1
|
Aulicino F, Capin J, Berger I. Synthetic Virus-Derived Nanosystems (SVNs) for Delivery and Precision Docking of Large Multifunctional DNA Circuitry in Mammalian Cells. Pharmaceutics 2020; 12:E759. [PMID: 32796680 PMCID: PMC7466058 DOI: 10.3390/pharmaceutics12080759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022] Open
Abstract
DNA delivery is at the forefront of current research efforts in gene therapy and synthetic biology. Viral vectors have traditionally dominated the field; however, nonviral delivery systems are increasingly gaining traction. Baculoviruses are arthropod-specific viruses that can be easily engineered and repurposed to accommodate and deliver large sequences of exogenous DNA into mammalian cells, tissues, or ultimately organisms. These synthetic virus-derived nanosystems (SVNs) are safe, readily customized, and can be manufactured at scale. By implementing clustered regularly interspaced palindromic repeats (CRISPR) associated protein (CRISPR/Cas) modalities into this system, we developed SVNs capable of inserting complex DNAs into genomes, at base pair precision. We anticipate a major role for SVNs as an attractive alternative to viral vectors in accelerating genome engineering and gene therapy applications in the future.
Collapse
Affiliation(s)
- Francesco Aulicino
- Bristol Synthetic Biology Centre BrisSynBio, School of Biochemistry, 1 Tankard’s Close, University of Bristol, Bristol BS8 1TD, UK;
| | - Julien Capin
- Bristol Synthetic Biology Centre BrisSynBio, School of Biochemistry, 1 Tankard’s Close, University of Bristol, Bristol BS8 1TD, UK;
| | - Imre Berger
- Bristol Synthetic Biology Centre BrisSynBio, School of Biochemistry, 1 Tankard’s Close, University of Bristol, Bristol BS8 1TD, UK;
- Max Planck Bristol Centre for Minimal Biology, School of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
2
|
Kondou K, Suzuki T, Chang MO, Takaku H. Recombinant baculovirus expressing the FrC-OVA protein induces protective antitumor immunity in an EG7-OVA mouse model. J Biol Eng 2019; 13:77. [PMID: 31649751 PMCID: PMC6805443 DOI: 10.1186/s13036-019-0207-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/16/2019] [Indexed: 02/02/2023] Open
Abstract
Background The baculovirus (BV) Autographa californica multiple nuclear polyhedrosis virus has been used in numerous protein expression systems because of its ability to infect insect cells and serves as a useful vaccination vector with several benefits, such as its low clinical risks and posttranslational modification ability. We recently reported that dendritic cells (DCs) infected with BV stimulated antitumor immunity. The recombinant BV (rBV) also strongly stimulated peptide-specific T-cells and antitumor immunity. In this study, the stimulation of an immune response against EG7-OVA tumors in mice by a recombinant baculovirus-based combination vaccine expressing fragment C-ovalbumin (FrC-OVA-BV; rBV) was evaluated. Results We constructed an rBV expressing fragment C (FrC) of tetanus toxin containing a promiscuous MHC II-binding sequence and a p30-ovalbumin (OVA) peptide that functions in the MHC I pathway. The results showed that rBV activated the CD8+ T-cell-mediated response much more efficiently than the wild-type BV (wtBV). Experiments with EG7-OVA tumor mouse models showed that rBV significantly decreased tumor volume and increased survival compared with those in the wild-type BV or FrC-OVA DNA vaccine groups. In addition, a significant antitumor effect of classic prophylactic or therapeutic vaccinations was observed for rBV against EG7-OVA-induced tumors compared with that in the controls. Conclusion Our findings showed that FrC-OVA-BV (rBV) induced antitumor immunity, paving the way for its use in BV immunotherapy against malignancies.
Collapse
Affiliation(s)
- Keigo Kondou
- Department of Life and Environmental Sciences, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016 Japan
| | - Tomoyuki Suzuki
- Department of Life and Environmental Sciences, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016 Japan
| | - Myint Oo Chang
- Department of Life and Environmental Sciences, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016 Japan
| | - Hiroshi Takaku
- Department of Life and Environmental Sciences, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba, 275-0016 Japan
| |
Collapse
|
3
|
Abstract
The identification of markers expressed by pathological cells or their microenvironment would help to distinguish such cells from the normal tissues. The strategies derived from this theory can be a promising modality for imaging and treating diseases. LyP-1, a tumor homing peptide, can selectively bind to its receptor p32 protein overexpressed in various tumor-associated cells and atherosclerotic plaque macrophages. During recent decades, multiple types of LyP-1-based imaging probes and drug delivery systems have been designed and developed for diagnostic and therapeutic applications. This review first introduces LyP-1 and its receptor p32, as well as its homing, internalization and proapoptotic properties. Next, we highlight recent studies focusing on the applications of LyP-1-based strategies in the diagnosis and treatment of tumors, metastatic lesions, and atherosclerotic plaques. Finally, several limitations in the clinical translation of LyP-1-based bioconjugates are summarized.
