1
|
Morón-López J, Font-Nájera A, Kokociński M, Jarosiewicz P, Jurczak T, Mankiewicz-Boczek J. Influence of bloom stage on the effectiveness of algicidal bacteria in controlling harmful cyanobacteria: A microcosm study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126261. [PMID: 40246013 DOI: 10.1016/j.envpol.2025.126261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/01/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Cyanobacterial harmful algae blooms (cyanoHABs) pose significant ecological and public health concerns in freshwater ecosystems worldwide. Understanding the dynamics of phytoplankton communities and the efficacy of mitigation strategies is crucial for managing bloom events. This study investigates the impact of bioaugmentation with algicidal bacteria on Microcystis-dominated blooms through laboratory microcosm experiments. Field-collected samples from MID- and POST-summer bloom stages were treated with Morganella morganii, Exiguobacterium acetylicum, and a bacterial consortium including Bacillus pumilus. Phytoplankton composition, microcystin concentrations and genes related to microbial community dynamics (16S, mcyA, nosZ and amoA) were assessed by microscopy, HPLC and qPCR, respectively. Results showed that M. morganii significantly altered the phytoplankton community structure and promoted diatom proliferation in MID-summer microcosms, though treatments were less effective in POST-summer microcosms representing more mature bloom periods. Additionally, algicidal bacteria influenced microcystin levels, with M. morganii and E. acetylicum reducing toxigenic Microcystis genotypes, as indicated by lower mcyA gene copy numbers. Molecular analyses also revealed that algicidal bacterial treatments contributed to shifts in microbial functional genes, including increased denitrification activity linked to nosZ gene abundance. These findings highlight the intricate interplay between algicidal bacteria and microbial communities, where algicidal activity extends beyond direct cyanobacteria suppression to broader ecosystem-level effects. By rebalancing phytoplankton communities toward eukaryotic dominance and reducing toxigenic cyanobacterial genotypes during intense bloom episodes, bioaugmentation with algicidal bacteria emerges as a promising strategy for bloom management and ecosystem restoration.
Collapse
Affiliation(s)
- Jesús Morón-López
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287, United States.
| | - Arnoldo Font-Nájera
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - Mikolaj Kokociński
- Adam Mickiewicz University, Department of Hydrobiology, 6 Uniwersytetu Poznańskiego, 61-614, Poznań, Poland.
| | - Paweł Jarosiewicz
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - Tomasz Jurczak
- University of Lodz, UNESCO Chair on Ecohydrology and Applied Ecology, 12/16 Banacha, 90-237, Łódź, Poland.
| | - Joanna Mankiewicz-Boczek
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| |
Collapse
|
2
|
Wang H, Wang Y, Li Y, Wang G, Shi T, Wang B. New Pyridinium Compound from Marine Sediment-Derived Bacterium Bacillus licheniformis S-1. Molecules 2024; 30:7. [PMID: 39795066 PMCID: PMC11722202 DOI: 10.3390/molecules30010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The structural diversity of marine natural products is considered a potential resource for the pharmaceutical industry. In our study of marine-derived compounds, one bacterium Bacillus licheniformis S-1 was discovered to have the ability to produce bioactive natural products. After a further chemistry investigation, one novel 4-aminopyridinium derivative, 4-(dimethylamino)-1-(2S-((4hydroxybenzoyl)oxy)propyl)pyridin-1-ium (1), along with 15 known cyclic dipeptides (2-16) were isolated from the bacterium B. licheniformis S-1 derived from a shallow sea sediment. The structures of compounds 1-16 were elucidated through comprehensive NMR spectroscopic and specific optical rotation (OR) data analyses. Compound 6 showed antibacterial activity against Pseudomonas fulva with an MIC value of 50 µg/mL. This is the first study to discover a pyridinium derivative and cyclic dipeptides from B. licheniformis.
Collapse
Affiliation(s)
| | | | | | | | - Ting Shi
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (H.W.); (Y.W.); (Y.L.); (G.W.)
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (H.W.); (Y.W.); (Y.L.); (G.W.)
| |
Collapse
|
3
|
Chen Q, Wang J, Su Z, Tian L, Huang F, Liu T, Graham N, Li G, Yu W. Per- and polyfluoroalkyl substances (PFAS) at low concentration improve coagulation efficiency but induce higher membrane fouling in drinking water treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125201. [PMID: 39490509 DOI: 10.1016/j.envpol.2024.125201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The presence of per- and polyfluoroalkyl substances (PFAS) in surface water has been widely reported in recent years. Many techniques, e.g., adsorption, have been investigated to remove PFAS from contaminated waters. However, the underlying impacts of PFAS on conventional drinking water treatment have been overlooked so far. In this study, we hypothesized whether PFAS have significant impacts on algae in surface water, which in turn may influence the performance of typical treatment processes (e.g., coagulation/membrane filtration). Therefore, we sampled a representative surface water (drinking water source) in Beijing, China, and dosed 2 representative PFAS compounds, at environment concentrations, to conduct bench-scale treatment tests. Results showed that the presence of PFAS caused larger flocs during coagulation and more severe ultrafiltration (UF) membrane fouling, compared with a control solution without PFAS. Specifically, PFAS at a low concentration (0.1 μg/L) led to the greatest influence on floc growth and UF membrane fouling; compared with the solution without PFAS, the floc size increased by 1.6 times and membrane flux declined more than 10%. These effects were evidenced by the stress response of algae under PFAS stimulus, secreting more biopolymers (mainly polysaccharides), rather than by PFAS directly. Overall, this study has demonstrated that the presence of PFAS can have both beneficial, and undesirable, indirect effects on water treatment in real applications, through its impact on algae in surface water sources.
Collapse
Affiliation(s)
- Qianyi Chen
- College of Environmental and Energy Engineering, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing, 100085, China
| | - Junling Wang
- College of Environmental and Energy Engineering, Beijing University of Civil Engineering & Architecture, Beijing, 100044, China
| | - Zhaoyang Su
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing, 100085, China.
| | - Long Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing, 100085, China
| | - Fan Huang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing, 100085, China
| | - Ting Liu
- School of Chemistry and Chemical Engineering, Beijing Key Laboratory for Chemical Power Source and Green Catalysis, Beijing Institute of Technology, Beijing, 100081, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
4
|
Chen Y, Xiong F, Zhu Y, Zhai D, Liu H, Zhang L, Xia M. A Bacillus subtilis strain with efficient algaecide of Microcystis aeruginosa and degradation of microcystins. Front Microbiol 2024; 15:1430097. [PMID: 39678917 PMCID: PMC11638172 DOI: 10.3389/fmicb.2024.1430097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024] Open
Abstract
Global concerns over harmful cyanobacterial blooms brought on by eutrophication are now widespread. Aquatic ecological restoration techniques that use algicidal bacteria to control toxic algae show promise. A Bacillus subtilis S4 (S4) strain with strong Microcystis aeruginosa algicidal activity and the capacity to degrade microcystins (MCs) were successfully isolated and evaluated in this study. The dynamics of internal and extracellular MC concentration as well as the physiological response and morphological properties of M. aeruginosa were investigated in the M. aeruginosa/bacteria co-culture system. The findings demonstrated that when S4 density grew from 1 × 106 cells/ml to 1 × 108 cells/ml, the release of M. aeruginosa lysis and MCs was boosted; however, MCs dropped by approximately 90% within 18 h, regardless of bacterial density. Comparing the bacterial cell incubation system to the control and bacterial cell-free filtrate systems, the assessment of extracellular and intracellular MCs revealed a 95% reduction in MCs. The findings showed that 89% of MCs were decreased by bacterial cells, while 98% of M. aeruginosa cells were algaecided by bacterial metabolites. Sustainable eradication of M. aeruginosa and MCs has been accomplished by the combined efforts of the S4 strain and its metabolites. By secreting algicidal chemicals that are resistant to proteases, acid, base, and heat, the S4 strain indirectly acts as an algaecide. The S4 strain possesses a strong ability to break down MCs and a very effective and stable algaecide function, indicating that it can potentially treat eutrophic water with hazardous algae.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China
| | - Fei Xiong
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China
| | - Ying Zhu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China
| | - Dongdong Zhai
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China
| | - Hongyan Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China
| | - Lin Zhang
- Yangtze River Fisheries Research Institute Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ming Xia
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China
| |
Collapse
|
5
|
Zuorro A, Lavecchia R, Contreras-Ropero JE, Martínez JBG, Barajas-Ferreira C, Barajas-Solano AF. Natural Antimicrobial Agents from Algae: Current Advances and Future Directions. Int J Mol Sci 2024; 25:11826. [PMID: 39519377 PMCID: PMC11545849 DOI: 10.3390/ijms252111826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Infectious diseases have significantly shaped human history, leading to significant advancements in medical science. The discovery and development of antibiotics represented a critical breakthrough, but the rise of antibiotic-resistant pathogens now presents a serious global health threat. Due to the limitations of current synthetic antimicrobials, such as toxicity and environmental concerns, it is essential to explore alternative solutions. Algae, particularly microalgae and cyanobacteria, have emerged as promising sources of bioactive antimicrobial compounds. This review provides a comprehensive analysis of the antimicrobial properties of algal-derived compounds, including polysaccharides, fatty acids, and phenols, which have shown effectiveness against multi-drug-resistant bacteria. A co-occurrence bibliometric analysis using VOSviewer highlighted five key research clusters: antibiotic resistance, algal extracts, biosynthesis, water treatment, and novel pharmacological compounds. Furthermore, the primary mechanisms of action of these bioactive compounds, such as the inhibition of protein synthesis and cell membrane disruption, were identified, demonstrating their potential against both common and multi-resistant pathogens. Future research should prioritize optimizing algal biomass production, utilizing genetic and metabolic engineering, and creating innovative delivery systems to enhance the efficient production of bioactive compounds.
