings have important clinical implications.
Collapse
|
10
|
Chung H, Oh S, Shin HW, Lee Y, Lee H, Seok SH. Matrix Stiffening Enhances DNCB-Induced IL-6 Secretion in Keratinocytes Through Activation of ERK and PI3K/Akt Pathway. Front Immunol 2021; 12:759992. [PMID: 34858412 PMCID: PMC8631934 DOI: 10.3389/fimmu.2021.759992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 12/04/2022] Open
Abstract
Matrix stiffness, a critical physical property of the cellular environment, is implicated in epidermal homeostasis. In particular, matrix stiffening during the pathological progression of skin diseases appears to contribute to cellular responses of keratinocytes. However, it has not yet elucidated the molecular mechanism underlying matrix-stiffness-mediated signaling in coordination with chemical stimuli during inflammation and its effect on proinflammatory cytokine production. In this study, we demonstrated that keratinocytes adapt to matrix stiffening by increasing cell–matrix adhesion via actin cytoskeleton remodeling. Specifically, mechanosensing and signal transduction are coupled with chemical stimuli to regulate cytokine production, and interleukin-6 (IL-6) production is elevated in keratinocytes on stiffer substrates in response to 2,4-dinitrochlorobenzene. We demonstrated that β1 integrin and focal adhesion kinase (FAK) expression were enhanced with increasing stiffness and activation of ERK and the PI3K/Akt pathway was involved in stiffening-mediated IL-6 production. Collectively, our results reveal the critical role of matrix stiffening in modulating the proinflammatory response of keratinocytes, with important clinical implications for skin diseases accompanied by pathological matrix stiffening.
Collapse
Affiliation(s)
- Hyewon Chung
- Macrophages Laboratory, Department of Microbiology and Immunology, Institute of Endemic Disease, College of Medicine, Seoul National University, Seoul, South Korea
| | - Seunghee Oh
- School of Mechanical Engineering, Yonsei University, Seoul, South Korea.,Global Technology Center, Samsung Electronics, Co., Ltd., Suwon, South Korea
| | - Hyun-Woo Shin
- Obstructive Upper airway Research (OUaR) Laboratory, Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Yunam Lee
- School of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Hyungsuk Lee
- School of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Seung Hyeok Seok
- Macrophages Laboratory, Department of Microbiology and Immunology, Institute of Endemic Disease, College of Medicine, Seoul National University, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
11
|
Valdoz JC, Johnson BC, Jacobs DJ, Franks NA, Dodson EL, Sanders C, Cribbs CG, Van Ry PM. The ECM: To Scaffold, or Not to Scaffold, That Is the Question. Int J Mol Sci 2021; 22:12690. [PMID: 34884495 PMCID: PMC8657545 DOI: 10.3390/ijms222312690] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) has pleiotropic effects, ranging from cell adhesion to cell survival. In tissue engineering, the use of ECM and ECM-like scaffolds has separated the field into two distinct areas-scaffold-based and scaffold-free. Scaffold-free techniques are used in creating reproducible cell aggregates which have massive potential for high-throughput, reproducible drug screening and disease modeling. Though, the lack of ECM prevents certain cells from surviving and proliferating. Thus, tissue engineers use scaffolds to mimic the native ECM and produce organotypic models which show more reliability in disease modeling. However, scaffold-based techniques come at a trade-off of reproducibility and throughput. To bridge the tissue engineering dichotomy, we posit that finding novel ways to incorporate the ECM in scaffold-free cultures can synergize these two disparate techniques.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pam M. Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (J.C.V.); (B.C.J.); (D.J.J.); (N.A.F.); (E.L.D.); (C.S.); (C.G.C.)
| |
Collapse
|
12
|
Benáková Š, Holendová B, Plecitá-Hlavatá L. Redox Homeostasis in Pancreatic β-Cells: From Development to Failure. Antioxidants (Basel) 2021; 10:antiox10040526. [PMID: 33801681 PMCID: PMC8065646 DOI: 10.3390/antiox10040526] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Redox status is a key determinant in the fate of β-cell. These cells are not primarily detoxifying and thus do not possess extensive antioxidant defense machinery. However, they show a wide range of redox regulating proteins, such as peroxiredoxins, thioredoxins or thioredoxin reductases, etc., being functionally compartmentalized within the cells. They keep fragile redox homeostasis and serve as messengers and amplifiers of redox signaling. β-cells require proper redox signaling already in cell ontogenesis during the development of mature β-cells from their progenitors. We bring details about redox-regulated signaling pathways and transcription factors being essential for proper differentiation and maturation of functional β-cells and their proliferation and insulin expression/maturation. We briefly highlight the targets of redox signaling in the insulin secretory pathway and focus more on possible targets of extracellular redox signaling through secreted thioredoxin1 and thioredoxin reductase1. Tuned redox homeostasis can switch upon chronic pathological insults towards the dysfunction of β-cells and to glucose intolerance. These are characteristics of type 2 diabetes, which is often linked to chronic nutritional overload being nowadays a pandemic feature of lifestyle. Overcharged β-cell metabolism causes pressure on proteostasis in the endoplasmic reticulum, mainly due to increased demand on insulin synthesis, which establishes unfolded protein response and insulin misfolding along with excessive hydrogen peroxide production. This together with redox dysbalance in cytoplasm and mitochondria due to enhanced nutritional pressure impact β-cell redox homeostasis and establish prooxidative metabolism. This can further affect β-cell communication in pancreatic islets through gap junctions. In parallel, peripheral tissues losing insulin sensitivity and overall impairment of glucose tolerance and gut microbiota establish local proinflammatory signaling and later systemic metainflammation, i.e., low chronic inflammation prooxidative properties, which target β-cells leading to their dedifferentiation, dysfunction and eventually cell death.
Collapse
Affiliation(s)
- Štěpánka Benáková
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
- First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
| | - Lydie Plecitá-Hlavatá
- Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic; (Š.B.); (B.H.)
- Department of Mitochondrial Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Correspondence: ; Tel.: +420-296-442-285
| |
Collapse
|
13
|
Daliri K, Pfannkuche K, Garipcan B. Effects of physicochemical properties of polyacrylamide (PAA) and (polydimethylsiloxane) PDMS on cardiac cell behavior. SOFT MATTER 2021; 17:1156-1172. [PMID: 33427281 DOI: 10.1039/d0sm01986k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In vitro cell culture is commonly applied in laboratories around the world. Cultured cells are either of primary origin or established cell lines. Such transformed cell lines are increasingly replaced by pluripotent stem cell derived organotypic cells with more physiological properties. The quality of the culture conditions and matrix environment is of considerable importance in this regard. In fact, mechanical cues of the extracellular matrix have substantial effects on the cellular physiology. This is especially true if contractile cells such as cardiomyocytes are cultured. Therefore, elastic biomaterials have been introduced as scaffolds in 2D and 3D culture models for different cell types, cardiac cells among them. In this review, key aspects of cell-matrix interaction are highlighted with focus on cardiomyocytes and chemical properties as well as strengths and potential pitfalls in using two commonly applied polymers for soft matrix engineering, polyacrylamide (PAA) and polydimethylsiloxane (PDMS) are discussed.
Collapse
Affiliation(s)
- Karim Daliri
- Institute for Neurophysiology, University of Cologne, Medical Faculty, Robert Koch Str. 39, 50931 Cologne, Germany.
| | - Kurt Pfannkuche
- Institute for Neurophysiology, University of Cologne, Medical Faculty, Robert Koch Str. 39, 50931 Cologne, Germany. and Department for Pediatric Cardiology, University Hospital Cologne, Cologne, Germany and Marga-and-Walter-Boll Laboratory for Cardiac Tissue Engineering, University of Cologne, Germany and Center for Molecular Medicine, University of Cologne, Germany
| | - Bora Garipcan
- Institute of Biomedical Engineering, Bogazici University, Cengelkoy, 34684, Istanbul, Turkey.
| |
Collapse
|
14
|
Jimenez-Vergara AC, Van Drunen R, Cagle T, Munoz-Pinto DJ. Modeling the effects of hyaluronic acid degradation on the regulation of human astrocyte phenotype using multicomponent interpenetrating polymer networks (mIPNs). Sci Rep 2020; 10:20734. [PMID: 33244148 PMCID: PMC7691997 DOI: 10.1038/s41598-020-77655-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/12/2020] [Indexed: 11/09/2022] Open
Abstract
Hyaluronic acid (HA) is a highly abundant component in the extracellular matrix (ECM) and a fundamental element to the architecture and the physiology of the central nervous system (CNS). Often, HA degradation occurs when an overreactive inflammatory response, derived from tissue trauma or neurodegenerative diseases such as Alzheimer's, causes the ECM in the CNS to be remodeled. Herein, we studied the effects of HA content as a key regulator of human astrocyte (HAf) reactivity using multicomponent interpenetrating polymer networks (mIPNs) comprised of Collagen I, HA and poly(ethylene glycol) diacrylate. The selected platform facilities the modulation of HA levels independently of matrix rigidity. Total astrocytic processes length, number of endpoints, the expression of the quiescent markers: Aldehyde Dehydrogenase 1 Family Member L1 (ALDH1L1) and Glutamate Aspartate Transporter (GLAST); the reactive markers: Glial Fibrillary Acidic Protein (GFAP) and S100 Calcium-Binding Protein β (S100β); and the inflammatory markers: Inducible Nitric Oxide Synthase (iNOS), Interleukin 1β (IL-1β) and Tumor Necrosis Factor Alpha (TNFα), were assessed. Cumulatively, our results demonstrated that the decrease in HA concentration elicited a reduction in the total length of astrocytic processes and an increase in the expression of HAf reactive and inflammatory markers.
Collapse
Affiliation(s)
| | - Rachel Van Drunen
- Neuroscience Program, Trinity University, San Antonio, TX, 78212, USA
| | - Tyler Cagle
- Neuroscience Program, Trinity University, San Antonio, TX, 78212, USA
| | - Dany J Munoz-Pinto
- Engineering Science Department, Trinity University, San Antonio, TX, 78212, USA.
- Neuroscience Program, Trinity University, San Antonio, TX, 78212, USA.