Collapse
Affiliation(s)
- Ningning Song
- a Department of Nuclear Medicine , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Lingzhou Zhao
- a Department of Nuclear Medicine , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Meilin Zhu
- b School of Basic Medical Sciences, Ningxia Medical University , Yinchuan , People's Republic of China
| | - Jinhua Zhao
- a Department of Nuclear Medicine , Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| |
Collapse
|
4
|
Phage Display Libraries: From Binders to Targeted Drug Delivery and Human Therapeutics. Mol Biotechnol 2019; 61:286-303. [DOI: 10.1007/s12033-019-00156-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Tian F, Dahmani FZ, Qiao J, Ni J, Xiong H, Liu T, Zhou J, Yao J. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer. Acta Biomater 2018; 75:398-412. [PMID: 29874597 DOI: 10.1016/j.actbio.2018.05.050] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/10/2018] [Accepted: 05/30/2018] [Indexed: 12/31/2022]
Abstract
Several obstacles are currently impeding the successful treatment of breast cancer, namely impaired drug accumulation into the tumor site, toxicity to normal cells and narrow therapeutic index of chemotherapy, multidrug resistance (MDR) and the metastatic spread of cancer cells through the blood and lymphatic vessels. In this regard, we designed a novel multifunctional nano-sized drug delivery system based on LyP-1 peptide-modified low-molecular-weight heparin-quercetin conjugate (PLQ). This nanosystem was developed for targeted co-delivery of multiple anticancer drugs to p32-overexpressing tumor cells and peritumoral lymphatic vessels, using LyP-1 peptide as active targeting ligand, with the aim to achieve a targeted combinatorial chemo/angiostatic therapy and MDR reversal. The cellular uptake of PLQ nanoparticles by p32-overexpressing breast cancer cells was significantly higher than nonfunctionalized nanoparticles. Besides, the anti-angiogenic activity of PLQ nanoparticles was proven by the effective inhibition of the bFGF-induced neovascularization in subcutaneous Matrigel plugs. More importantly, PLQ/GA nanoparticles with better targeting ability toward p32-positive tumors, displayed a high antitumor outcome by inhibition of tumor cells proliferation and angiogenesis. Immunohistochemistry and western blot assay showed that PLQ/GA nanoparticles significantly disrupted the lymphatic formation of tumor, and inhibited the P-glycoprotein (P-gp) expression in MCF-7 tumor cells, respectively. In conclusion, PLQ/GA nanoparticles provide a synergistic strategy for effective targeted co-delivery of chemotherapeutic and antiangiogenic agents and reversing MDR and metastasis in breast cancer. STATEMENT OF SIGNIFICANCE Herein, we successfully developed a novel amphiphilic nanomaterial, LyP-1-LMWH-Qu (PLQ) conjugate, consisting of a tumor-targeting moiety LyP-1, a hydrophobic quercetin (a multidrug resistance [MDR]-reversing drug) inner core, and a hydrophilic low-molecular-weight heparin (an antiangiogenic agent) outer shell for encapsulating and delivering a hydrophobic chemotherapeutic agent (gambogic acid). This versatile nanoplatform with multiple targeted features, i.e., dual chemo/angiostatic effects, destruction ability of the peritumoral lymphatic vessels, and reversal of MDR, resulted in a significantly stronger antitumor efficacy and lower toxic side effect than those of nontargeted nanoparticles and the free drug solution. Therefore, this versatile nanosystem might provide a novel insight for the treatment and palliation of breast cancer by targeted co-delivery of chemo/antiangiogenic agents and reversing MDR and metastasis.