Collapse
Affiliation(s)
- Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18, 00184 Roma, Italy;
| | - Roberto Lavecchia
- Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18, 00184 Roma, Italy;
| | - Jefferson E. Contreras-Ropero
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cucuta 540003, Colombia; (J.E.C.-R.); (J.B.G.M.); (A.F.B.-S.)
| | - Janet B. García Martínez
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cucuta 540003, Colombia; (J.E.C.-R.); (J.B.G.M.); (A.F.B.-S.)
| | - Crisóstomo Barajas-Ferreira
- School of Chemical Engineering, Universidad Industrial de Santander, Cra 27, Calle 9, Bucaramanga 680006, Colombia;
| | - Andrés F. Barajas-Solano
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cucuta 540003, Colombia; (J.E.C.-R.); (J.B.G.M.); (A.F.B.-S.)
| |
Collapse
|
6
|
Wu L, Zhou X, Zhu Y, Wang J, Yue C, Xu Y, Tian S, Wei X, Li S, Yang X, Wu Z, Yang M. Pseudomonas ZY-1 and Bacillus FY-1 protecting the rice seedlings from the harm of Pseudomonas aeruginosa via indirect seawead lysis. BMC Microbiol 2024; 24:375. [PMID: 39342144 PMCID: PMC11437986 DOI: 10.1186/s12866-024-03509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
The local ecosystems, fishery and human health are all threatened by water blooms, so effectively controlling water blooms has become an urgent and challenging issue. Biological control of water blooms is given priority due to its low cost, high efficiency and environmental friendliness. In this study, Pseudomonas ZY-1 and Bacillus FY-1, two highly-effective algicidal bacteria strains which are able to indirectly lyse algae by separating and screening from the vigorous water body in the paddy alga of Northeast China were obtained. The two bacterial strains have stronger ability to lyse alga in the bacterial liquid concentration of 106 CFU/ml, and the alga-lysing rate on 7 d reached 84.03% and 83.11% respectively. The active substance secreted by ZY-1 is not sensitive to the changes of temperature and pH value, while as FY-1 cell-free filtrate is not stable in high temperature above 50 ℃ and pH of 5, it requires the sun light to have the algaecidal effect. The cell-free filtrates of strains ZY-1 and FY-1 had the best lysis effect on Microcystis aeruginosa cells, and the chlorophyll a content of algae decreased to 0.13 ± 0.02 mg/L and 0.14 ± 0.03 mg/L respectively and the Fv/Fm of Microcystis aeruginosa decreased by 97.22% after 7 days. The algaecidal process of ZY-1 and FY-1 may be that the cell-free filtrate inhibits the photosynthesis of Microcystis aeruginosa, and meanwhile it avoids the regeneration and repair of photosynthesis of algal cells by affecting the gene expression and damaging the repair system of algal cells, so the membrane lipid peroxidation is exacerbated and then the membrane of algal cells is broken, the algal cells can't do normal life activities, and finally the algal cell would be killed. The rice seedlings in the algal liquid treatment group are short and show root dysplasia, few roots and brown roots. After treated with cell-free filtrate of ZY-1 and FY-1, the oxidative damage of the rice is obviously reduced, and the harm from Microcystis aeruginosa is reduced, which has the repair effect to the roots of rice seedlings and its aboveground growth. The cell-free filtrate of FY-1 works better than ZY-1. The bacteria strains of ZY-1 and FY-1 have the indirect algaecide trait, which makes them the potential environmentally-friendly algaecidal bacteria and they show broad application in the agricultural production and the control of water blooms.
Collapse
Affiliation(s)
- Lei Wu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Xueying Zhou
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuan Zhu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jianing Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Chengcai Yue
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yufeng Xu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Shiqi Tian
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiaoshuang Wei
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Siyuan Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Xue Yang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhihai Wu
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Meiying Yang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
7
|
Abate R, Oon YL, Oon YS, Bi Y, Mi W, Song G, Gao Y. Diverse interactions between bacteria and microalgae: A review for enhancing harmful algal bloom mitigation and biomass processing efficiency. Heliyon 2024; 10:e36503. [PMID: 39286093 PMCID: PMC11402748 DOI: 10.1016/j.heliyon.2024.e36503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
The interactions between bacteria and microalgae play pivotal roles in resource allocation, biomass accumulation, nutrient recycling, and species succession in aquatic systems, offering ample opportunities to solve several social problems. The escalating threat of harmful algal blooms (HABs) in the aquatic environment and the lack of cheap and eco-friendly algal-biomass processing methods have been among the main problems, demanding efficient and sustainable solutions. In light of this, the application of algicidal bacteria to control HABs and enhance algal biomass processing has been promoted in the past few decades as potentially suitable mechanisms to solve those problems. Hence, this comprehensive review aims to explore the diverse interaction modes between bacteria and microalgae, ranging from synergistic to antagonistic, and presents up-to-date information and in-depth analysis of their potential biotechnological applications, particularly in controlling HABs and enhancing microalgal biomass processing. For instance, several studies revealed that algicidal bacteria can effectively inhibit the growth of Microcystis aeruginosa, a notorious freshwater HAB species, with an antialgal efficiency of 24.87 %-98.8 %. The review begins with an overview of the mechanisms behind algae-bacteria interactions, including the environmental factors influencing these dynamics and their broader implications for aquatic ecosystems. It then provides a detailed analysis of the role of algicidal bacteria in controlling harmful algal blooms, as well as their role in bioflocculation and the pretreatment of microalgal biomass. Additionally, the review identifies and discusses the constraints and challenges in the biotechnological application of these interactions. By exploring the strategic use of algicidal bacteria, this review not only underscores their importance in maintaining aquatic environmental health but also in enhancing biomass processing efficiency. It offers valuable insights into future research avenues and the potential scalability of these applications, both in situ and at an industrial level.
Collapse
Affiliation(s)
- Rediat Abate
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Natural and Computatinal Science, Arba Minch University, Ethiopia
| | - Yoong-Ling Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yoong-Sin Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yonghong Bi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wujuan Mi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaofei Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yahui Gao
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
8
|
Xie Y, Zhang H, Cui B, Geng R, Grossart HP, Xiao P, Zuo J, Zhang H, Wang Z, Wang G, Wang X, Ma Z, Li R. Enhanced inhibitory efficiency against toxic bloom forming Raphidiopsis raciborskii by Streptomyces sp. HY through triple algicidal modes: Direct and indirect attacks combined with bioflocculation. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135152. [PMID: 39047554 DOI: 10.1016/j.jhazmat.2024.135152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/01/2024] [Accepted: 07/06/2024] [Indexed: 07/27/2024]
Abstract
Raphidiopsis raciborskii (R. raciborskii) forms harmful cyanobacterial blooms globally, and poses a great threat to the safety of drinking water and public health. There is a great need to develop eco-friendly biological alternative measures to mitigate mass blooms of R. raciborskii. However, previous rare studies on algicidal microorganisms against R. raciborskii restricted this aim. Recently, an algicidal bacterium Streptomyces sp. HY (designated HY) was identified with flavones producing ability, and could remove up to 98.73 % of R. raciborskii biomass within 48 h by directly attacking the cyanobacterium and release of algicidal substances (i.e., flavonoids) with a inoculum ratio of 5 %. Algicidal rate of HY was enhanced by 88.05 %, 89.33 % under dark and light, and full-light conditions respectively, when compared with the dark condition. Its algicidal substances were stable in a broad range of temperature (-80-55 °C) and pH (3-11) conditions, and all treated groups exhibited ≈ 100 % algicidal rate at day 3. HY treatment disrupted the photosynthesis system and triggered serious oxidative stress resulting in severe morphological injury. Thereby, HY treatment significantly affected expression levels of several essential genes (i.e., psbA, psaB, rbcL, ftsZ, recA, grpE), and simultaneously inhibited the biosynthesis and release of cylindrospermopsin. Yet, HY treatment didn't show any toxicity to zebrafish test embryos. Such results indicate that HY is a promising algicidal candidate strain to control global R. raciborskii blooms, and holds great promises for an effective biological measure to sustain water safety.