- Department of Engineering Science, Neuroscience Program, Center for the Sciences and Innovation, CSI 470C, Trinity University, One Trinity Place, San Antonio, TX, 78212, USA.
| |
Collapse
|
15
|
Li K, Zhu Y, Zhang Q, Shi X, Liang F, Han D. A Self-Healing Hierarchical Fiber Hydrogel That Mimics ECM Structure. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5277. [PMID: 33233475 PMCID: PMC7700118 DOI: 10.3390/ma13225277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022]
Abstract
Although there have been many studies on using hydrogels as substitutes for natural extracellular matrices (ECMs), hydrogels that mimic the structure and properties of ECM remain a contentious topic in current research. Herein, a hierarchical biomimetic fiber hydrogel was prepared using a simple strategy, with a structure highly similar to that of the ECM. Cell viability experiments showed that the hydrogel not only has good biocompatibility but also promotes cell proliferation and growth. It was also observed that cells adhere to the fibers in the hydrogel, mimicking the state of cells in the ECM. Lastly, through a rat skin wound repair experiment, we demonstrated that this hydrogel has a good effect on promoting rat skin healing. Its high structural similarity to the ECM and good biocompatibility make this hydrogel a good candidate for prospective applications in the field of tissue engineering.
Collapse
Affiliation(s)
- Kai Li
- The State Key Laboratory for Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;
| | - Yuting Zhu
- Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Y.Z.); (Q.Z.); (D.H.)
| | - Qiang Zhang
- Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Y.Z.); (Q.Z.); (D.H.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Shi
- Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Y.Z.); (Q.Z.); (D.H.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Liang
- The State Key Laboratory for Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;
| | - Dong Han
- Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China; (Y.Z.); (Q.Z.); (D.H.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Enhanced differentiation of human pluripotent stem cells into pancreatic endocrine cells in 3D culture by inhibition of focal adhesion kinase. Stem Cell Res Ther 2020; 11:488. [PMID: 33198821 PMCID: PMC7667734 DOI: 10.1186/s13287-020-02003-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Background Generation of insulin-producing cells from human pluripotent stem cells (hPSCs) in vitro would be useful for drug discovery and cell therapy in diabetes. Three-dimensional (3D) culture is important for the acquisition of mature insulin-producing cells from hPSCs, but the mechanism by which it promotes β cell maturation is poorly understood. Methods We established a stepwise method to induce high-efficiency differentiation of human embryonic stem cells (hESCs) into mature monohormonal pancreatic endocrine cells (PECs), with the last maturation stage in 3D culture. To comprehensively compare two-dimensional (2D) and 3D cultures, we examined gene expression, pancreas-specific markers, and functional characteristics in 2D culture-induced PECs and 3D culture-induced PECs. The mechanisms were considered from the perspectives of cell–cell and cell–extracellular matrix interactions which are fundamentally different between 2D and 3D cultures. Results The expression of the pancreatic endocrine-specific transcription factors PDX1, NKX6.1, NGN3, ISL1, and PAX6 and the hormones INS, GCG, and SST was significantly increased in 3D culture-induced PECs. 3D culture yielded monohormonal endocrine cells, while 2D culture-induced PECs co-expressed INS and GCG or INS and SST or even expressed all three hormones. We found that focal adhesion kinase (FAK) phosphorylation was significantly downregulated in 3D culture-induced PECs, and treatment with the selective FAK inhibitor PF-228 improved the expression of β cell-specific transcription factors in 2D culture-induced PECs. We further demonstrated that 3D culture may promote endocrine commitment by limiting FAK-dependent activation of the SMAD2/3 pathway. Moreover, the expression of the gap junction protein Connexin 36 was much higher in 3D culture-induced PECs than in 2D culture-induced PECs, and inhibition of the FAK pathway in 2D culture increased Connexin 36 expression. Conclusion We developed a strategy to induce differentiation of monohormonal mature PECs from hPSCs and found limited FAK-dependent activation of the SMAD2/3 pathway and unregulated expression of Connexin 36 in 3D culture-induced PECs. This study has important implications for the generation of mature, functional β cells for drug discovery and cell transplantation therapy for diabetes and sheds new light on the signaling events that regulate endocrine specification. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02003-z.
Collapse
|
17
|
HCMV-induced signaling through gB-EGFR engagement is required for viral trafficking and nuclear translocation in primary human monocytes. Proc Natl Acad Sci U S A 2020; 117:19507-19516. [PMID: 32723814 DOI: 10.1073/pnas.2003549117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous analysis of postentry events revealed that human cytomegalovirus (HCMV) displays a unique, extended nuclear translocation pattern in monocytes. We determined that c-Src signaling through pentamer engagement of integrins is required upon HCMV entry to avoid sorting of the virus into late endosomes and subsequent degradation. To follow up on this previous study, we designed experiments to investigate how HCMV-induced signaling through the other major axis-the epidermal growth factor receptor (EGFR) kinase-regulates viral postentry events. Here we show that HCMV induces chronic and functional EGFR signaling that is distinct to the virus as compared to the natural EGFR ligand: EGF. This chronic EGFR kinase activity in infected monocytes is required for the proper subcellular localization of the viral particle during trafficking events, as well as for promoting translocation of viral DNA into the host nucleus. Our data indicate that HCMV glycoprotein B (gB) binds to EGFR at the monocyte surface, the virus and EGFR are internalized together, and gB remains bound to EGFR throughout viral postentry events until de-envelopment to promote the chronic EGFR kinase activity required for viral trafficking and nuclear translocation. These data highlight how initial EGFR signaling via viral binding is necessary for entry, but not sufficient to promote each viral trafficking event. HCMV appears to manipulate the EGFR kinase postentry, via gB-EGFR interaction, to be active at the critical points throughout the trafficking process that leads to nuclear translocation and productive infection of peripheral blood monocytes.
Collapse
|
18
|
Campolo A, Frantz MW, de Laat MA, Hartson SD, Furr MO, Lacombe VA. Differential Proteomic Expression of Equine Cardiac and Lamellar Tissue During Insulin-Induced Laminitis. Front Vet Sci 2020; 7:308. [PMID: 32596266 PMCID: PMC7303262 DOI: 10.3389/fvets.2020.00308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/05/2020] [Indexed: 12/22/2022] Open
Abstract
Endocrinopathic laminitis is pathologically similar to the multi-organ dysfunction and peripheral neuropathy found in human patients with metabolic syndrome. Similarly, endocrinopathic laminitis has been shown to partially result from vascular dysfunction. However, despite extensive research, the pathogenesis of this disease is not well elucidated and laminitis remains without an effective treatment. Here, we sought to identify novel proteins and pathways underlying the development of equine endocrinopathic laminitis. Healthy Standardbred horses (n = 4/group) were either given an electrolyte infusion, or a 48-h euglycemic-hyperinsulinemic clamp. Cardiac and lamellar tissues were analyzed by mass spectrometry (FDR = 0.05). All hyperinsulinemic horses developed laminitis despite being previously healthy. We identified 514 and 709 unique proteins in the cardiac and lamellar proteomes, respectively. In the lamellar tissue, we identified 14 proteins for which their abundance was significantly increased and 13 proteins which were significantly decreased in the hyperinsulinemic group as compared to controls. These results were confirmed via real-time reverse-transcriptase PCR. A STRING analysis of protein-protein interactions revealed that these increased proteins were primarily involved in coagulation and complement cascades, platelet activity, and ribosomal function, while decreased proteins were involved in focal adhesions, spliceosomes, and cell-cell matrices. Novel significant differentially expressed proteins associated with hyperinsulinemia-induced laminitis include talin−1, vinculin, cadherin-13, fibrinogen, alpha-2-macroglobulin, and heat shock protein 90. In contrast, no proteins were found to be significantly differentially expressed in the heart of hyperinsulinemic horses compared to controls. Together, these data indicate that while hyperinsulinemia induced, in part, microvascular damage, complement activation, and ribosomal dysfunction in the lamellae, a similar effect was not seen in the heart. In brief, this proteomic investigation of a unique equine model of hyperinsulinemia identified novel proteins and signaling pathways, which may lead to the discovery of molecular biomarkers and/or therapeutic targets for endocrinopathic laminitis.
Collapse
Affiliation(s)
- Allison Campolo
- Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Matthew W Frantz
- Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Melody A de Laat
- Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States.,Biosciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Steven D Hartson
- Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Martin O Furr
- Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Véronique A Lacombe
- Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
19
|
Glotzbach K, Stamm N, Weberskirch R, Faissner A. Hydrogels Derivatized With Cationic Moieties or Functional Peptides as Efficient Supports for Neural Stem Cells. Front Neurosci 2020; 14:475. [PMID: 32508574 PMCID: PMC7251306 DOI: 10.3389/fnins.2020.00475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
The increasing incidence of neurodegenerative diseases such as Alzheimer's or Parkinson's disease represents a significant burden for patients and national health systems. The conditions are primarily caused by the death of neurons and other neural cell types. One important aim of current stem cell research is to find a way to replace the lost cells. In this perspective, neural stem cells (NSCs) have been considered as a promising tool in the field of regenerative medicine. The behavior of NSCs is modulated by environmental influences, for example hormones, growth factors, cytokines, and extracellular matrix molecules or biomechanics. These factors can be studied by using well-defined hydrogels, which are polymeric networks of synthetic or natural origin with the ability to swell in water. These gels can be modified with a variety of molecules and optimized with regard to their mechanical properties to mimic the natural extracellular environment. In particular modifications applying distinct units such as functional domains and peptides can modulate the development of NSCs with regard to proliferation, differentiation and migration. One well-known peptide sequence that affects the behavior of NSCs is the integrin recognition sequence RGD that has originally been derived from fibronectin. In the present review we provide an overview concerning the applications of modified hydrogels with an emphasis on synthetic hydrogels based on poly(acrylamides), as modified with either cationic moieties or the peptide sequence RGD. This knowledge might be used in tissue engineering and regenerative medicine for the therapy of spinal cord injuries, neurodegenerative diseases and traumata.