Collapse
|
6
|
Jiang Y, Liu S, Zhang Y, Li H, He H, Dai J, Jiang T, Ji W, Geng D, Elzatahry AA, Alghamdi A, Fu D, Deng Y, Zhao D. Magnetic mesoporous nanospheres anchored with LyP-1 as an efficient pancreatic cancer probe. Biomaterials 2017; 115:9-18. [PMID: 27871003 DOI: 10.1016/j.biomaterials.2016.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/10/2016] [Accepted: 11/07/2016] [Indexed: 01/17/2023]
Abstract
Immobilization of a ligand that selectively interacts with cancer cells to nanomaterials can enhance their diagnostic and therapeutic efficiency. In this study, we firstly demonstrate the high expression of receptor for cyclic nine-amino acid peptide LyP-1 (Cys-Gly-Asn-Lys-Arg-Thr-Arg-Gly-Cys) in both mouse and human pancreatic cancer. Based on these findings, sub-50 nm multifunctional superparamagnetic mesoporous nanospheres with surface modified with LyP-1 are rationally designed. Theses nanospheres have a core of silica-protected magnetite nanoparticle and a shell of FITC-labeled mesoporous silica, and they are able to specifically recognize and conjugate with the pancreatic cancer cell in vitro, as verified by the combined techniques of fluorescent imaging and T2 weight magnetic resonance imaging. After systematic administration, these LyP-1 immobilized nanospheres are found to actively target to mouse orthotopic xenograft of pancreatic cancer, which opens up the door for applications in early probing and diagnosis of pancreatic cancer by the multimodal imaging.
Collapse
Affiliation(s)
- Yongjian Jiang
- Department of Pancreatic Surgery, Nephrology & Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shaojun Liu
- Department of Pancreatic Surgery, Nephrology & Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| | - Hengchao Li
- Department of Pancreatic Surgery, Nephrology & Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hang He
- Department of Pancreatic Surgery, Nephrology & Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Juntao Dai
- Department of Pancreatic Surgery, Nephrology & Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tao Jiang
- Department of Radiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Weihang Ji
- Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Daoying Geng
- Department of Pancreatic Surgery, Nephrology & Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Abdulaziz Alghamdi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Deliang Fu
- Department of Pancreatic Surgery, Nephrology & Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China; State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Dongyuan Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Kwang TW, Zeng X, Wang S. Manufacturing of AcMNPV baculovirus vectors to enable gene therapy trials. Mol Ther Methods Clin Dev 2016; 3:15050. [PMID: 26858963 PMCID: PMC4729316 DOI: 10.1038/mtm.2015.50] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 12/17/2022]
Abstract
Over the past two decades, baculoviruses have become workhorse research tools for transient transgene expression. Although they have not yet been used directly as a gene therapy vector in the clinical setting, numerous preclinical studies have suggested the highly promising potential of baculovirus as a delivery vector for a variety of therapeutic applications including vaccination, tissue engineering, and cancer treatment. As such, there is growing interest in using baculoviruses as human gene therapy vectors, which has led to advances in baculovirus bioprocessing methods. This review provides an overview of the current approaches for scaled-up amplification, concentration, purification, and formulation of AcMNPV baculoviruses, and highlights the key regulatory requirements that must be met before gene therapy clinical trials can be initiated.
Collapse
Affiliation(s)
| | | | - Shu Wang
- Department of Biological Sciences, National University of Singapore, Singapore
- Institute of Bioengineering and Nanotechnology, Singapore
| |
Collapse
|
8
|
Hofmann C. Generation of Envelope-Modified Baculoviruses for Gene Delivery into Mammalian Cells. Methods Mol Biol 2016; 1350:491-504. [PMID: 26820876 DOI: 10.1007/978-1-4939-3043-2_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Genetically modified baculoviruses can efficiently deliver and express genes in mammalian cells. The major prerequisite for the expression of a gene transferred by baculovirus is its control by a promoter that is active in mammalian cells. This chapter describes methods for producing second generation baculovirus vectors through modification of their envelope. Envelope modified baculoviruses offer additional new applications of the system, such as their use in in vivo gene delivery, targeting, and vaccination. Methods of generating a recombinant baculovirus vector with a modified envelope and its amplification and purification, including technical scale production, are discussed. A variety of notes give clues regarding specific technical procedures. Finally, methods to analyze the virus and transduction procedures are presented.