Collapse
Affiliation(s)
- Yan Xie
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - He Zhang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Baiyu Cui
- Wenzhou Shanxi Hydro-junction Management Center, Zhejiang 325035, China
| | - Ruozhen Geng
- Research Center for Monitoring and Environmental Sciences, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Authority, Ministry of Ecology and Environment of the People' s Republic of China, Shanghai 200125, China
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin 16775, Germany; University of Potsdam, Institute of Biochemistry and Biology, Potsdam 14469, Germany
| | - Peng Xiao
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Jun Zuo
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Hai Zhang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Zeshuang Wang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Guang Wang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xudong Wang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Renhui Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
9
|
Cha Y, Kim W, Park Y, Kim M, Son Y, Park W. Antagonistic actions of Paucibacter aquatile B51 and its lasso peptide paucinodin toward cyanobacterial bloom-forming Microcystis aeruginosa PCC7806. JOURNAL OF PHYCOLOGY 2024; 60:152-169. [PMID: 38073162 DOI: 10.1111/jpy.13412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/04/2023] [Accepted: 11/08/2023] [Indexed: 02/17/2024]
Abstract
Superior antagonistic activity against axenic Microcystis aeruginosa PCC7806 was observed with Paucibacter sp. B51 isolated from cyanobacterial bloom samples among 43 tested freshwater bacterial species. Complete genome sequencing, analyzing average nucleotide identity and digital DNA-DNA hybridization, designated the B51 strain as Paucibacter aquatile. Electron and fluorescence microscopic image analyses revealed the presence of the B51 strain in the vicinity of M. aeruginosa cells, which might provoke direct inhibition of the photosynthetic activity of the PCC7806 cells, leading to perturbation of cellular metabolisms and consequent cell death. Our speculation was supported by the findings that growth failure of the PCC7806 cells led to low pH conditions with fewer chlorophylls and down-regulation of photosystem genes (e.g., psbD and psaB) during their 48-h co-culture condition. Interestingly, the concentrated ethyl acetate extracts obtained from B51-grown supernatant exhibited a growth-inhibitory effect on PCC7806. The physical separation of both strains by a filter system led to no inhibitory activity of the B51 cells, suggesting that contact-mediated anti-cyanobacterial compounds might also be responsible for hampering the growth of the PCC7806 cells. Bioinformatic tools identified 12 gene clusters that possibly produce secondary metabolites, including a class II lasso peptide in the B51 genome. Further chemical analysis demonstrated anti-cyanobacterial activity from fractionated samples having a rubrivinodin-like lasso peptide, named paucinodin. Taken together, both contact-mediated inhibition of photosynthesis and the lasso peptide secretion of the B51 strain are responsible for the anti-cyanobacterial activity of P. aquatile B51.
Collapse
Affiliation(s)
- Yeji Cha
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Yongjun Son
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Chen X, Huang K, Gan P, Luo L, Yu K, Zhang Y, Pang Y, Xue P. Inactivation of Heterosigma akashiwo under UV/peroxydisulfate advanced disinfection system in marine waters. CHEMOSPHERE 2023; 341:140055. [PMID: 37704084 DOI: 10.1016/j.chemosphere.2023.140055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/09/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Heterosigma akashiwo (H. akashiwo) is recognized as a harmful algal bloom (HABs) species with a global distribution, capable of posing significant threats to marine ecosystems, particularly when spread through ship ballast water. This investigation focused on elucidating the inactivation kinetics and underlying mechanism of H. akashiwo through a combined ultraviolet irradiation and peroxydisulfate (UV/PDS) process. The results demonstrated a strong synergistic effect within the UV/PDS system, resulting in an inactivation of 0.78-ln and 2.67-ln within 40 min of UV and UV/PDS processes. The principal agents accountable for inactivation were identified as sulfate radicals (•SO4-) and hydroxyl radical (•OH), which exhibited a synergistic effect in the UV/PDS process. Furthermore, the study observed a negatively impact of seawater pH and salinity on the efficiency of inactivation. UV/PDS caused oxidative stress on algal cells, initially involving the participation of antioxidant enzymes in counteracting cellular damage, but this protective mechanism diminished as the reaction duration extended. The UV/PDS treatment not only inflicted damage upon H. akashiwo's photosynthetic system but also caused the extracellular release of DNA and algal organic matter (AOM) due to damaged cell membranes. Transcriptome analysis provided a molecular biology perspective on the cellular inactivation process. Upregulation of genes linked to photosynthesis and oxidative phosphorylation suggested a potential elevation in energy metabolism. In contrast, genes associated with cellular and metabolic processes, including glycolysis and the tricarboxylic acid cycle (TCA cycle), exhibited downregulation. Moreover, this treatment exerted an inhibitory influence on RNA polymerase and protein synthesis, resulting in the reduced expression of genetic information.
Collapse
Affiliation(s)
- Xuan Chen
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Kunling Huang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Pin Gan
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Lan Luo
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China Globally Distributed
| | - Yuanyuan Zhang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China Globally Distributed.
| | - Yunfeng Pang
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| | - Pengfei Xue
- School of Marine Sciences, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China
| |
Collapse
|
11
|
Kuzikova I, Zaytseva T, Chernova E, Sazanova A, Sharov A, Medvedeva N. Algicidal Activity and Microcystin-LR Destruction by a Novel Strain Penicillium sp. GF3 Isolated from the Gulf of Finland (Baltic Sea). Toxins (Basel) 2023; 15:607. [PMID: 37888639 PMCID: PMC10611005 DOI: 10.3390/toxins15100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
The present article focuses on a strain of ascomycete GF3 isolated from a water sample taken in the Gulf of Finland. Based on phylogenetic analysis data, the isolate was identified as Penicillium sp. GF3. The fungus GF3 demonstrates algicidal activity towards cyanobacteria (98-100%). The algicidal effect on green algae did not exceed 50%. The isolate GF3 exhibits an indirect attack mode by releasing metabolites with algicidal and/or lytic activity into the environment. Moreover, the strain Penicillium sp. GF3 is able to degrade MC-LR. After 72 h of GF3 cultivation, the MC-LR content was reduced by 34.1% and 26.7% at initial 0.1 μg/mL and 0.45 μg/mL concentrations, respectively. The high stress resistance of the GF3 to toxic MC-LR is provided by a 1.5-fold activation of catalase activity and a change in the reduced glutathione content. Additionally, during the MC-LR biotransformation, a MC-LR-GSH conjugate and linearized MC-LR were identified. The linearized MC-LR in the presence of fungi capable of degrading MCs was revealed for the first time. Using Daphnia magna as a bioindicator, it was shown that the MC-LR biotransformation led to the formation of less toxic intermediates. The toxicity of the fungal filtrate is reduced by five times compared to the abiotic control. Our findings enhance the understanding of the role that ascomycete fungi have as potential bioagents for cyanoHABs to control and detoxify water bodies.
Collapse
Affiliation(s)
- Irina Kuzikova
- Scientific Research Centre for Ecological Safety, St. Petersburg Federal Research Center, Russian Academy of Sciences, St. Petersburg 197110, Russia; (T.Z.); (E.C.); (A.S.); (N.M.)
| | - Tatyana Zaytseva
- Scientific Research Centre for Ecological Safety, St. Petersburg Federal Research Center, Russian Academy of Sciences, St. Petersburg 197110, Russia; (T.Z.); (E.C.); (A.S.); (N.M.)
| | - Ekaterina Chernova
- Scientific Research Centre for Ecological Safety, St. Petersburg Federal Research Center, Russian Academy of Sciences, St. Petersburg 197110, Russia; (T.Z.); (E.C.); (A.S.); (N.M.)
| | - Anna Sazanova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg 196608, Russia;
| | - Andrey Sharov
- Scientific Research Centre for Ecological Safety, St. Petersburg Federal Research Center, Russian Academy of Sciences, St. Petersburg 197110, Russia; (T.Z.); (E.C.); (A.S.); (N.M.)