Collapse
Affiliation(s)
- Kristin Glotzbach
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Nils Stamm
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Ralf Weberskirch
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
20
|
Chen L, Du L, Zhang L, Xie S, Zhang X, Li H. EGFR inhibitor AG1478 blocks the formation of 3D structures mainly through ERK signaling pathway in Matrigel-induced 3D reconstruction of eccrine sweat gland-like structures. J Mol Histol 2020; 51:191-197. [PMID: 32219645 DOI: 10.1007/s10735-020-09869-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/22/2020] [Indexed: 02/05/2023]
Abstract
EGFR signaling plays important roles in the development of eccrine sweat glands. We previously demonstrate that Matrigel induces eccrine sweat gland cells to reconstruct the three-dimensional (3D) structures of eccrine sweat glands, but the mechanisms are still unknown. In the study, eccrine sweat gland cells were cultured within a 3D Matrigel, and EGFR inhibitor AG1478, or MEK1/2 inhibitor U0126, were added to the medium respectively. The morphology of the 3D-reconstructed eccrine sweat gland-like structures was observed, the localization of phospho-EGFR was detected, and protein levels of EGFR, phospho-EGFR, phospho-JAK, phospho-AKT and phospho-ERK were examined. The results showed that cells treatment with AG1478 from Day 0 of 3D cultures blocked formation of spheroid-like structures. AG1478 administration caused reduced phospho-EGFR, concomitant with downregulation of phospho-ERK1/2, but not phospho-JAK or phospho-AKT. Phospho-EGFR and phospho-ERK were reduced, and only a small number of 3D-structures were formed following treatment with U0126. We conclude that EGFR plays important roles in Matrigel-induced 3D structures of eccrine sweat gland-like structures, and ERK1/2 signaling is responsible, at least in part, for the effect of EGFR.
Collapse
Affiliation(s)
- Liyun Chen
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Lijie Du
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China
| | - Lei Zhang
- Mental Health Center, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan Province, 442000, Hubei, China
| | - Sitian Xie
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Xiang Zhang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China
| | - Haihong Li
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China.
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China.
| |
Collapse
|
21
|
Chondroitin Sulfate Promotes the Proliferation of Keloid Fibroblasts Through Activation of the Integrin and Protein Kinase B Pathways. Int J Mol Sci 2020; 21:ijms21061955. [PMID: 32182995 PMCID: PMC7139995 DOI: 10.3390/ijms21061955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/11/2020] [Indexed: 01/05/2023] Open
Abstract
Keloids are dermal fibroproliferative tumors that arise beyond the boundary of the original wound edges and invades adjacent tissue. Keloids are characterized by the extensive production of extracellular matrix (ECM) and abnormal fibroblast proliferation. Chondroitin sulfate (CS) is one of the major structural components of cartilage and ECM. Recently, we reported the over-accumulation of CS in keloid lesions. Keloid-derived fibroblasts (KFs) and normal dermal fibroblasts (NFs) were incubated with CS. The fibroblast proliferation rate was analyzed using a tetrazolium salt colorimetric assay. The activation of the intracellular signaling pathway was analyzed by Western blotting. Wortmannin, a PI3K inhibitor, and anti-integrin antibodies were tested to investigate the mechanism of the CS-induced cell proliferation. CS strongly stimulated the proliferation of KFs, but not NFs. The analysis of the intracellular signal transduction pathway revealed that the stimulation effect of CS on KF proliferation was due to the activation of the protein kinase B (AKT) pathway and that integrin α1 was responsible for this phenomenon. We revealed that CS probably activates the AKT pathway through integrin to induce KF proliferation. CS may be a novel clinical therapeutic target in keloids.
Collapse
|
22
|
Hwang J, Sullivan MO, Kiick KL. Targeted Drug Delivery via the Use of ECM-Mimetic Materials. Front Bioeng Biotechnol 2020; 8:69. [PMID: 32133350 PMCID: PMC7040483 DOI: 10.3389/fbioe.2020.00069] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
The use of drug delivery vehicles to improve the efficacy of drugs and to target their action at effective concentrations over desired periods of time has been an active topic of research and clinical investigation for decades. Both synthetic and natural drug delivery materials have facilitated locally controlled as well as targeted drug delivery. Extracellular matrix (ECM) molecules have generated widespread interest as drug delivery materials owing to the various biological functions of ECM. Hydrogels created using ECM molecules can provide not only biochemical and structural support to cells, but also spatial and temporal control over the release of therapeutic agents, including small molecules, biomacromolecules, and cells. In addition, the modification of drug delivery carriers with ECM fragments used as cell-binding ligands has facilitated cell-targeted delivery and improved the therapeutic efficiency of drugs through interaction with highly expressed cellular receptors for ECM. The combination of ECM-derived hydrogels and ECM-derived ligand approaches shows synergistic effects, leading to a great promise for the delivery of intracellular drugs, which require specific endocytic pathways for maximal effectiveness. In this review, we provide an overview of cellular receptors that interact with ECM molecules and discuss examples of selected ECM components that have been applied for drug delivery in both local and systemic platforms. Finally, we highlight the potential impacts of utilizing the interaction between ECM components and cellular receptors for intracellular delivery, particularly in tissue regeneration applications.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Millicent O. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
23
|
LacdiNAcylation of N-glycans in MDA-MB-231 human breast cancer cells results in changes in morphological appearance and adhesive properties of the cells. Histochem Cell Biol 2019; 153:17-26. [PMID: 31606752 DOI: 10.1007/s00418-019-01822-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/24/2022]
Abstract
We demonstrated previously that the expression of the disaccharide, GalNAcβ1 → 4GlcNAc (LacdiNAc), on N-glycans of cell surface glycoproteins in MDA-MB-231 human breast cancer cells suppresses their malignant properties such as tumor formation in nude mice. Here, we report changes in the morphological appearance and adhesive properties of two kinds of clonal cells of MDA-MB-231 cells overexpressing β4-N-acetyl-galactosaminyltransferase 4. The clonal cells exhibited a cobble stone-like shape as compared to a spindle-like shape of the mock-transfected cells and the original MDA-MB-231 cells. This was associated with an increased expression of cell surface E-cadherin, a marker of epithelial cells, and a decreased expression of N-cadherin, vimentin, α-smooth muscle actin and ZEB1, markers of mesenchymal cells. In addition, the clonal cells showed a lower migratory activity compared to the mock-transfected cells by wound-healing assay. These results suggest that mesenchymal-epithelial transition may be occurring in these clonal cells. Furthermore, increased adhesion to extracellular matrix proteins such as fibronectin, collagen type I, collagen type IV, and laminin was observed. The clonal cells spread and enlarged, whereas the mock-transfected cells demonstrated poor spreading on laminin-coated plates in the absence of fetal calf serum, indicating that expression of LacdiNAc on cell surface glycoproteins results in changes in cell adhesive and spreading properties particularly to laminin.
Collapse
|
24
|
Kolasińska E, Janik ME, Lityńska A, Przybyło M. Contribution of sialic acids to integrin α5β1 functioning in melanoma cells. Adv Med Sci 2019; 64:267-273. [PMID: 30844664 DOI: 10.1016/j.advms.2019.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/13/2018] [Accepted: 02/19/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To establish the relationship between sialylation of integrin α5β1 and possible alteration in the function of α5β1 receptor in melanoma cells. MATERIALS AND METHODS Integrin α5β1 was isolated from primary WM115 (RGP/VGP-like phenotype) and metastatic WM266-4 (lymph node metastasis) cells via affinity chromatography. Integrin α5β1 sialylation and the shift in relative masses of the enzymatically desialylated subunits were confirmed by confocal microscopy and SDS-PAGE, respectively. The ELISA assay was performed to evaluate sialic acid (SA) influence on integrin α5β1 binding to fibronectin (FN). Cell invasion was investigated by the Transwell invasion assay. The effect of neuraminidases treatment on melanoma cells was assessed by flow cytometry using Maackia amurensis and Sambucus nigra lectins. RESULTS Both subunits of integrin α5β1 were found to be more abundantly sialylated in primary than in metastatic cells. The removal of SA had no effect on the purified integrin α5β1 binding to FN. Although metastatic cells underwent more pronounced desialylation than primary cells, invasion of primary WM115 cells was more dependent on the presence of α2-3 linked SA than it was in the case of metastatic WM266-4 cells. In both melanoma cell lines not only integrin α5β1 was involved in invasion, however simultaneous desialylation and usage of anti-integrin α5β1 antibodies resulted in lower invasion abilities of primary WM115 cells. CONCLUSIONS Our data suggest that in primary melanoma cells integrin α5β1 action is more likely dependent on its glycosylation profile, i.e. the presence of SA residues, which influence (decreased) their invasion properties and may facilitate malignant melanoma progression.
Collapse
Affiliation(s)
- Ewa Kolasińska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Marcelina E Janik
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Anna Lityńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
25
|
Townsend SE, Gannon M. Extracellular Matrix-Associated Factors Play Critical Roles in Regulating Pancreatic β-Cell Proliferation and Survival. Endocrinology 2019; 160:1885-1894. [PMID: 31271410 PMCID: PMC6656423 DOI: 10.1210/en.2019-00206] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022]
Abstract
This review describes formation of the islet basement membrane and the function of extracellular matrix (ECM) components in β-cell proliferation and survival. Implications for islet transplantation are discussed. The insulin-producing β-cell is key for maintaining glucose homeostasis. The islet microenvironment greatly influences β-cell survival and proliferation. Within the islet, β-cells contact the ECM, which is deposited primarily by intraislet endothelial cells, and this interaction has been shown to modulate proliferation and survival. ECM-localized growth factors, such as vascular endothelial growth factor and cellular communication network 2, signal through specific receptors and integrins on the β-cell surface. Further understanding of how the ECM functions to influence β-cell proliferation and survival will provide targets for enhancing functional β-cell mass for the treatment of diabetes.