Collapse
Affiliation(s)
- Christian Hofmann
- Roche Pharma AG, Emil-Barell-Str. 1, 79639, Grenzach-Wyhlen, Germany.
| |
Collapse
|
9
|
Makkonen KE, Airenne K, Ylä-Herttulala S. Baculovirus-mediated gene delivery and RNAi applications. Viruses 2015; 7:2099-125. [PMID: 25912715 PMCID: PMC4411692 DOI: 10.3390/v7042099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/02/2015] [Accepted: 04/16/2015] [Indexed: 12/11/2022] Open
Abstract
Baculoviruses are widely encountered in nature and a great deal of data is available about their safety and biology. Recently, these versatile, insect-specific viruses have demonstrated their usefulness in various biotechnological applications including protein production and gene transfer. Multiple in vitro and in vivo studies exist and support their use as gene delivery vehicles in vertebrate cells. Recently, baculoviruses have also demonstrated high potential in RNAi applications in which several advantages of the virus make it a promising tool for RNA gene transfer with high safety and wide tropism.
Collapse
Affiliation(s)
- Kaisa-Emilia Makkonen
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
| | - Kari Airenne
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
| | - Seppo Ylä-Herttulala
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
- Gene Therapy Unit, Kuopio University Hospital, Kuopio 70211, Finland.
- Science Service Center, Kuopio University Hospital, Kuopio 70211, Finland.
| |
Collapse
|
10
|
Affiliation(s)
- Bethany Powell Gray
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| | - Kathlynn C. Brown
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| |
Collapse
|
11
|
Gürsoy RN, Çevik Ö. Design, characterization andin vitroevaluation of SMEDDS containing an anticancer peptide, linear LyP-1. Pharm Dev Technol 2013; 19:486-90. [DOI: 10.3109/10837450.2013.795170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
LyP-1-conjugated PEGylated liposomes: A carrier system for targeted therapy of lymphatic metastatic tumor. J Control Release 2012; 157:118-25. [DOI: 10.1016/j.jconrel.2011.07.034] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/25/2011] [Accepted: 07/23/2011] [Indexed: 11/22/2022]
|
13
|
Rivera-Gonzalez GC, Swift SL, Dussupt V, Georgopoulos LJ, Maitland NJ. Baculoviruses as gene therapy vectors for human prostate cancer. J Invertebr Pathol 2011; 107 Suppl:S59-70. [PMID: 21784232 DOI: 10.1016/j.jip.2011.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 02/10/2011] [Indexed: 12/13/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer in ageing men in the western world. While the primary cancers can be treated with androgen ablation, radiotherapy and surgery, recurrent castration resistant cancers have an extremely poor prognosis, hence promoting research that could lead to a better treatment. Targeted therapeutic gene therapy may provide an attractive option for these patients. By exploiting the natural ability of viruses to target and transfer their genes into cancer cells, either naturally or after genetic manipulation, new generations of biological control can be developed. In this review we present the advantages and practicalities of using baculovirus as a vector for prostate cancer gene therapy and provide evidence for the potential of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) as a safer alternative vehicle for targeting cancer cells. Strategies to target baculovirus binding specifically to prostate cell surfaces are also presented. The large insertion capacity of baculoviruses also permits restricted, prostate-specific gene expression of therapeutic genes by cloning extended human transcriptional control sequences into the baculovirus genome.
Collapse
|
14
|
Yan Z, Zhan C, Wen Z, Feng L, Wang F, Liu Y, Yang X, Dong Q, Liu M, Lu W. LyP-1-conjugated doxorubicin-loaded liposomes suppress lymphatic metastasis by inhibiting lymph node metastases and destroying tumor lymphatics. NANOTECHNOLOGY 2011; 22:415103. [PMID: 21914940 DOI: 10.1088/0957-4484/22/41/415103] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lymphatic metastasis can be greatly promoted by metastases growth and lymphangiogenesis in lymph nodes (LNs). LyP-1, a cyclic peptide, is able to specifically bind with tumor cells and tumor lymphatics in metastatic LNs. This work aimed to use LyP-1-conjugated liposomes (L-LS) loaded with doxorubicin (DOX) (L-LS/DOX) to suppress lymphatic metastasis by inhibiting both metastases and tumor lymphatics in LNs. L-LS were prepared and exhibited sizes around 90 nm and spherical morphology as characterized by transmission electron microscopy. The in vitro cellular studies showed that LyP-1 modification obviously increased liposome uptake by MDA-MB-435 tumor cells and enhanced the cytotoxicity of liposomal DOX. A popliteal and iliac LN metastases model was successfully established by subcutaneous inoculation of tumor cells to nude mice. The immunofluorescence staining analysis indicated that LyP-1 modification enabled specific binding of liposome with tumor lymphatics and enhanced the destroying effect of liposomal DOX on tumor lymphatics. The in vivo fluorescence imaging and pharmacodynamic studies showed that LyP-1 modification increased liposome uptake by metastatic LNs and that L-LS/DOX significantly decreased metastatic LN growth and LN metastasis rate. These results suggested that L-LS/DOX were an effective delivery system for suppressing lymphatic metastasis by simultaneously inhibiting LN metastases and tumor lymphatics.