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok 152742, Russia
| | - Nadezda Medvedeva
- Scientific Research Centre for Ecological Safety, St. Petersburg Federal Research Center, Russian Academy of Sciences, St. Petersburg 197110, Russia; (T.Z.); (E.C.); (A.S.); (N.M.)
| |
Collapse
|
12
|
Qiao JC, Zhang CL. Identification of a Bacillus thuringiensis Q1 compound with algicidal activity. Heliyon 2023; 9:e17649. [PMID: 37539178 PMCID: PMC10395018 DOI: 10.1016/j.heliyon.2023.e17649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/29/2023] [Accepted: 06/24/2023] [Indexed: 08/05/2023] Open
Abstract
Bacillus thuringiensis Q1, isolated from the eutrophic waters of the Haihe River in Tianjin, possesses remarkable algae dissolving character. We determined the lytic effect of B. thuringiensis Q1 fermentation broth, and it proved to be pH- and temperature-stable. Then, we investigated the structure of the algicidal compound by high performance liquid chromatography, gas chromatography tandem quadrupole mass spectrometry and fourier transform infrared spectroscopy, and identified as purine-derived C12H15O5N5. To further understand B. thuringiensis Q1, we performed genome sequencing and analysis. The genome was 5341610 bp, with 35.31% GC content. Some elements involved in algicidal activity, such as quorum sensing pathway and ABC transporter were predicted. Our results reveal that B. thuringiensis Q1 can be used for biological control of harmful algal blooms.
Collapse
Affiliation(s)
- Jing-cheng Qiao
- Department of Food Engineering, Tianjin Tianshi College, Tianjin, 301700, China
| | - Cheng-lin Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, PR China
- College of Bioengineer, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| |
Collapse
|
13
|
Wijesooriya MM, Masakorala K, Widana Gamage SMK. A novel cyanolytic bacterium, Pseudomonas fluorescens BG-E as a potential biological control agent for freshwater bloom-forming cyanobacteria Pseudanabaena spp. JOURNAL OF PHYCOLOGY 2023; 59:570-589. [PMID: 36971784 DOI: 10.1111/jpy.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 06/15/2023]
Abstract
The majority of bacterial antagonists identified to date are active against Microcystis. Therefore, this study aimed to isolate and characterize novel cyanolytic bacterial strains antagonistic against bloom-forming filamentous cyanobacteria. The bacterial strain BG-E isolated from the Bandagiriya Wewa in Sri Lanka was identified as Pseudomonas fluorescens (MZ007859) based on the 16S rRNA gene sequencing. BG-E showed 82% and 73% cyanolytic activity (CA) against Pseudanabaena sp. LW2 (MW288948) and Pseudanabaena lonchoides LW1 (MW288940), respectively, after 10 days of inoculation. The light microscopic images affirmed the complete disintegration in the filamentous structures of the tested Pseudanabaena species. The bacterial cell density of 15% v/v showed the CA with 95% and 89% cell lysis, respectively, in P. lonchoides and Pseudanabaena sp. LW2. Moreover, the results showed that >50% CA could be achieved by 0.100 and 1.00 (OD730 ) cell densities for these same species. The highest CA of the cell-free supernatant of BG-E against P. lonchoides and bacterial culture against Pseudanabaena sp. LW2 illustrated the species-specific mode of action of BG-E. Although BG-E efficiently lysed the tested cyanobacterial species, the results of the MC-biodegradation assay confirmed its inability to degrade MC-LR cyanotoxin. Further, the BG-E strain lacks the mlrABCD gene cluster which is known to be responsible for the enzymatic degradation of MCs. The overall findings highlighted the applicability of P. fluorescens BG-E as a biological controlling agent to terminate blooms of freshwater filamentous cyanobacteria genus Pseudanabaena. The incorporation of cyanotoxin-degrading heterotrophic bacteria is recommended as a means of controlling toxic Pseudanabaena blooms.
Collapse
Affiliation(s)
| | - Kanaji Masakorala
- Department of Botany, Faculty of Science, University of Ruhuna, Matara, 81000, Sri Lanka
| | | |
Collapse
|
14
|
Zhang H, Xie Y, Zhang R, Zhang Z, Hu X, Cheng Y, Geng R, Ma Z, Li R. Discovery of a High-Efficient Algicidal Bacterium against Microcystis aeruginosa Based on Examinations toward Culture Strains and Natural Bloom Samples. Toxins (Basel) 2023; 15:toxins15030220. [PMID: 36977111 PMCID: PMC10058357 DOI: 10.3390/toxins15030220] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Harmful cyanobacterial blooms occur worldwide and pose a great threat to aquatic ecosystems and public health. The application of algicidal bacteria represents an eco-friendly strategy for controlling harmful cyanobacterial blooms; thus, searching for a high efficiency of algicidal bacteria has been becoming an important and continuous task in science. Herein, we identified a bacterial strain coded Streptomyces sp. HY with a highly algicidal activity, and investigated its algicidal efficiency and mechanism against Microcystis aeruginosa. The strain HY displayed high algicidal activity toward Microcystis aeruginosa cells, with a removal rate of 93.04% within 2 days via indirect attack. Streptomyces sp. HY also showed the ability to lyse several genera of cyanobacterial strains, including Dolichospermum, Pseudanabaena, Anabaena, and Synechocystis, whereas it showed a minor impact on the green alga Scenedesmus obliquus, demonstrating its selectivity specially for targeting cyanobacteria. Its algicidal mechanism involved damages to the photosynthesis system, morphological injury of algal cells, oxidative stress, and dysfunction of the DNA repair system. Furthermore, HY treatment reduced the expression levels of genes (mcyB and mcyD) related to microcystin biosynthesis and decreased the total content of microcystin-leucine-arginine by 79.18%. Collectively, these findings suggested that the algicidal bacteria HY is a promising candidate for harmful cyanobacterial bloom control.
Collapse
Affiliation(s)
- He Zhang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yan Xie
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Rongzhen Zhang
- Wenzhou Shanxi Hydro-junction Management Center, Wenzhou 325035, China
| | - Zhongliang Zhang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Xinglong Hu
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yao Cheng
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Ruozhen Geng
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Renhui Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
- Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
- Correspondence:
| |
Collapse
|
15
|
Hou X, Yan Y, Wang Y, Jiang T, Zhang X, Dai X, Igarashi Y, Luo F, Yang C. An insight into algicidal characteristics of Bacillus altitudinis G3 from dysfunctional photosystem and overproduction of reactive oxygen species. CHEMOSPHERE 2023; 310:136767. [PMID: 36241112 DOI: 10.1016/j.chemosphere.2022.136767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacterial blooms negatively affect aquatic ecosystems and human health. Algicidal bacteria can efficiently kill bloom-causing cyanobacteria. Bacillus altitudinis G3 isolated from Dianchi Lake shows high algicidal activity against Microcystis aeruginosa. In this study, we investigated its algicidal characteristics including attack mode, photosynthesis responses, and source and the contribution of reactive oxygen species (ROS). The results showed that G3 efficiently and specifically killed M. aeruginosa mainly by releasing both thermolabile and thermostable algicidal substances, which exhibited the highest algicidal activity (99.8%, 72 h) in bacterial mid-logarithmic growth phase. The algicidal ratio under full-light conditions (99.5%, 60 h) was significantly higher than under dark conditions (<20%, P < 0.001). G3 filtrate caused photosystem dysfunction by decreasing photosynthetic efficiency, as indicated by significantly decreased Fv/Fm and PIABS (P < 0.001) values. It also inhibited photosynthetic electron transfer as indicated by significantly decreased rETR (P < 0.001), especially QA- downstream, as revealed by significantly decreased φEo and ψo, and increased Mo (P < 0.001). These results indicated that the algicidal activity of G3 filtrate is light-dependent, and the cyanobacterial photosystem is an important target. Cyanobacterial ROS and malondialdehyde contents greatly increased by 37.1% and 208% at 36 h, respectively. ROS levels decreased by 49.2% (9 h) when diuron (3-(3-4-dichlorophenyl)-1,1-dimethylurea) partially blocked photosynthetic electron transport from QA to QB. Therefore, excessive ROS were produced from disrupted photosynthesis, especially the inhibited electron transport area in QA- downstream, and caused severe lipid peroxidation with significantly increased MDA content and oxidative stress in cyanobacteria. The ROS scavenger N-acetyl-l-cysteine significantly decreased both cyanobacterial ROS levels (34%) and algicidal ratio (52%, P < 0.05) at 39 h. Thus, excessive ROS production due to G3 filtrate administration significantly contributed to its algicidal effect. G3 could be an excellent algicide to control M. aeruginosa blooms in waters under suitable light conditions.