Collapse
Affiliation(s)
- Shannon E Townsend
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Correspondence: Maureen Gannon, PhD, Vanderbilt University Medical Center, 2213 Garland Avenue, MRB IV 7465, Nashville, Tennessee 37232. E-mail:
| |
Collapse
|
26
|
Engineered systems to study the synergistic signaling between integrin-mediated mechanotransduction and growth factors (Review). Biointerphases 2018; 13:06D302. [DOI: 10.1116/1.5045231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
27
|
Hadjicharalambous C, Flouraki C, Narain R, Chatzinikolaidou M, Vamvakaki M. Controlling pre-osteoblastic cell adhesion and spreading on glycopolymer brushes of variable film thickness. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:98. [PMID: 29946888 DOI: 10.1007/s10856-018-6112-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Controlling the cell behavior on biocompatible polymer surfaces is critical for the development of suitable medical implant coatings as well as in anti-adhesive applications. Synthetic glycopolymer brushes, based on sugar methacrylate monomers have been reported as robust surfaces to resist protein adsorption and cell adhesion. In this study, poly(D-gluconamidoethyl methacrylate) (PGAMA) brushes of various chain lengths were synthesized directly from initiator functionalized glass substrates using surface-initiated atom transfer radical polymerization. The glycopolymer film thicknesses were determined by ellipsometry, whereas the wettability and the morphology of the surfaces were characterized by static water contact angle measurements and atomic force microscopy, respectively. Stable, grafted films with thicknesses in the dry state between 4 and 20 nm and of low roughness (~1 nm) were obtained by varying the polymerization time. Cell experiments with MC3T3-E1 pre-osteoblasts cultured on the PGAMA brushes were performed to examine the effect of film thickness on the cell morphology, cytoskeleton organization and growth. The results revealed good cell spreading and proliferation on PGAMA layers of low film thickness, whereas cell adhesion was prevented on polymer films with thickness higher than ~10 nm, indicating their potential use in medical implants and anti-adhesive surfaces, respectively.
Collapse
Affiliation(s)
- Chrystalleni Hadjicharalambous
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece
| | - Chara Flouraki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Alberta, Canada
| | - Maria Chatzinikolaidou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece
| | - Maria Vamvakaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece.
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece.
| |
Collapse
|
28
|
A Central Bioactive Region of LTBP-2 Stimulates the Expression of TGF-β1 in Fibroblasts via Akt and p38 Signalling Pathways. Int J Mol Sci 2017; 18:ijms18102114. [PMID: 28991210 PMCID: PMC5666796 DOI: 10.3390/ijms18102114] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Latent transforming growth factor-β-1 binding protein-2 (LTBP-2) belongs to the LTBP-fibrillin superfamily of extracellular proteins. Unlike other LTBPs, LTBP-2 does not covalently bind transforming growth factor-β1 (TGF-β1) but appears to be implicated in the regulation of TGF-β1 bioactivity, although the mechanisms are largely unknown. In experiments originally designed to study the displacement of latent TGF-β1 complexes from matrix storage, we found that the addition of exogenous LTBP-2 to cultured human MSU-1.1 fibroblasts caused an increase in TGF-β1 levels in the medium. However, the TGF-β1 increase was due to an upregulation of TGF-β1 expression and secretion rather than a displacement of matrix-stored TGF-β1. The secreted TGF-β1 was mainly in an inactive form, and its concentration peaked around 15 h after addition of LTBP-2. Using a series of recombinant LTBP-2 fragments, the bioactivity was identified to a small region of LTBP-2 consisting of an 8-Cys motif flanked by four epidermal growth factor (EGF)-like repeats. The LTBP-2 stimulation of TGF-β expression involved the phosphorylation of both Akt and p38 mitogen-activated protein kinase (MAPK) signalling proteins, and specific inactivation of each protein individually blocked TGF-β1 increase. The search for the cell surface receptor mediating this LTBP-2 activity proved inconclusive. Inhibitory antibodies to integrins β1 and αVβ5 showed no reduction of LTBP-2 stimulation of TGF-β1. However, TGF-β1 upregulation was partially inhibited by anti-αVβ3 integrin antibodies, suggestive of a direct or indirect role for this integrin. Overall, the study indicates that LTBP-2 can directly upregulate cellular TGF-β1 expression and secretion by interaction with cells via a short central bioactive region. This may be significant in connective tissue disorders involving aberrant TGF-β1 signalling.
Collapse
|
29
|
Zhang D, Lee J, Kilian KA. Synthetic Biomaterials to Rival Nature's Complexity-a Path Forward with Combinatorics, High-Throughput Discovery, and High-Content Analysis. Adv Healthc Mater 2017; 6. [PMID: 28841770 DOI: 10.1002/adhm.201700535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/08/2017] [Indexed: 12/18/2022]
Abstract
Cells in tissue receive a host of soluble and insoluble signals in a context-dependent fashion, where integration of these cues through a complex network of signal transduction cascades will define a particular outcome. Biomaterials scientists and engineers are tasked with designing materials that can at least partially recreate this complex signaling milieu towards new materials for biomedical applications. In this progress report, recent advances in high throughput techniques and high content imaging approaches that are facilitating the discovery of efficacious biomaterials are described. From microarrays of synthetic polymers, peptides and full-length proteins, to designer cell culture systems that present multiple biophysical and biochemical cues in tandem, it is discussed how the integration of combinatorics with high content imaging and analysis is essential to extracting biologically meaningful information from large scale cellular screens to inform the design of next generation biomaterials.
Collapse
Affiliation(s)
- Douglas Zhang
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| | - Junmin Lee
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| | - Kristopher A. Kilian
- Department of Materials Science and Engineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
- Department of Bioengineering; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
| |
Collapse
|
30
|
The extracellular matrix of the gastrointestinal tract: a regenerative medicine platform. Nat Rev Gastroenterol Hepatol 2017; 14:540-552. [PMID: 28698662 DOI: 10.1038/nrgastro.2017.76] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis and secretion of components that constitute the extracellular matrix (ECM) by resident cell types occur at the earliest stages of embryonic development, and continue throughout life in both healthy and diseased physiological states. The ECM consists of a complex mixture of insoluble and soluble functional components that are arranged in a tissue-specific 3D ultrastructure, and it regulates numerous biological processes, including angiogenesis, innervation and stem cell differentiation. Owing to its composition and influence on embryonic development, as well as cellular and organ homeostasis, the ECM is an ideal therapeutic substrate for the repair of damaged or diseased tissues. Biologic scaffold materials that are composed of ECM have been used in various surgical and tissue-engineering applications. The gastrointestinal (GI) tract presents distinct challenges, such as diverse pH conditions and the requirement for motility and nutrient absorption. Despite these challenges, the use of homologous and heterologous ECM bioscaffolds for the focal or segmental reconstruction and regeneration of GI tissue has shown promise in early preclinical and clinical studies. This Review discusses the importance of tissue-specific ECM bioscaffolds and highlights the major advances that have been made in regenerative medicine strategies for the reconstruction of functional GI tissues.
Collapse
|
31
|
Cross-talk mechanism between endothelial cells and hepatocellular carcinoma cells via growth factors and integrin pathway promotes tumor angiogenesis and cell migration. Oncotarget 2017; 8:69577-69593. [PMID: 29050226 PMCID: PMC5642501 DOI: 10.18632/oncotarget.18632] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/22/2017] [Indexed: 11/25/2022] Open
Abstract
Tumor angiogenesis plays a central role in the development and metastasis of hepatocellular carcinoma. Cancer cells secrete angiogenic factors to recruit vascular endothelial cells and sustain tumor vascular networks, which facilitate the migration and invasion of cancer cells. Therefore, the cross-talk between vascular endothelial cells and cancer cells is vitally necessary, however, little is known about the cross-talk mechanism of these cells interaction. In the present study, the proliferation, migration, invasion and tube formation of vascular endothelial EA.hy926 cells and hepatocellular carcinoma HepG2 cells were studied by exchanging their culture medium. The time-dependent differences of integrins induced signaling pathway associated with cell migration were investigated. Our results showed that HepG2 cells markedly enhanced the proliferation and migration ability as well as the tube formation of EA.hy926 cells by releasing growth factors. Also, the EA.hy926 cells promoted the proliferation, migration and invasion ability of HepG2 cells. The further analysis demonstrated that the integrins-FAK-Rho GTPases signaling events in both of two cells was activated under conditioned medium, and the signaling molecules in two cell lines showed a different time-dependent expression within 1h. These findings reveal the cross-talk mechanism between the endothelial cells and hepatocellular carcinoma cells, which were expected to find out new ideas for the prevention and treatment of hepatocellular carcinoma.
Collapse
|
32
|
Zhang D, Lee J, Sun MB, Pei Y, Chu J, Gillette MU, Fan TM, Kilian KA. Combinatorial Discovery of Defined Substrates That Promote a Stem Cell State in Malignant Melanoma. ACS CENTRAL SCIENCE 2017; 3:381-393. [PMID: 28573199 PMCID: PMC5445527 DOI: 10.1021/acscentsci.6b00329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Indexed: 06/07/2023]
Abstract
The tumor microenvironment is implicated in orchestrating cancer cell transformation and metastasis. However, specific cell-ligand interactions between cancer cells and the extracellular matrix are difficult to decipher due to a dynamic and multivariate presentation of many signaling molecules. Here we report a versatile peptide microarray platform that is capable of screening for cancer cell phenotypic changes in response to ligand-receptor interactions. Using a screen of 78 peptide combinations derived from proteins present in the melanoma microenvironment, we identify a proteoglycan binding and bone morphogenic protein 7 (BMP7) derived sequence that selectively promotes the expression of several putative melanoma initiating cell markers. We characterize signaling associated with each of these peptides in the activation of melanoma pro-tumorigenic signaling and reveal a role for proteoglycan mediated adhesion and signaling through Smad 2/3. A defined substratum that controls the state of malignant melanoma may prove useful in spatially normalizing a heterogeneous population of tumor cells for discovery of therapeutics that target a specific state and for identifying new drug targets and reagents for intervention.