Collapse
Affiliation(s)
- Zhiqiang Yan
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lesch HP, Makkonen KE, Laitinen A, Määttä AM, Närvänen O, Airenne KJ, Ylä-Herttuala S. Requirements for baculoviruses for clinical gene therapy applications. J Invertebr Pathol 2011; 107 Suppl:S106-12. [PMID: 21784225 DOI: 10.1016/j.jip.2011.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/23/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Hanna P Lesch
- AI Virtanen Institute Department of Biotechnology and Molecular Medicine, University of Eastern Finland/Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
16
|
Opportunities and challenges for the baculovirus expression system. J Invertebr Pathol 2011; 107 Suppl:S3-15. [PMID: 21784228 DOI: 10.1016/j.jip.2011.05.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 11/23/2022]
|
17
|
Chen CY, Lin CY, Chen GY, Hu YC. Baculovirus as a gene delivery vector: recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol Adv 2011; 29:618-31. [PMID: 21550393 PMCID: PMC7126054 DOI: 10.1016/j.biotechadv.2011.04.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 12/13/2022]
Abstract
Baculovirus infects insects in nature and is non-pathogenic to humans, but can transduce a broad range of mammalian and avian cells. Thanks to the biosafety, large cloning capacity, low cytotoxicity and non-replication nature in the transduced cells as well as the ease of manipulation and production, baculovirus has gained explosive popularity as a gene delivery vector for a wide variety of applications. This article extensively reviews the recent understandings of the molecular mechanisms pertinent to baculovirus entry and cellular responses, and covers the latest advances in the vector improvements and applications, with special emphasis on antiviral therapy, cancer therapy, regenerative medicine and vaccine.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | |
Collapse
|
18
|
Herringson TP, Altin JG. Effective tumor targeting and enhanced anti-tumor effect of liposomes engrafted with peptides specific for tumor lymphatics and vasculature. Int J Pharm 2011; 411:206-14. [PMID: 21443937 DOI: 10.1016/j.ijpharm.2011.03.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/10/2011] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
Abstract
The use of liposomes to target drugs to tumors represents an attractive therapeutic strategy, especially when used with convenient targeting moieties such as peptides. Here we explored several peptides for their ability to target liposomes to tumors. The metal chelator lipid 3(nitrilotriacetic acid)-ditetradecylamine (NTA(3)-DTDA) was incorporated into liposomes to enable the engraftment of His-tagged peptides containing targeting motifs specific for tumor vasculature markers VEGFR-1 (p39-Flt-1) and neuropilin-1 (p24-NRP-1), or a motif known to accumulate in hypoxic areas of tumors (p47-LyP-1). Peptide-engrafted liposomes were examined for their biodistribution and anti-tumor effects after i.v. administration. Our results show that radiolabelled liposomes engrafted with either p24-NRP-1 or p47-LyP-1 and then injected into mice bearing subcutaneous B16-F1 tumors, show increased accumulation in the tumor. For p24-NRP-1-liposomes, tumor targeting was significantly increased when the stabilizing lipid phosphatidylethanolamine polyethylene glycol-750 (PE-PEG(750)) was used instead of PE-PEG(2000) in the liposome lipid mixture. Importantly, compared to the controls, p24-NRP-1 liposomes containing 10 mol% PE-PEG(750) and loaded with doxorubicin significantly inhibited the rate of tumor growth in the tumor-bearing mice. Our findings demonstrate that the use of drug-containing liposomes incorporating NTA(3)-DTDA and engrafted with NRP-1 targeting peptide is a convenient strategy to enhance the therapeutic effect of non-targeted doxorubicin.
Collapse
Affiliation(s)
- Thomas P Herringson
- Division of Biomedical Science and Biochemistry, Research School of Biology, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT 0200, Australia
| | | |
Collapse
|
19
|
Abstract
Each normal organ and pathological condition appear to contain organ- or disease-specific molecular tags on its vasculature, which constitute a vascular "zip code" system. In vivo phage display has been exploited to profile this vascular heterogeneity and a number of peptides that home specifically to various normal organs or pathological conditions have been identified. These peptides have been used for targeted delivery of oligonucleotides, drugs, imaging agents, inorganic nanoparticles, liposomes, and viruses. Identification of the receptor molecules for the homing peptides has revealed novel biomarkers for target organs. In tumors many of these receptors seem to play a functional role in tumor angiogenesis. Recently, tumor homing peptides have entered clinical trials. Results from several Phase I and II trials have been reported, and a number of trials are currently ongoing or recruiting patients. In these trials no dose-limiting toxicity has occurred and all combinations of peptide-targeted therapies have been well tolerated.