Collapse
Affiliation(s)
- Xiping Hou
- Chongqing Key Lab of Bio-resource Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yaoyao Yan
- Chongqing Key Lab of Bio-resource Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yuqin Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xiaohui Zhang
- Chongqing Key Lab of Bio-resource Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xianzhu Dai
- Chongqing Key Lab of Bio-resource Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yasuo Igarashi
- Chongqing Key Lab of Bio-resource Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Feng Luo
- Chongqing Key Lab of Bio-resource Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Caiyun Yang
- Chongqing Key Lab of Bio-resource Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China; Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
16
|
Li D, Wang Y, Song X, Jiang M, Zhao X, Cao X. The inhibitory effects of simulated light sources on the activity of algae cannot be ignored in photocatalytic inhibition. CHEMOSPHERE 2022; 309:136611. [PMID: 36179922 DOI: 10.1016/j.chemosphere.2022.136611] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Harmful algal blooms (HABs) destroy the balance of the aquatic ecosystem, causing huge economic losses and even further endangers human health. In addition to traditional methods of algae removal, photocatalytic inhibition of algae is drawing more and more interests with rich application scenarios and considerable potential. Simulated visible light sources are used to excite photocatalytic materials and optimize their performance. However, most of the light irradiation intensities used in the study exceeded 50 mW/cm2. And the effects of intense light irradiation conditions on algal growth have rarely been addressed in previous studies. So we focused on the effect of different intensity of light irradiation on the growth of algae. We explored the relationship between light irradiation intensity and algal inactivation rate, and investigated the changes in ROS levels in algal cells under different light irradiation and the resulting response of the antioxidant system. We have found that several major antioxidant enzyme activities, such as SOD and CAT, were significantly higher and lipid peroxidation products (MDA) were accumulating. Intense light irradiation had the most direct effect on the photosynthetic system of algal cells, with the photosynthetic rate and relative electron transfer rate decaying to almost 0 within 30 min, indicating that algal photosynthesis was inhibited in a fairly short period of time. We further observed the physiological and morphological changes of algal cells during this process using TEM and found that the progressive dissolution of the cell membrane system and the damage of organelles associated with photosynthesis play a major role in promoting cell death. We thus conclude that light irradiation has a significant effect on the physiological activity of algal cells and is a non-negligible factor in the study of photocatalytic removal of harmful algae. It will provide theoretical guidance for the future study of photocatalysis on algae inhibition.
Collapse
Affiliation(s)
- Dongpeng Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yifei Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Mengqi Jiang
- Center for Ecological Research, Kyoto University, Shiga, 520-2113, Japan
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Cao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
17
|
Liang D, Xiang H, Xia J. Inhibitory effects of Ipomoea cairica extracts on the harmful algae Phaeocystis globosa. MARINE POLLUTION BULLETIN 2022; 185:114228. [PMID: 36274557 DOI: 10.1016/j.marpolbul.2022.114228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Ipomoea cairica (L.) Sweet is an invasive plant that cause serious invasion and damage in South China. Phaeocystis globosa is a common harmful algal bloom species on the southeast coast of China. Both species cause great environmental disturbances and serious economic damage to the localregion. This study explored the potential inhibitory effects of I. cairica leaf extracts on P. globosa. The results showed that solitary cells growth was inhibited at extract concentrations higher than 0.25 % (v/v). Although the colony diameter did not change, and the colony number increased rapidly in the first 36 h, we found that cells in the colonies had been damaged using scanning electron microscope and SYTOX-Green staining at 48 h. In addition, the rapid light-response curve of cells treated with extracts decreased, along with down-regulation of photosynthesis-related genes (psbA, psbD, and rbcL), suggesting damage to the photosynthetic system. Finally, the activities of antioxidant enzymes including superoxide dismutase, peroxidase, and catalase increased with increasing treatment time, indicating that cells activate antioxidant enzyme defense systems to alleviate the production of reactive oxygen species (ROS). Increased ROS levels disrupt cell membranes, alter cellular ultrastructures, and ultimately lead to cell death. This study not only achieved the reuse of invasive plant resources, but also demonstrated that I. cairica leaf extract has potential value as an algaecide.
Collapse
Affiliation(s)
- Dayong Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hua Xiang
- State key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Mankiewicz-Boczek J, Morón-López J, Serwecińska L, Font-Nájera A, Gałęzowska G, Jurczak T, Kokociński M, Wolska L. Algicidal activity of Morganella morganii against axenic and environmental strains of Microcystis aeruginosa: Compound combination effects. CHEMOSPHERE 2022; 309:136609. [PMID: 36195129 DOI: 10.1016/j.chemosphere.2022.136609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) are a global problem with serious consequences for public health and many sectors of the economy. The use of algicidal bacteria as natural antagonists to control bloom-forming cyanobacteria is a topic of growing interest. However, there are still unresolved questions that need to be addressed to better understand their mode of action and to implement effective mitigation strategies. In this study, thirteen bacterial strains isolated from both scums and concentrated bloom samples exhibited algicidal activity on three Microcystis aeruginosa strains with different characteristics: the axenic microcystin (MC)-producing strain M. aeruginosa PCC7820 (MaPCC7820), and two environmental (non-axenic) M. aeruginosa strains isolated from two different water bodies in Poland, one MC-producer (MaSU) and another non-MC-producer (MaPN). The bacterial strain SU7S0818 exerted the highest average algicidal effect on the three cyanobacterial strains. This strain was identified as Morganella morganii (99.51% similarity) by the 16S rRNA gene analyses; hence, this is the first study that demonstrates the algicidal properties of these ubiquitous bacteria. Microscopic cell counting and qPCR analyses showed that M. morganii SU7S0818 removed 91%, 96%, and 98.5% of MaPCC7820, MaSU and MaPN cells after 6 days of co-culture, respectively. Interestingly, the ultra-high-performance liquid chromatography-tandem mass spectrometer (UHPLC-MS/MS) analyses showed that this bacterium was involved on the release of several substances with algicidal potential. It was remarkable how the profile of some compounds evolved over time, as in the case of cadaverine, tyramine, cyclo[Pro-Gly] and cyclo[Pro-Val]. These dynamic changes could be attributed to the action of M. morganii SU7S0818 and the presence of associated bacteria with environmental cyanobacterial strains. Therefore, this study sheds light on how algicidal bacteria may adapt their action on cyanobacterial cells by releasing a combination of compounds, which is a crucial insight to exploit them as effective biological tools in the control of cyanoHABs.
Collapse
Affiliation(s)
- J Mankiewicz-Boczek
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - J Morón-López
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - L Serwecińska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - A Font-Nájera
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - G Gałęzowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdańsk, Poland.
| | - T Jurczak
- UNESCO Chair on Ecohydrology and Applied Ecology, University of Lodz, 12/16 Banacha, 90-237, Łódź, Poland.
| | - M Kokociński
- Department of Hydrobiology, Adam Mickiewicz University, 6 Uniwersytetu Poznańskiego, 61-614, Poznań, Poland.
| | - L Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdańsk, Poland.
| |
Collapse
|
19
|
Cheng R, Song X, Song W, Yu Z. A New Perspective: Revealing the Algicidal Properties of Bacillus subtilis to Alexandrium pacificum from Bacterial Communities and Toxins. Mar Drugs 2022; 20:md20100624. [PMID: 36286448 PMCID: PMC9605167 DOI: 10.3390/md20100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Algicidal bacteria are important in the control of toxic dinoflagellate blooms, but studies on the environmental behavior of related algal toxins are still lacking. In this study, Bacillus subtilis S3 (S3) showed the highest algicidal activity against Alexandrium pacificum (Group IV) out of six Bacillus strains. When treated with 0.5% (v/v) S3 bacterial culture and sterile supernatant, the algicidal rates were 69.74% and 70.22% at 12 h, respectively, and algicidal substances secreted by S3 were considered the mechanism of algicidal effect. During the algicidal process, the rapid proliferation of Alteromonas sp. in the phycosphere of A. pacificum may have accelerated the algal death. Moreover, the algicidal development of S3 released large amounts of intracellular paralytic shellfish toxins (PSTs) into the water, as the extracellular PSTs increased by 187.88% and 231.47% at 12 h, compared with the treatment of bacterial culture and sterile supernatant at 0 h, respectively. Although the total amount of PSTs increased slightly, the total toxicity of the algal sample decreased as GTX1/4 was transformed by S3 into GTX2/3 and GTX5. These results more comprehensively reveal the complex relationship between algicidal bacteria and microalgae, providing a potential source of biological control for harmful algal blooms and toxins.