Collapse
Affiliation(s)
- Douglas Zhang
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Junmin Lee
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael B. Sun
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yi Pei
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - James Chu
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Martha U. Gillette
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Timothy M. Fan
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kristopher A. Kilian
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
33
|
Ghosh D, McGrail DJ, Dawson MR. TGF-β1 Pretreatment Improves the Function of Mesenchymal Stem Cells in the Wound Bed. Front Cell Dev Biol 2017; 5:28. [PMID: 28421182 PMCID: PMC5378794 DOI: 10.3389/fcell.2017.00028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
The wound healing process initiates after injury to a tissue and involves a series of orchestrated events to minimize the invasion of foreign matters such as bacteria and efficiently regenerate the damaged tissue. A variety of cells must be recruited to the tissue during wound healing. However, this process is severely disrupted in patients suffering from chronic illness, including diabetes, leading to impaired healing or non-healing wounds. Current avenues of treatment include negative-pressure therapy, wound debridement, growth factor replacement, and cell-based therapies. Among these therapies, mesenchymal stem cells (MSCs) delivery to the wound holds a very high promise due to the innate abilities of MSCs that include immunogenicity, plasticity, and self-renewal. Bone marrow derived MSCs have been shown to promote more rapid wound healing by increased cytokine production in diabetic mice. However, the lack of understanding of the mechanical and chemical interaction of the transplanted MSCs with the factors present in the regenerative niches limits their efficacy in the wound bed. In this study, we sought to understand how the changes in MSC biochemical and biophysical properties can affect their function in vitro and in vivo. We demonstrate that pretreatment of MSCs with the mechano-stimulatory soluble factor transforming growth factor (TGF-β1), which is highly expressed in injury sites, improves wound closure in a syngeneic murine wound model. This improved wound closure correlated with increased invasion into the wound bed. In vitro studies demonstrated that TGF-β1 pretreatment expedited wound closure by increasing adhesion, traction force, and migration even after removal of the stimulus. Furthermore, this response was mediated by the cytoskeletal protein focal adhesion kinase. Taken together, this study suggests that defined chemical stimuli can benefit site specific adaptability of MSCs to improve their function and therapeutic usefulness.
Collapse
Affiliation(s)
- Deepraj Ghosh
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown UniversityProvidence, RI, USA
| | - Daniel J McGrail
- Department of Systems Biology, University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Michelle R Dawson
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown UniversityProvidence, RI, USA.,School of Engineering, Brown UniversityProvidence, RI, USA
| |
Collapse
|
34
|
Gelmedin V, Morel M, Hahnel S, Cailliau K, Dissous C, Grevelding CG. Evidence for Integrin - Venus Kinase Receptor 1 Alliance in the Ovary of Schistosoma mansoni Females Controlling Cell Survival. PLoS Pathog 2017; 13:e1006147. [PMID: 28114363 PMCID: PMC5289644 DOI: 10.1371/journal.ppat.1006147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/02/2017] [Accepted: 12/21/2016] [Indexed: 12/21/2022] Open
Abstract
In metazoan integrin signaling is an important process of mediating extracellular and intracellular communication processes. This can be achieved by cooperation of integrins with growth factor receptors (GFRs). Schistosoma mansoni is a helminth parasite inducing schistosomiasis, an infectious disease of worldwide significance for humans and animals. First studies on schistosome integrins revealed their role in reproductive processes, being involved in spermatogenesis and oogenesis. With respect to the roles of eggs for maintaining the parasite´s life cycle and for inducing the pathology of schistosomiasis, elucidating reproductive processes is of high importance. Here we studied the interaction of the integrin receptor Smβ-Int1 with the venus kinase receptor SmVKR1 in S. mansoni. To this end we cloned and characterized SmILK, SmPINCH, and SmNck2, three putative bridging molecules for their role in mediating Smβ-Int1/SmVKR1 cooperation. Phylogenetic analyses showed that these molecules form clusters that are specific for parasitic platyhelminths as it was shown for integrins before. Transcripts of all genes colocalized in the ovary. In Xenopus oocytes germinal vesicle breakdown (GVBD) was only induced if all members were simultaneously expressed. Coimmunoprecipitation results suggest that a Smβ-Int1-SmILK-SmPINCH-SmNck2-SmVKR1 complex can be formed leading to the phosphorylation and activation of SmVKR1. These results indicate that SmVKR1 can be activated in a ligand-independent manner by receptor-complex interaction. RNAi and inhibitor studies to knock-down SmILK as a representative complex member concurrently revealed effects on the extracellular matrix surrounding the ovary and oocyte localization within the ovary, oocyte survival, and egg production. By TUNEL assays, confocal laser scanning microscopy (CLSM), Caspase-3 assay, and transcript profiling of the pro-apoptotic BCL-2 family members BAK/BAX we obtained first evidence for roles of this signaling complex in mediating cell death in immature and primary oocytes. These results suggest that the Smβ-Int1/SmVKR1 signaling complex is important for differentiation and survival in oocytes of paired schistosomes. Parasites of the genus Schistosoma cause schistosomiasis, a life-threatening infectious disease for humans and animals worldwide. Among the remarkable biological features of schistosomes is the differentiation of the female gonads which is controlled by pairing with the male and a prerequisite for egg production. Eggs, however, are not only important for the maintenance of the life-cycle; they also cause the pathological consequences of schistosomiasis. Part of the eggs gets trapped in host tissues such as liver and spleen and trigger inflammatory processes, finally leading to liver cirrhosis. Research activities of the last decade have indicated that different families of cellular and receptor-type kinases but also integrins contribute to the control of mitogenic activity and differentiation the female goands. In this context an unusual class of receptor tyrosine kinases (RTKs) has been identified, the venus kinase receptors (SmVKRs). By biochemical and molecular approaches we demonstrate that SmVKR1 activation can be achieved by cooperation with a signaling complex consisting of the beta integrin receptor Smβ-Int1 and the bridging molecules SmILK, SmPINCH, SmNck2. Besides unravelling a novel way of SmVKR1 activation, we provide evidence that this complex controls the differentiation status of oocytes by regulating cell death-associated processes.
Collapse
Affiliation(s)
- Verena Gelmedin
- Institute for Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Marion Morel
- CIIL – Center for Infection and Immunity of Lille Inserm U1019 - CNRS UMR 8204, University Lille, Lille, France
| | - Steffen Hahnel
- Institute for Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Katia Cailliau
- UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, University Lille, Lille, France
| | - Colette Dissous
- CIIL – Center for Infection and Immunity of Lille Inserm U1019 - CNRS UMR 8204, University Lille, Lille, France
| | | |
Collapse
|
35
|
Weber MR, Zuka M, Lorger M, Tschan M, Torbett BE, Zijlstra A, Quigley JP, Staflin K, Eliceiri BP, Krueger JS, Marchese P, Ruggeri ZM, Felding BH. Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream. Thromb Res 2017; 140 Suppl 1:S27-36. [PMID: 27067975 DOI: 10.1016/s0049-3848(16)30095-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Metastasis is the main cause of death in cancer patients, and understanding mechanisms that control tumor cell dissemination may lead to improved therapy. Tumor cell adhesion receptors contribute to cancer spreading. We noted earlier that tumor cells can expressing the adhesion receptor integrin αvβ3 in distinct states of activation, and found that cells which metastasize from the blood stream express it in a constitutively high affinity form. Here, we analyzed steps of the metastatic cascade in vivo and asked, when and how the affinity state of integrin αvβ3 confers a critical advantage to cancer spreading. Following tumor cells by real time PCR, non-invasive bioluminescence imaging, intravital microscopy and histology allowed us to identify tumor cell extravasation from the blood stream as a rate-limiting step supported by high affinity αvβ3. Successful transendothelial migration depended on cooperation between tumor cells and platelets involving the high affinity tumor cell integrin and release of platelet granules. Thus, this study identifies the high affinity conformer of integrin αvβ3 and its interaction with platelets as critical for early steps during hematogenous metastasis and target for prevention of metastatic disease.
Collapse
Affiliation(s)
- Martin R Weber
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Masahiko Zuka
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Mihaela Lorger
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Mario Tschan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Bruce E Torbett
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Andries Zijlstra
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, USA
| | - James P Quigley
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Karin Staflin
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Brian P Eliceiri
- Department of Surgery, University of California San Diego, San Diego, CA 92103, USA
| | - Joseph S Krueger
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Patrizia Marchese
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Zaverio M Ruggeri
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Brunhilde H Felding
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA; Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
36
|
Huo Y, Xie X, Jiang B. Identification of functional pathways associated with the conditional ablation of serum response factor in Dstncorn1 mice. Mol Med Rep 2017; 15:139-145. [PMID: 27922676 PMCID: PMC5355747 DOI: 10.3892/mmr.2016.5984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 07/25/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the signaling pathways associated with functional alterations in corneal tissues following the conditional ablation of serum response factor (Srf) in Dstncorn1 mice. The gene expression profiling array GSE49688, which includes 3 samples each from the wild-type (WT), Dstncorn1 mutant (corn1) and corn1 mice following the conditional ablation of Srf from the corneal epithelium [namely rescued (res)] mouse groups, was downloaded from the Gene Expression Omnibus database. The limma package was used to identify differentially expressed genes (DEGs) among the three mouse groups. DEGs were subsequently analyzed by dynamic comparison, hierarchical clustering and pathway enrichment analysis. Pathway alteration scores were also calculated in order to study the dynamic metergasis of each identified pathway. A total of 788 DEGs were identified between the corn1 and res groups, 1,365 DEGs were identified between the corn1 and WT groups, and 852 DEGs were identified between the res and WT groups. Among these DEGs, 228 genes were differentially expressed across all three groups, and were mainly enriched in signaling pathways involved in the regulation of the actin cytoskeleton, including the cofilin 1 (CFL1), the mitogen-activated protein kinase (MAPK) signaling pathway and focal adhesion. The dilated cardiomyopathy signaling pathway displayed the highest alteration score, and was enriched with integrin and integrin β-6 (ITGB6). In conclusion, the actin cytoskeleton regulatory pathway, MAPK and dilated cardiomyopathy signaling pathways, as well as CFL1 and ITGB6 genes, may be regulated by Srf to serve important roles in the progression of corneal disease.
Collapse
|
37
|
Hu Z, Jiang K, Chang Q, Zhang Y, Zhou B, Zhang Z, Tao R. Effect of talin1 on apoptosis in hepatoma carcinoma cells via the PI3K/Akt/NF-κB signaling pathway. RSC Adv 2017; 7:40179-40188. [DOI: 10.1039/c7ra05792j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
Talin1 is implicated in many cellular processes, which has been studied in various diseases using molecular biological technology.