Collapse
Affiliation(s)
- Pirjo Laakkonen
- Novel Target Molecules Research Group, Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | | |
Collapse
|
20
|
Yu IL, Lin YC, Robinson JH, Lung O. Transduction of vertebrate cells with Spodoptera exigua multiple nucleopolyhedrovirus F protein-pseudotyped gp64-null Autographa californica multiple nucleopolyhedrovirus. J Gen Virol 2009; 90:2282-7. [PMID: 19474242 DOI: 10.1099/vir.0.012138-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Budded virions of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) can enter a variety of non-host cells. The capacity of GP64, AcMNPV's endogenous envelope fusion protein, and SeF, the fusion protein from a gp64(-) baculovirus, to mediate baculovirus entry into vertebrate cells was examined by comparing the transduction efficiencies of engineered AcMNPV variants with either of the two envelope proteins into 17 vertebrate cell lines. At an m.o.i. of 500, GP64-expressing viruses transduced all cell lines with varying efficiencies. Transduction efficiencies of SeF-pseudotyped gp64-null AcMNPV into all cell lines were lower than those of GP64-expressing viruses, and were undetectable in seven cell lines. At an m.o.i. of 50, transduction of all mammalian cell lines transducible by the SeF-pseudotyped gp64-null AcMNPV at an m.o.i. of 500 was no longer detectable. An amplifiable SeF-pseudotyped gp64-null AcMNPV vector with greatly reduced tropism for vertebrate cells may have applications in engineering AcMNPV for targeted transduction.
Collapse
Affiliation(s)
- Ian-Ling Yu
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | | | | | | |
Collapse
|
21
|
Improved adenovirus type 5 vector-mediated transduction of resistant cells by piggybacking on coxsackie B-adenovirus receptor-pseudotyped baculovirus. J Virol 2009; 83:6048-66. [PMID: 19357170 DOI: 10.1128/jvi.00012-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Taking advantage of the wide tropism of baculoviruses (BVs), we constructed a recombinant BV (BV(CAR)) pseudotyped with human coxsackie B-adenovirus receptor (CAR), the high-affinity attachment receptor for adenovirus type 5 (Ad5), and used the strategy of piggybacking Ad5-green fluorescent protein (Ad5GFP) vector on BV(CAR) to transduce various cells refractory to Ad5 infection. We found that transduction of all cells tested, including human primary cells and cancer cell lines, was significantly improved using the BV(CAR)-Ad5GFP biviral complex compared to that obtained with Ad5GFP or BV(CAR)GFP alone. We determined the optimal conditions for the formation of the complex and found that a high level of BV(CAR)-Ad5GFP-mediated transduction occurred at relatively low adenovirus vector doses, compared with transduction by Ad5GFP alone. The increase in transduction was dependent on the direct coupling of BV(CAR) to Ad5GFP via CAR-fiber knob interaction, and the cell attachment of the BV(CAR)-Ad5GFP complex was mediated by the baculoviral envelope glycoprotein gp64. Analysis of the virus-cell binding reaction indicated that the presence of BV(CAR) in the complex provided kinetic benefits to Ad5GFP compared to the effects with Ad5GFP alone. The endocytic pathway of BV(CAR)-Ad5GFP did not require Ad5 penton base RGD-integrin interaction. Biodistribution of BV(CAR)-Ad5Luc complex in vivo was studied by intravenous administration to nude BALB/c mice and compared to Ad5Luc injected alone. No significant difference in viscerotropism was found between the two inocula, and the liver remained the preferred localization. In vitro, coagulation factor X drastically increased the Ad5GFP-mediated transduction of CAR-negative cells but had no effect on the efficiency of transduction by the BV(CAR)-Ad5GFP complex. Various situations in vitro or ex vivo in which our BV(CAR)-Ad5 duo could be advantageously used as gene transfer biviral vector are discussed.
Collapse
|
22
|
Literature Watch. Lymphat Res Biol 2008. [DOI: 10.1089/lrb.2008.63411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|