Collapse
Affiliation(s)
- Ruihong Cheng
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiuxian Song
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
- Correspondence: ; Tel.: +86-532-82898587
| | - Weijia Song
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhiming Yu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
20
|
High-Throughput 16 S rRNA Gene Sequencing Reveals Bacterial Diversity of Infant Formula Production Line Samples in Spring and Summer. J FOOD QUALITY 2022. [DOI: 10.1155/2022/6079404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The trend of low breastfeeding rates increases the demand for infant milk formula (IMF) worldwide, but the use of IMF may be one of the causes of bacterial infections in infants. Complete sterility in the whole production line of IMF cannot be guaranteed; therefore, it is necessary to closely monitor the microbial content in the process. In the present study, an IMF powder production line based on the wet mixing process was sampled at 27 suspicious points in spring and summer to analyze the bacterial diversity by high-throughput sequencing. We found that 70 and 69 different bacterial phyla were present in spring and summer samples, respectively, with Proteobacteria and Firmicutes being the dominant phyla (>80% relative abundance). Moreover, 13 dominant genera each were present in spring (e. g., Pseudomonas and Lactococcus) and summer (e. g., Pseudomonas, Bacillus, and Streptococcus). Samples associated with workers showed higher bacterial species diversity (Shannon index) and richness (Chao1 index) in summer than in spring. The bacterial community composition showed high similarity between liquid milk after pasteurization and concentrated milk after evaporation. The potential bacterial pathogens were identified as Pseudomonas aeruginosa in spring and Acinetobacter baumannii in summer. Through retrospective analysis of the two opportunistic pathogens identified, it was found that the workshop environment was the potential contamination point in spring, whereas the auxiliary ingredients were the potential source of contamination in summer. The results highlight the effect of season on bacterial diversity associated with the production process of IMF and are useful in controlling the microbial quality and safety of infant dairy products.
Collapse
|
21
|
Le VV, Srivastava A, Ko SR, Ahn CY, Oh HM. Microcystis colony formation: Extracellular polymeric substance, associated microorganisms, and its application. BIORESOURCE TECHNOLOGY 2022; 360:127610. [PMID: 35840029 DOI: 10.1016/j.biortech.2022.127610] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Microcystis sp., amongst the most prevalent bloom-forming cyanobacteria, is typically found as a colonial form with multiple microorganisms embedded in the mucilage known as extracellular polymeric substance. The colony-forming ability of Microcystis has been thoroughly investigated, as has the connection between Microcystis and other microorganisms, which is crucial for colony development. The following are the key subjects to comprehend Microcystis bloom in depth: 1) key issues related to the Microcystis bloom, 2) features and functions of extracellular polymeric substance, as well as diversity of associated microorganisms, and 3) applications of Microcystis-microorganisms interaction including bloom control, polluted water bioremediation, and bioactive compound production. Future research possibilities and recommendations regarding Microcystis-microorganism interactions and their significance in Microcystis colony formation are also explored. More information on such interactions, as well as the mechanism of Microcystis colony formation, can bring new insights into cyanobacterial bloom regulation and a better understanding of the aquatic ecosystem.
Collapse
Affiliation(s)
- Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Ankita Srivastava
- Department of Botany, Siddharth University, Kapilvastu, Siddharth Nagar 272202, Uttar Pradesh, India
| | - So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
22
|
Kong Y, Ji L, Wang Y, Li J, Lu H, Mo S, Wang X, Zhu L, Xu X, Zheng X. Combined Effect of NZVI and H 2O 2 on the Cyanobacterium Microcystis aeruginosa: Performance and Mechanism. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3017. [PMID: 36080055 PMCID: PMC9458205 DOI: 10.3390/nano12173017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
In order to eliminate the harmful cyanobacterium Microcystis aeruginosa and the algal organic matters (AOMs) produced by M. aeruginosa, the combined process of nanoscale zero-valent iron (NZVI) and hydrogen peroxide (H2O2) has been carried out, and the removal mechanism has also been clarified. As the initial cyanobacterial cell concentration is 1.0 (±0.05) × 105 cells·mL-1, all the treatments of NZVI, H2O2, and NZVI/H2O2 have inhibition effects on both the Chl a contents and photosynthetic pigments, with the Chl a removal efficiency of 47.3%, 80.5%, and 90.7% on the 5th day, respectively; moreover, the variation of ζ potential is proportional to that of the Chl a removal efficiency. The malondialdehyde content and superoxide dismutase activity are firstly increased and ultimately decreased to mitigate the oxidative stress under all the treatments. Compared with NZVI treatment alone, the oxidation of the H2O2 and NZVI/H2O2 processes can effectively destroy the antioxidant enzyme system and then inactivate the cyanobacterial cells, which further leads to the release of photosynthetic pigments and intracellular organic matters (IOM); in addition, the IOM removal efficiency (in terms of TOC) is 61.3% and 54.1% for the H2O2 and NZVI/H2O2 processes, respectively. Although NZVI is much more effective for extracellular organic matters (EOM) removal, it is less effective for IOM removal. The results of the three-dimensional EEM fluorescence spectra analysis further confirm that both H2O2 and NZVI/H2O2 have the ability to remove fluorescent substances from EOM and IOM, due to the oxidation mechanism; while NZVI has no removal effect for the fluorescent substances from EOM, it can remove part of fluorescent substances from IOM due to the agglomeration. All the results demonstrate that the NZVI/H2O2 process is a highly effective and applicable technology for the removal of M. aeruginosa and AOMs.
Collapse
Affiliation(s)
- Yun Kong
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China
| | - Lipeng Ji
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Yue Wang
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Jiake Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| | - Hao Lu
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Shuhong Mo
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| | - Xianxun Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Liang Zhu
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|
23
|
The Effect of Algicidal and Denitrifying Bacteria on the Vertical Distribution of Cyanobacteria and Nutrients. WATER 2022. [DOI: 10.3390/w14132129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Algicidal bacteria combined with the ability of aerobic denitrification is considered to be a promising way to control harmful cyanobacterial bloom and remove nitrogen. However, the effect of these bacteria on the vertical distribution of colonial cyanobacteria and nutrients remained unknown. In this study, two algicidal and denitrifying bacteria were respectively co-cultured with the colonial Microcystis aeruginosa to construct the microcosm systems, and then the cyanobacteria number, the ratio of bacterial to cyanobacterial abundance, the content of dissolved nitrogen, phosphorus and organic carbon in different water layers were investigated. The results showed that the distribution difference of Microcystis among the vertical water layers was further enlarged due to the short-term influence of algicidal bacteria Brevundimonas diminuta and Pseudomonas stutzeri. The number of Microcystis in the lower layer was further reduced by the inhibitory effect of the algicidal bacteria. However, there was a dramatic increase in the number of Microcystis in the upper layer, even when the ratio of algicidal bacteria to cyanobacteria increased significantly. B. diminuta and P. stutzeri both greatly promoted the removal of dissolved total nitrogen in the upper and middle layers of cyanobacteria blooming water, but they also boosted the release of dissolved phosphorus in all layers. These results enable us to better understand the possible limitations of algicidal bacteria in their application to control cyanobacteria blooms.