Collapse
Affiliation(s)
- Zhiqiu Hu
- Department of Surgery
- Minhang Hospital
- Fudan University
- Shanghai
- P. R. China
| | - Kai Jiang
- Department of Hepatobiliary-Pancreatic Surgery
- Zhejiang Provincial People's Hospital
- Hangzhou
- P. R. China
| | - Qimeng Chang
- Department of Surgery
- Minhang Hospital
- Fudan University
- Shanghai
- P. R. China
| | - Yuhua Zhang
- Department of Hepatobiliary-Pancreatic Surgery
- Zhejiang Provincial People's Hospital
- Hangzhou
- P. R. China
| | - Bing Zhou
- Key Laboratory of Zhejiang Provincial Institute of Clinical Medicine
- Hangzhou
- P. R. China
| | - Ziping Zhang
- Department of Surgery
- Minhang Hospital
- Fudan University
- Shanghai
- P. R. China
| | - Ran Tao
- Department of Hepatobiliary-Pancreatic Surgery
- Zhejiang Provincial People's Hospital
- Hangzhou
- P. R. China
- Key Laboratory of Zhejiang Provincial Institute of Clinical Medicine
| |
Collapse
|
38
|
Hang Q, Isaji T, Hou S, Zhou Y, Fukuda T, Gu J. N-Glycosylation of integrin α5 acts as a switch for EGFR-mediated complex formation of integrin α5β1 to α6β4. Sci Rep 2016; 6:33507. [PMID: 27641064 PMCID: PMC5027594 DOI: 10.1038/srep33507] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/23/2016] [Indexed: 01/17/2023] Open
Abstract
N-Glycosylation of integrin α5β1 is involved in multiple cell behaviors. We previously reported that the N-glycosylations of the calf domain on integrin α5 (S3–5,10–14) are essential for its inhibitory effect on EGFR signaling in regulating cell proliferation. However, the importance of the individual N-glycosylation and the underlying mechanisms of inhibition remain unclear. Here, we characterize the S3–5,10–14 mutants in detail and found that the N-glycosylation of site-11 (Asn712) is key for cell growth. The restoration of site-11, unlike the other individual sites, significantly suppressed cell growth and EGFR signaling in a manner that was similar to that of wild-type (WT). Mechanistically, this N-glycosylation inhibited the response abilities upon EGF stimulation and EGFR dimerization. Interestingly, we found this N-glycosylation controlled the EGFR complex formation with integrin α5β1 or α6β4; i.e., the loss of site-11 switched EGFR-α5β1 to EGFR-α6β4, which is well known to promote cellular signaling for cell growth. Moreover, the site-11 N-glycan exhibited a more branching structure compared with other sites, which may be required for EGFR-α5β1 formation. Taken together, these data clearly demonstrate that the site-11 N-glycosylation on α5 is most important for its inhibitory effect on EGFR signaling, which may provide a novel regulatory mechanism for crosstalks between integrins and EGFR.
Collapse
Affiliation(s)
- Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Sicong Hou
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Ying Zhou
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
39
|
Digiacomo G, Tusa I, Bacci M, Cipolleschi MG, Dello Sbarba P, Rovida E. Fibronectin induces macrophage migration through a SFK-FAK/CSF-1R pathway. Cell Adh Migr 2016; 11:327-337. [PMID: 27588738 DOI: 10.1080/19336918.2016.1221566] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Integrins, following binding to proteins of the extracellular matrix (ECM) including collagen, laminin and fibronectin (FN), are able to transduce molecular signals inside the cells and to regulate several biological functions such as migration, proliferation and differentiation. Besides activation of adaptor molecules and kinases, integrins transactivate Receptor Tyrosine Kinases (RTK). In particular, adhesion to the ECM may promote RTK activation in the absence of growth factors. The Colony-Stimulating Factor-1 Receptor (CSF-1R) is a RTK that supports the survival, proliferation, and motility of monocytes/macrophages, which are essential components of innate immunity and cancer development. Macrophage interaction with FN is recognized as an important aspect of host defense and wound repair. The aim of the present study was to investigate on a possible cross-talk between FN-elicited signals and CSF-1R in macrophages. FN induced migration in BAC1.2F5 and J774 murine macrophage cell lines and in human primary macrophages. Adhesion to FN determined phosphorylation of the Focal Adhesion Kinase (FAK) and Src Family Kinases (SFK) and activation of the SFK/FAK complex, as witnessed by paxillin phosphorylation. SFK activity was necessary for FAK activation and macrophage migration. Moreover, FN-induced migration was dependent on FAK in either murine macrophage cell lines or human primary macrophages. FN also induced FAK-dependent/ligand-independent CSF-1R phosphorylation, as well as the interaction between CSF-1R and β1. CSF-1R activity was necessary for FN-induced macrophage migration. Indeed, genetic or pharmacological inhibition of CSF-1R prevented FN-induced macrophage migration. Our results identified a new SFK-FAK/CSF-1R signaling pathway that mediates FN-induced migration of macrophages.
Collapse
Affiliation(s)
- Graziana Digiacomo
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| | - Ignazia Tusa
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| | - Marina Bacci
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| | - Maria Grazia Cipolleschi
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| | - Persio Dello Sbarba
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| | - Elisabetta Rovida
- a Department of Experimental and Clinical Biomedical Sciences , Università degli Studi di Firenze and Istituto Toscano Tumori , Florence , Italy
| |
Collapse
|
40
|
DeRita RM, Zerlanko B, Singh A, Lu H, Iozzo RV, Benovic JL, Languino LR. c-Src, Insulin-Like Growth Factor I Receptor, G-Protein-Coupled Receptor Kinases and Focal Adhesion Kinase are Enriched Into Prostate Cancer Cell Exosomes. J Cell Biochem 2016; 118:66-73. [PMID: 27232975 DOI: 10.1002/jcb.25611] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 12/21/2022]
Abstract
It is well known that Src tyrosine kinase, insulin-like growth factor 1 receptor (IGF-IR), and focal adhesion kinase (FAK) play important roles in prostate cancer (PrCa) development and progression. Src, which signals through FAK in response to integrin activation, has been implicated in many aspects of tumor biology, such as cell proliferation, metastasis, and angiogenesis. Furthermore, Src signaling is known to crosstalk with IGF-IR, which also promotes angiogenesis. In this study, we demonstrate that c-Src, IGF-IR, and FAK are packaged into exosomes (Exo), c-Src in particular being highly enriched in Exo from the androgen receptor (AR)-positive cell line C4-2B and AR-negative cell lines PC3 and DU145. Furthermore, we show that the active phosphorylated form of Src (SrcpY416 ) is co-expressed in Exo with phosphorylated FAK (FAKpY861 ), a known target site of Src, which enhances proliferation and migration. We further demonstrate for the first time exosomal enrichment of G-protein-coupled receptor kinase (GRK) 5 and GRK6, both of which regulate Src and IGF-IR signaling and have been implicated in cancer. Finally, SrcpY416 and c-Src are both expressed in Exo isolated from the plasma of prostate tumor-bearing TRAMP mice, and those same mice have higher levels of exosomal c-Src than their wild-type counterparts. In summary, we provide new evidence that active signaling molecules relevant to PrCa are enriched in Exo, and this suggests that the Src signaling network may provide useful biomarkers detectable by liquid biopsy, and may contribute to PrCa progression via Exo. J. Cell. Biochem. 118: 66-73, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rachel M DeRita
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Brad Zerlanko
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amrita Singh
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Huimin Lu
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Departments of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Aisenbrey EA, Bryant SJ. Mechanical loading inhibits hypertrophy in chondrogenically differentiating hMSCs within a biomimetic hydrogel. J Mater Chem B 2016; 4:3562-3574. [PMID: 27499854 PMCID: PMC4972607 DOI: 10.1039/c6tb00006a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three dimensional hydrogels are a promising vehicle for delivery of adult human bone-marrow derived mesenchymal stem cells (hMSCs) for cartilage tissue engineering. One of the challenges with using this cell type is the default pathway is terminal differentiation, a hypertrophic phenotype and precursor to endochondral ossification. We hypothesized that a synthetic hydrogel consisting of extracellular matrix (ECM) analogs derived from cartilage when combined with dynamic loading provides physiochemical cues for achieving a stable chondrogenic phenotype. Hydrogels were formed from crosslinked poly(ethylyene glycol) as the base chemistry and to which (meth)acrylate functionalized ECM analogs of RGD (cell adhesion peptide) and chondroitin sulfate (ChS, a negatively charged glycosaminoglycan) were introduced. Bone-marrow derived hMSCs from three donors were encapsulated in the hydrogels and cultured under free swelling conditions or under dynamic com pressive loading with 2.5 ng/ml TGF-β3. hMSC differentiation was assessed by quantitative PCR and immunohistochemistry. Nine hydrogel formulations were initially screened containing 0, 0.1 or 1mM RGD and 0, 1 or 2wt% ChS. After 21 days, the 1% ChS and 0.1 mM RGD hydrogel had the highest collagen II gene expression, but this was accompanied by high collagen X gene expression. At the protein level, collagen II was detected in all formulations with ECM analogs, but minimally detectable in the hydrogel without ECM analogs. Collagen X protein was present in all formulations. The 0.1 mM RGD and 1% ChS formulation was selected and subjected to five loading regimes: no loading, 5% strain 0.3Hz (1.5%/s), 10% strain 0.3 Hz (3%/s), 5% strain 1 Hz (5%/s), and 10% strain 1Hz (10%/s). After 21 days, ~70-90% of cells stained positive for collagen II protein regardless of the culture condition. On the contrary, only ~20-30% of cells stained positive for collagen X protein under 3 and 5%/s loading conditions, which was accompanied by minimal staining for RunX2. The other culture conditions had more cells staining positive for collagen X (40-60%) and was accompanied by positive staining for RunX2. In summary, a cartilage-like biomimetic hydrogel supports chondrogenesis of hMSCs, but dynamic loading only under select strain rates is able to inhibit hypertrophy.