Collapse
|
24
|
Kong Y, Wang Y, Miao L, Mo S, Li J, Zheng X. Recent Advances in the Research on the Anticyanobacterial Effects and Biodegradation Mechanisms of Microcystis aeruginosa with Microorganisms. Microorganisms 2022; 10:microorganisms10061136. [PMID: 35744654 PMCID: PMC9229865 DOI: 10.3390/microorganisms10061136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Harmful algal blooms (HABs) have attracted great attention around the world due to the numerous negative effects such as algal organic matters and cyanobacterial toxins in drinking water treatments. As an economic and environmentally friendly technology, microorganisms have been widely used for pollution control and remediation, especially in the inhibition/biodegradation of the toxic cyanobacterium Microcystis aeruginosa in eutrophic water; moreover, some certain anticyanobacterial microorganisms can degrade microcystins at the same time. Therefore, this review aims to provide information regarding the current status of M. aeruginosa inhibition/biodegradation microorganisms and the acute toxicities of anticyanobacterial substances secreted by microorganisms. Based on the available literature, the anticyanobacterial modes and mechanisms, as well as the in situ application of anticyanobacterial microorganisms are elucidated in this review. This review aims to enhance understanding the anticyanobacterial microorganisms and provides a rational approach towards the future applications.
Collapse
Affiliation(s)
- Yun Kong
- College of Resources and Environment, Yangtze University, Wuhan 430100, China;
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China
- Correspondence: ; Tel./Fax: +86-27-69111182
| | - Yue Wang
- College of Resources and Environment, Yangtze University, Wuhan 430100, China;
| | - Lihong Miao
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Shuhong Mo
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
| | - Jiake Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
| |
Collapse
|
25
|
Algicidal Properties of Microbial Fermentation Products on Inhibiting the Growth of Harmful Dinoflagellate Species. FERMENTATION 2022. [DOI: 10.3390/fermentation8040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The fermentation processes of algicidal bacteria offer an eco-friendly and promising approach for controlling harmful algae blooms (HABs). The strain Ba3, previously isolated and identified as Bacillus sp., displays robust algicidal activity against HABs dinoflagellate in particular. Microbial fermentation products have also been found to provide metabolites with multiple bioactivities, which has been shown to reduce harmful algae species’ vegetative cells and thus reduce red tide outbreaks. In this study, the microbial fermentation of algicidal bacterium Ba3 was analyzed for its potential ability of algicidal compounds. A treatment time increased the algicidal efficiency of the fermentation products against Prorocentrum donghaiense (91%) and Alexandrium tamarense (82%). Among the treatment groups, the changing trend for the 2% treatment group was faster than that for the other treatments, showing that the inhibition rate could reach 99.1% in two days. Active components were separated by organic solvent extraction and macroporous resin, and the molecular weight of the active components was analyzed by LC-MS. The result shows that the microbial fermentation products offer a potential, not practical use for controlling the outbreaks of dinoflagellate blooms. As a result of its potential application for inhibiting HABs, these findings provide an encouraging basis for promoting large-scale fermentation production and the controlling the outbreaks of red tide.
Collapse
|
26
|
Wu D, Yang C, Zhang X, Hou X, Zhang S, Dai X, Zhang X, Igarashi Y, Luo F. Algicidal effect of tryptoline against Microcystis aeruginosa: Excess reactive oxygen species production mediated by photosynthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150719. [PMID: 34606873 DOI: 10.1016/j.scitotenv.2021.150719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 05/26/2023]
Abstract
Cyanobacterial blooms significantly decrease water quality and can damage ecosystems and, as such, require efficient control methods. Algicidal bacteria and their associated substances are promising tools for controlling cyanobacterial blooms; however, their specific algicidal mechanisms remain unclear. Therefore, the current study sought to investigate the algicidal mechanism of tryptoline (1,2,3,4-tetrahydro-9 h-pyrido[3,4-b]indole) against Microcystis aeruginosa, with a specific focus on the contribution made by reactive oxygen species (ROS), the underlying mechanisms of ROS increase, as well as the photosystem response. Results show that the algicidal ratio of tryptoline significantly and positively correlates with algal ROS. Moreover, 93.79% of the algicidal ratio variation is attributed to ROS in the tryptoline group, while only 47.75% can be attributed to ROS in the tryptoline + N-acetyl-L-cysteine (NAC) group, where ROS are partially scavenged by NAC. In the presence of tryptoline, algicidal effect and ROS levels were significantly enhanced in the presence of light as compared to those in the dark (P < 0.001). Hence, the increase in ROS production attributed to tryptoline is primarily affected by the presence of light and photosynthesis. Additionally, tryptoline significantly reduces Fv/Fm, PIABS, ETo/RC, and the expression of psaB and psbA genes related to photosynthesis, while increasing Vj and DIo/RC (P < 0.05). These results suggest that tryptoline hinders algal photosynthesis by significantly decreasing photosynthetic efficiency and carbon assimilation, inhibiting photochemical electron transfer, and increasing closed reaction centers and energy loss. Moreover, following partial blockade of the photosynthetic electron transfer from QA to QB by diuron (3-(3-4-dichlorophenyl)-1,1-dimethylurea), the ROS of algae exposed to tryptoline is significantly decreased. Thus, tryptoline inhibits electron transfer downstream of QA, which increase the number of escaping electron and thereby increase ROS generation. Collectively, this study describes the algicidal mechanism of tryptoline against M. aeruginosa and highlights the critical factors associated with induction of algicidal activity.
Collapse
Affiliation(s)
- Donghao Wu
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Caiyun Yang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Xian Zhang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Xiping Hou
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Siqi Zhang
- State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Department of Environmental Sciences and Engineering, College of Resource and Environment, Southwest University, Chongqing 400716, China
| | - Xianzhu Dai
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Xiaohui Zhang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Yasuo Igarashi
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Feng Luo
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
27
|
Li D, Kang X, Chu L, Wang Y, Song X, Zhao X, Cao X. Algicidal mechanism of Raoultella ornithinolytica against Microcystis aeruginosa: Antioxidant response, photosynthetic system damage and microcystin degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117644. [PMID: 34426391 DOI: 10.1016/j.envpol.2021.117644] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/21/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Water eutrophication caused by harmful algal blooms (HABs) occurs worldwide. It causes huge economic losses and has serious and potentially life-threatening effects on human health. In this study, the bacterium Raoultella sp. S1 with high algicidal efficiency against the harmful algae Microcystis aeruginosa was isolated from eutrophic water. The results showed that Raoultella sp. S1 initially flocculated the algae, causing the cells to sediment within 180 min and then secreted soluble algicidal substances that killed the algal cells completely within 72 h. The algicidal activity was stable across the temperature range -85.0 to 85.0 °C and across the pH range 3.00-11.00. Scanning electron microscopy (SEM) revealed the crumpling and fragmentation of cells algal cells during the flocculation and lysis stages. The antioxidant system was activated under conditions of oxidative stress, causing the increased antioxidant enzymes activities. Meanwhile, the oxidative stress response triggered by the algicidal substances markedly increased the malondialdehyde (MDA) and glutathione (GSH) content. We investigated the content of Chl-a and the relative expression levels of genes related to photosynthesis, verifying that the algicidal compounds attack the photosynthetic system by degrading the photosynthetic pigment and inhibiting the expression of key genes. Also, the results of photosynthetic efficiency and relative electric transport rate confirmed that the photosynthetic system in algal cells was severely damaged within 24 h. The algicidal effect of Raoultella sp. S1 against Microcystis aeruginosa was evaluated by analyzing the physiological response and photosynthetic system impairment of the algal cells. The concentration of microcystin-LR (MC-LR) slightly increased during the process of algal cells ruptured, and then decreased below its initial level due to the biodegradation of Raoultella sp. S1. To further investigate the algicidal mechanism of Raoultella sp. S1, the main components in the cell-free supernatant was analyzed by UHPLC-TOF-MS. Several low-molecular-weight organic acids might be responsible for the algicidal activity of Raoultella sp. S1. It is concluded that Raoultella sp. S1 has the potential to control Microcystis aeruginosa blooms.