Collapse
Affiliation(s)
- E A Aisenbrey
- University of Colorado,Boulder. Chemical and Biological Engineering, UCB 596. Boulder, CO. 80309
| | - S J Bryant
- University of Colorado,Boulder. Chemical and Biological Engineering, UCB 596. Boulder, CO. 80309
| |
Collapse
|
42
|
Carrion B, Souzanchi MF, Wang VT, Tiruchinapally G, Shikanov A, Putnam AJ, Coleman RM. The Synergistic Effects of Matrix Stiffness and Composition on the Response of Chondroprogenitor Cells in a 3D Precondensation Microenvironment. Adv Healthc Mater 2016; 5:1192-202. [PMID: 26959641 DOI: 10.1002/adhm.201501017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/24/2016] [Indexed: 01/10/2023]
Abstract
Improve functional quality of cartilage tissue engineered from stem cells requires a better understanding of the functional evolution of native cartilage tissue. Therefore, a biosynthetic hydrogel was developed containing RGD, hyaluronic acid and/or type-I collagen conjugated to poly(ethylene glycol) acrylate to recapitulate the precondensation microenvironment of the developing limb. Conjugation of any combination of the three ligands did not alter the shear moduli or diffusion properties of the PEG hydrogels; thus, the influence of ligand composition on chondrogenesis could be investigated in the context of varying matrix stiffness. Gene expression of ligand receptors (CD44 and the b1-integrin) as well as markers of condensation (cell clustering and N-cadherin gene expression) and chondrogenesis (Col2a1 gene expression and sGAG production) by chondroprogenitor cells in this system were modulated by both matrix stiffness and ligand composition, with the highest gene expression occurring in softer hydrogels containing all three ligands. Cell proliferation in these 3D matrices for 7 d prior to chondrogenic induction increased the rate of sGAG production in a stiffness-dependent manner. This biosynthetic hydrogel supports the features of early limb-bud condensation and chondrogenesis and is a novel platform in which the influence of the matrix physicochemical properties on these processes can be elucidated.
Collapse
Affiliation(s)
- Bita Carrion
- Biomedical Engineering; University of Michigan; Ann Arbor 48109 USA
| | | | | | | | - Ariella Shikanov
- Biomedical Engineering; University of Michigan; Ann Arbor 48109 USA
| | - Andrew J. Putnam
- Biomedical Engineering; University of Michigan; Ann Arbor 48109 USA
| | - Rhima M. Coleman
- Biomedical Engineering; University of Michigan; Ann Arbor 48109 USA
- Mechanical Engineering; University of Michigan; Ann Arbor 48109 USA
| |
Collapse
|
43
|
Fang KP, Dai W, Ren YH, Xu YC, Zhang SM, Qian YB. Both Talin-1 and Talin-2 correlate with malignancy potential of the human hepatocellular carcinoma MHCC-97 L cell. BMC Cancer 2016; 16:45. [PMID: 26822056 PMCID: PMC4730717 DOI: 10.1186/s12885-016-2076-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 01/19/2016] [Indexed: 12/27/2022] Open
Abstract
Background Talin-1 (TLN-1) and TLN-2 are implicated in many cellular processes, but their roles in hepatocellular carcinoma (HCC) remain unclear. This study aimed to assess cell cycle distribution, anoikis, invasion and migration in human HCC MHCC-97 L cells. Methods MHCC-97 L cells, which highly express TLN-1, were transduced with TLN-1 shRNA (experimental group) or scramble shRNA (negative control group); non-transduced MHCC-97 L cells were used as blank controls. TLN-1 and TLN-2 mRNA and protein levels were detected by real-time RT-PCR and western blot, respectively. Then, cell cycle distribution and anoikis were assessed by flow cytometry. In addition, migration and invasion abilities were assessed using Transwell and cell scratch assays. Finally, a xenograft nude mouse model was established to further assess cell tumorigenicity. Results Compared with the blank and negative control groups, TLN-1/2 mRNA and protein levels were significantly reduced in the experiment group. TLN-1/2 knockdown cells showed significantly more cells in the G0/G1 phase (79.24 %) in comparison with both blank (65.36 %) and negative (62.69 %) control groups; conversely, less cells were found in G2/M and S phases in the experimental group compared with controls. Moreover, anoikis was enhanced (P < 0.05), while invasion and migration abilities were reduced (P < 0.05) in TLN-1/2 knockdown cells compared with controls. TLN-1/2 knockdown inhibited MHCC-97 L cell migration (Percentage of wound healing area: experimental group: 32.6 ± 0.7 % vs. negative controls: 50.1 ± 0.6 % and blank controls: 53.6 ± 0.6 %, both P < 0.01). Finally, the tumors obtained with TLN-1/2 knockdown cells were smaller (P < 0.05) compared with controls. Conclusion Both TLN-1 and TLN-2 levels correlate with tumorigenicity in human HCC, indicating that these molecules constitute important molecular targets for the diagnosis and/or treatment of HCC.
Collapse
Affiliation(s)
- Kun-Peng Fang
- The People's Hospital, Xuancheng City, Auhui Province, China
| | - Wei Dai
- First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Yan-Hong Ren
- First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ye-Chuan Xu
- First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - She-Min Zhang
- First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ye-Ben Qian
- The People's Hospital, Xuancheng City, Auhui Province, China. .,First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
44
|
Rys JP, DuFort CC, Monteiro DA, Baird MA, Oses-Prieto JA, Chand S, Burlingame AL, Davidson MW, Alliston TN. Discrete spatial organization of TGFβ receptors couples receptor multimerization and signaling to cellular tension. eLife 2015; 4:e09300. [PMID: 26652004 PMCID: PMC4728123 DOI: 10.7554/elife.09300] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/04/2015] [Indexed: 11/13/2022] Open
Abstract
Cell surface receptors are central to the cell's ability to generate coordinated responses to the multitude of biochemical and physical cues in the microenvironment. However, the mechanisms by which receptors enable this concerted cellular response remain unclear. To investigate the effect of cellular tension on cell surface receptors, we combined novel high-resolution imaging and single particle tracking with established biochemical assays to examine TGFβ signaling. We find that TGFβ receptors are discretely organized to segregated spatial domains at the cell surface. Integrin-rich focal adhesions organize TβRII around TβRI, limiting the integration of TβRII while sequestering TβRI at these sites. Disruption of cellular tension leads to a collapse of this spatial organization and drives formation of heteromeric TβRI/TβRII complexes and Smad activation. This work details a novel mechanism by which cellular tension regulates TGFβ receptor organization, multimerization, and function, providing new insight into the mechanisms that integrate biochemical and physical cues. DOI:http://dx.doi.org/10.7554/eLife.09300.001 Cells constantly encounter diverse physical and biological signals in their surroundings. Information contained in these signals is transmitted from the cell surface to the interior to trigger coordinated changes in the cell’s behavior. Physical signals include the forces generated by cells pulling on one another or on their surroundings. These pulling forces calibrate the cell’s response to biological signals through mechanisms that remain unclear. The cell surface contains many different proteins that are specialized to sense these signals and guide the cell’s response. In animals, these membrane proteins include the receptors that detect a small signaling protein known as TGFβ. TGFβ first binds to one of these receptors (called TβRII). Next another receptor (called TβRI) is recruited to the complex. Once this complex is formed, the TGFβ receptors activate a complicated signaling pathway that controls how cells grow and divide. Previous work has shown that the TGFβ pathway can also sense and respond to mechanical forces. But it remains poorly understood how pulling forces (or tension) impact TGFβ receptors at the cell surface. Rys, DuFort et al. have now used cutting-edge microscopy and biochemical techniques to analyze individual TβRI and TβRII receptors and observe how they respond to mechanical forces in real-time. This revealed that TβRI and TβRII exist in discrete regions on the cell surface. Rys, DuFort et al. observed that TβRI is enriched at assemblies of molecules called focal adhesions. Focal adhesions are the sites on cell surfaces that allow cells to adhere to one another and to the molecular scaffolding in their surroundings. Unlike TβRI, TβRII was often excluded from these sites and more commonly appeared to ‘bounce’ around the edges of individual focal adhesions. Therefore, focal adhesions limit the interactions between TβRI and TβRII, by sequestering one away from the other. Rys, DuFort et al. next treated cells with a chemical that disrupts tension, and saw that the physical separation between TβRI and TβRII collapsed, which permitted these two receptors to interact and form a working signaling complex. Further work is needed to understand how physical control of TGFβ receptor interactions helps cells coordinate their tasks in response to the myriad biological and physical signals in their surroundings. DOI:http://dx.doi.org/10.7554/eLife.09300.002
Collapse
Affiliation(s)
- Joanna P Rys
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, United States.,Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Christopher C DuFort
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - David A Monteiro
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, United States.,Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States
| | - Michelle A Baird
- National High Magnetic Field Laboratory,Department of Biological Science, Florida State University, Tallahassee, United States
| | - Juan A Oses-Prieto
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Shreya Chand
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Alma L Burlingame
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Michael W Davidson
- National High Magnetic Field Laboratory,Department of Biological Science, Florida State University, Tallahassee, United States
| | - Tamara N Alliston
- UC Berkeley-UC San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, United States.,Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, United States.,Department of Bioengineering and Therapeutic Sciences, Department of Otolaryngology-Head and Neck Surgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
45
|
Martino MM, Briquez PS, Maruyama K, Hubbell JA. Extracellular matrix-inspired growth factor delivery systems for bone regeneration. Adv Drug Deliv Rev 2015; 94:41-52. [PMID: 25895621 DOI: 10.1016/j.addr.2015.04.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/27/2015] [Accepted: 04/11/2015] [Indexed: 12/22/2022]
Abstract
Growth factors are very promising molecules to enhance bone regeneration. However, their translation to clinical use has been seriously limited, facing issues related to safety and cost-effectiveness. These problems derive from the vastly supra-physiological doses of growth factor used without optimized delivery systems. Therefore, these issues have motivated the development of new delivery systems allowing better control of the spatiotemporal release and signaling of growth factors. Because the extracellular matrix (ECM) naturally plays a fundamental role in coordinating growth factor activity in vivo, a number of novel delivery systems have been inspired by the growth factor regulatory function of the ECM. After introducing the role of growth factors during the bone regeneration process, this review exposes different issues that growth factor-based therapies have encountered in the clinic and highlights recent delivery approaches based on the natural interaction between growth factor and the ECM.
Collapse
Affiliation(s)
- Mikaël M Martino
- Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| | - Priscilla S Briquez
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kenta Maruyama
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Jeffrey A Hubbell
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA; Materials Science Division, Argonne National Laboratory, Argonne, IL, USA.
| |
Collapse
|
46
|
Hang Q, Isaji T, Hou S, Im S, Fukuda T, Gu J. Integrin α5 Suppresses the Phosphorylation of Epidermal Growth Factor Receptor and Its Cellular Signaling of Cell Proliferation via N-Glycosylation. J Biol Chem 2015; 290:29345-60. [PMID: 26483551 DOI: 10.1074/jbc.m115.682229] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 12/26/2022] Open
Abstract
Integrin α5β1-mediated cell adhesion regulates a multitude of cellular responses, including cell proliferation, survival, and cross-talk between different cellular signaling pathways. Integrin α5β1 is known to convey permissive signals enabling anchorage-dependent receptor tyrosine kinase signaling. However, the effects of integrin α5β1 on cell proliferation are controversial, and the molecular mechanisms involved in the regulation between integrin α5β1 and receptor tyrosine kinase remain largely unclear. Here we show that integrin α5 functions as a negative regulator of epidermal growth factor receptor (EGFR) signaling through its N-glycosylation. Expression of WT integrin α5 suppresses the EGFR phosphorylation and internalization upon EGF stimulation. However, expression of the N-glycosylation mutant integrin α5, S3-5, which contains fewer N-glycans, reversed the suppression of the EGFR-mediated signaling and cell proliferation. In a mechanistic manner, WT but not S3-5 integrin α5 forms a complex with EGFR and glycolipids in the low density lipid rafts, and the complex formation is disrupted upon EGF stimulation, suggesting that the N-glycosylation of integrin α5 suppresses the EGFR activation through promotion of the integrin α5-glycolipids-EGFR complex formation. Furthermore, consistent restoration of those N-glycans on the Calf-1,2 domain of integrin α5 reinstated the inhibitory effects as well as the complex formation with EGFR. Taken together, these data are the first to demonstrate that EGFR activation can be regulated by the N-glycosylation of integrin α5, which is a novel molecular paradigm for the cross-talk between integrins and growth factor receptors.
Collapse
Affiliation(s)
- Qinglei Hang
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomoya Isaji
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Sicong Hou
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Sanghun Im
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Tomohiko Fukuda
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Jianguo Gu
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| |
Collapse
|
47
|
Sakr HI, Coleman DT, Cardelli JA, Mathis JM. Characterization of an Oncolytic Adenovirus Vector Constructed to Target the cMet Receptor. Oncolytic Virother 2015; 4:119-132. [PMID: 26866014 PMCID: PMC4746000 DOI: 10.2147/ov.s87369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The cMet receptor is a homodimer with tyrosine kinase activity. Upon stimulation with its ligand, hepatocyte growth factor (HGF), the receptor mediates wide physiologic actions. The HGF-cMet signaling pathway is dysregulated in many cancers, which makes cMet an important target for novel therapeutic interventions. Oncolytic adenoviruses (Ads) have been used for the past three decades as a promising therapeutic approach for a wide array of neoplastic diseases. To date, achieving cancer-specific replication of oncolytic Ads has been accomplished by either viral genome deletions or by incorporating tumor selective promoters. To achieve novel specificity of oncolytic Ad infection of cancer cells that overexpress cMet, we inserted the HGF NK2 sequence, corresponding to a competitive antagonist of HGF binding to the cMet receptor, into the Ad serotype 5 (Ad5) fiber gene. The resulting vector, Ad5-pIX-RFP-FF/NK2, was rescued, amplified in HEK293 cells, and characterized. Binding specificity and viral infectivity were tested in various cancer cell lines that express varying levels of cMet and hCAR (the Ad5 receptor). We found that Ad5-pIX-RFP-FF/NK2 demonstrated binding specificity to the cMet receptor. In addition, there was enhanced viral infectivity and virus replication compared with a non-targeted Ad vector. Although NK2 weakly induces cMet receptor activation, our results showed no receptor phosphorylation in the context of an oncolytic Ad virus. In summary, these results suggest that an oncolytic Ad retargeted to the cMet receptor is a promising vector for developing a novel cancer therapeutic agent.
Collapse
Affiliation(s)
- Hany I Sakr
- Department of Cellular Biology and Anatomy, LSU Health Shreveport, Shreveport, LA, USA; Gene Therapy Program, LSU Health Shreveport, Shreveport, LA, USA; Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - David T Coleman
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA; Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA
| | - James A Cardelli
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA; Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA
| | - J Michael Mathis
- Gene Therapy Program, LSU Health Shreveport, Shreveport, LA, USA; Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA; Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
48
|
Peak BMP Responses in the Drosophila Embryo Are Dependent on the Activation of Integrin Signaling. Cell Rep 2015; 12:1584-93. [PMID: 26321638 PMCID: PMC4571823 DOI: 10.1016/j.celrep.2015.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/19/2015] [Accepted: 08/04/2015] [Indexed: 01/09/2023] Open
Abstract
Within a 3D tissue, cells need to integrate signals from growth factors, such as BMPs, and the extracellular matrix (ECM) to coordinate growth and differentiation. Here, we use the Drosophila embryo as a model to investigate how BMP responses are influenced by a cell’s local ECM environment. We show that integrins, which are ECM receptors, are absolutely required for peak BMP signaling. This stimulatory effect of integrins requires their intracellular signaling function, which is activated by the ECM protein collagen IV. Mechanistically, integrins interact with the BMP receptor and stimulate phosphorylation of the downstream Mad transcription factor. The BMP-pathway-enhancing function of integrins is independent of focal adhesion kinase, but it requires conserved NPXY motifs in the β-integrin cytoplasmic tail. Furthermore, we show that an α-integrin subunit is a BMP target gene, identifying positive feedback between integrin signaling and BMP pathway activity that may contribute to robust cell fate decisions. Drosophila embryos lacking integrin function have disrupted BMP responses Collagen IV activates integrin signaling to enhance levels of the pMad transducer Integrins bind BMP receptors and promote pMad levels after BMP receptor activation BMP activates expression of an α-integrin, representing a positive feedback loop
Collapse
|
49
|
Di Donato M, Bilancio A, D'Amato L, Claudiani P, Oliviero MA, Barone MV, Auricchio A, Appella E, Migliaccio A, Auricchio F, Castoria G. Cross-talk between androgen receptor/filamin A and TrkA regulates neurite outgrowth in PC12 cells. Mol Biol Cell 2015; 26:2858-72. [PMID: 26063730 PMCID: PMC4571344 DOI: 10.1091/mbc.e14-09-1352] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 05/14/2015] [Accepted: 06/04/2015] [Indexed: 12/17/2022] Open
Abstract
Steroids and growth factors control neuronal development through their receptors under physiological and pathological conditions. We show that PC12 cells harbor endogenous androgen receptor (AR), whose inhibition or silencing strongly interferes with neuritogenesis stimulated by the nonaromatizable synthetic androgen R1881 or NGF. This implies a role for AR not only in androgen signaling, but also in NGF signaling. In turn, a pharmacological TrkA inhibitor interferes with NGF- or androgen-induced neuritogenesis. In addition, androgen or NGF triggers AR association with TrkA, TrkA interaction with PI3-K δ, and downstream activation of PI3-K δ and Rac in PC12 cells. Once associated with AR, filamin A (FlnA) contributes to androgen or NGF neuritogenesis, likely through its interaction with signaling effectors, such as Rac. This study thus identifies a previously unrecognized reciprocal cross-talk between AR and TrkA, which is controlled by β1 integrin. The contribution of FlnA/AR complex and PI3-K δ to neuronal differentiation by androgens and NGF is also novel. This is the first description of AR function in PC12 cells.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Antonio Bilancio
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Loredana D'Amato
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Pamela Claudiani
- Telethon Institute of Genetics and Medicine and Medical Genetics and Translational Medicine Department, University Federico II, 80131 Naples, Italy
| | - Maria Antonietta Oliviero
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Maria Vittoria Barone
- European Laboratory for the Investigation of Food Induced Diseases and Medical Genetics and Translational Medicine Department, University Federico II, 80131 Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine and Medical Genetics and Translational Medicine Department, University Federico II, 80131 Naples, Italy
| | - Ettore Appella
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, MD 20892-4256
| | - Antimo Migliaccio
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Ferdinando Auricchio
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| | - Gabriella Castoria
- Department of Biochemistry, Biophysics and General Pathology, II University of Naples, 80138 Naples, Italy
| |
Collapse
|
50
|
Burkhalter RJ, Westfall SD, Liu Y, Stack MS. Lysophosphatidic Acid Initiates Epithelial to Mesenchymal Transition and Induces β-Catenin-mediated Transcription in Epithelial Ovarian Carcinoma. J Biol Chem 2015; 290:22143-54. [PMID: 26175151 DOI: 10.1074/jbc.m115.641092] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 11/06/2022] Open
Abstract
During tumor progression, epithelial ovarian cancer (EOC) cells undergo epithelial-to-mesenchymal transition (EMT), which influences metastatic success. Mutation-dependent activation of Wnt/β-catenin signaling has been implicated in gain of mesenchymal phenotype and loss of differentiation in several solid tumors; however, similar mutations are rare in most EOC histotypes. Nevertheless, evidence for activated Wnt/β-catenin signaling in EOC has been reported, and immunohistochemical analysis of human EOC tumors demonstrates nuclear staining in all histotypes. This study addresses the hypothesis that the bioactive lipid lysophosphatidic acid (LPA), prevalent in the EOC microenvironment, functions to regulate EMT in EOC. Our results demonstrate that LPA induces loss of junctional β-catenin, stimulates clustering of β1 integrins, and enhances the conformationally active population of surface β1 integrins. Furthermore, LPA treatment initiates nuclear translocation of β-catenin and transcriptional activation of Wnt/β-catenin target genes resulting in gain of mesenchymal marker expression. Together these data suggest that LPA initiates EMT in ovarian tumors through β1-integrin-dependent activation of Wnt/β-catenin signaling, providing a novel mechanism for mutation-independent activation of this pathway in EOC progression.
Collapse
Affiliation(s)
- Rebecca J Burkhalter
- From the Departments of Medical Pharmacology and Physiology and the Harper Cancer Research Institute
| | - Suzanne D Westfall
- Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri 65212 and
| | - Yueying Liu
- the Harper Cancer Research Institute, Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana 46617
| | - M Sharon Stack
- the Harper Cancer Research Institute, Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana 46617
| |
Collapse
|