Collapse
Affiliation(s)
- Dongpeng Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Kang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Linglong Chu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yifei Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Cao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
28
|
Quan H, Zhang Y, Yin P, Zhao L. Effects of two algicidal substances, ortho-tyrosine and urocanic acid, on the growth and physiology of Heterosoigma akashiwo. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117004. [PMID: 33906037 DOI: 10.1016/j.envpol.2021.117004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Heterosigma akashiwo is a commonly found harmful microalgae, however, there are only few studies on its control using algicidal components particularly those identified from algicidal bacteria. In our previous study, ortho-tyrosine and urocanic acid identified from Bacillus sp. B1 showed a significantly high algicidal effect on H. akashiwo. The growth inhibition rates of H. akashiwo after 96 h of treatment with 300 μg/mL o-tyrosine and 500 μg/mL urocanic acid were 91.06% and 88.07%, respectively. Through non-destructive testing by Pulse Amplitude Modulation fluorometry and flow cytometer, the effects of o-tyrosine and urocanic acid on H. akashiwo PS II and physiological parameters (cell volume, mitochondrial membrane potential, and membrane permeability) were estimated. This study shows that o-tyrosine affected the photosynthesis system of H. akashiwo, decreased the mitochondrial membrane potential, and increased the membrane permeability of the algal cells. Treatment with urocanic acid decreased the mitochondrial membrane potential, resulting in the inhibition of algal cell growth and reproduction, but had little effect on membrane permeability and photosynthetic system. Our results may imply that when uridine degrades, surviving H. akashiwo cells may be reactivated. Therefore, o-tyrosine and urocanic acid have the potential to become new biological algicides, which can effectively control the growth of H. akashiwo.
Collapse
Affiliation(s)
- Honglin Quan
- College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, PR China.
| | - Yuan Zhang
- College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, PR China.
| | - Pinghe Yin
- College of Chemistry and Materials Science, Jinan University, 510632, Guangzhou, PR China.
| | - Ling Zhao
- School of Environment, Jinan University, 511443, Guangzhou, PR China.
| |
Collapse
|
29
|
Yang Y, Chen J, Chen X, Jiang Q, Liu Y, Xie S. Cyanobacterial bloom induces structural and functional succession of microbial communities in eutrophic lake sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117157. [PMID: 33892464 DOI: 10.1016/j.envpol.2021.117157] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacterial blooms have considerable effects on lacustrine microbial communities. The current study explored the temporal pattern of sedimentary archaea and bacteria during cyanobacterial bloom in a eutrophic lake. With the sampling period divided into bloom phase, interval phase and end phase according to the variation of physicochemical parameters, the structures and functions of both kingdoms presented a significant difference among phases. Bloom phases could be characterized with the lowest diversity and up-regulated functions in biodegradation of cyanobacterial metabolites driven by bacteria. Archaeal community showed an increased metabolic function during interval phases, including active methanogenesis sensitive to carbon input. The highest diversity and an enrichment of hub genera in microbial network were both observed in end phase, allowing for closer cooperation among groups involved in cyanobacteria-derived organic matter transformation. Although the archaeal community was less variable or diverse than bacteria, methanogenic functions dramatically fluctuated with cyanobacterial dynamics. And microbial groups related to methane cycling played an important role in microbial network. The results provided new insights into temporal dynamics of lacustrine microbial communities and microbial co-occurrence, and highlighted the significant ecological role of methane cycling-related microbes in lake sediments under the influence of cyanobacterial blooms.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Qingsong Jiang
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yong Liu
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
30
|
Transcriptional Analysis of Microcystis aeruginosa Co-Cultured with Algicidal Bacteria Brevibacillus laterosporus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168615. [PMID: 34444364 PMCID: PMC8394347 DOI: 10.3390/ijerph18168615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
Harmful algal blooms caused huge ecological damage and economic losses around the world. Controlling algal blooms by algicidal bacteria is expected to be an effective biological control method. The current study investigated the molecular mechanism of harmful cyanobacteria disrupted by algicidal bacteria. Microcystis aeruginosa was co-cultured with Brevibacillus laterosporus Bl-zj, and RNA-seq based transcriptomic analysis was performed compared to M. aeruginosa, which was cultivated separately. A total of 1706 differentially expressed genes were identified, which were mainly involved in carbohydrate metabolism, energy metabolism and amino acid metabolism. In the co-cultured group, the expression of genes mainly enriched in photosynthesis and oxidative phosphorylation were significantly inhibited. However, the expression of the genes related to fatty acid synthesis increased. In addition, the expression of the antioxidant enzymes, such as 2-Cys peroxiredoxin, was increased. These results suggested that B. laterosporus could block the electron transport by attacking the PSI system and complex I of M. aeruginosa, affecting the energy acquisition and causing oxidative damage. This further led to the lipid peroxidation of the microalgal cell membrane, resulting in algal death. The transcriptional analysis of algicidal bacteria in the interaction process can be combined to explain the algicidal mechanism in the future.
Collapse
|
31
|
Muras A, Romero M, Mayer C, Otero A. Biotechnological applications of Bacillus licheniformis. Crit Rev Biotechnol 2021; 41:609-627. [PMID: 33593221 DOI: 10.1080/07388551.2021.1873239] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacillus licheniformis is a Gram positive spore-forming bacterial species of high biotechnological interest with numerous present and potential uses, including the production of bioactive compounds that are applied in a wide range of fields, such as aquaculture, agriculture, food, biomedicine, and pharmaceutical industries. Its use as an expression vector for the production of enzymes and other bioproducts is also gaining interest due to the availability of novel genetic manipulation tools. Furthermore, besides its widespread use as a probiotic, other biotechnological applications of B. licheniformis strains include: bioflocculation, biomineralization, biofuel production, bioremediation, and anti-biofilm activity. Although authorities have approved the use of B. licheniformis as a feed additive worldwide due to the absence of toxigenic potential, some probiotics containing this bacterium are considered unsafe due to the possible transference of antibiotic resistance genes. The wide variability in biological activities and genetic characteristics of this species makes it necessary to establish an exact protocol for describing the novel strains, in order to evaluate its biotechnological potential.
Collapse
Affiliation(s)
- Andrea Muras
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Celia Mayer
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Otero
- Departmento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
32
|
He L, Lin Z, Wang Y, He X, Zhou J, Guan M, Zhou J. Facilitating harmful algae removal in fresh water via joint effects of multi-species algicidal bacteria. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123662. [PMID: 32846260 DOI: 10.1016/j.jhazmat.2020.123662] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 05/12/2023]
Abstract
Harmful algae blooms posing serious threats to the ecological environment occur frequently across the world. Multi-species algicidal bacteria were enriched by utilizing immobilized carriers in a pilot scale experiment, which significantly promoted the effect of algal control in the reactors. Under the optimal condition, the algicidal ratio and chlorophyll a degradation rate reached 87.69% and 47.00 μg/(L·d), respectively. The growth of Cyanophyta, diatom, Dinoflagellate and Cryptophyta was inhibited significantly by the joint action of algicidal bacteria and light shading of fillers, accounting for 53.74% and 36.47%, respectively. The results of 16S rRNA high-throughput sequencing suggested algicidal bacteria (10.17%) belonging to 13 genera were enriched. Among the algicidal process, Bacillus and Pseudomonas played crucial roles. Fluorescence spectroscopy and UV254 were adopted to assess the release of dissolved organic matter (DOM) and the precursors of disinfection by-products (DBPs). Two efficient algicidal strains (C1, C4) were isolated which showed high homology with Enterobacter asburiae JCM6051(T) and Pseudomonas simiae oli(T), respectively. This study provided new insights into the in-situ bioremediation of eutrophication in fresh water.
Collapse
Affiliation(s)
- Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiong Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Maoquan Guan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
33
|
Growth inhibition of Microcystis aeruginosa by sand-filter prevalent manganese-oxidizing bacterium. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
The characteristics and algicidal mechanisms of cyanobactericidal bacteria, a review. World J Microbiol Biotechnol 2020; 36:188. [DOI: 10.1007/s11274-020-02965-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
|
35
|
Isolation and Identification of Two Algae-Lysing Bacteria against Microcystis aeruginosa. WATER 2020. [DOI: 10.3390/w12092485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Algae blooms present an environmental problem worldwide. In response to the outbreak of harmful algal blooms in cyanobacteria, the role of biological control has drawn wide attention, particularly for algicidal bacteria. The mechanism underlying algicidal activity was determined in our study. Algae-lysing bacteria used were separated from water and sediment collected from the Fenhe scenic spot of Taiyuan. Genetic and molecular identification was conducted by polymerase chain reaction amplification based on 16S rDNA gene. These bacterial strains were identified as Raoultella planticola and Aeromonas sp. The algae-lysing characteristics were evaluated on Microcystis aeruginosa. For the two algicidal bacteria, the high inoculation ratio (>8%) of bacteria strains contributed to the lytic effect. M. aeruginosa could be completely removed by these strains at different cell ages. However, the time used decreased with an increase in cell age. The removal rate was increased while M. aeruginosa was in the lag and logarithmic phases. The earlier bacteria strains could be inoculated, the sooner all algae could be removed. Both algicidal substances were protein, which could destroy the photosynthetic systems and break the cell of M. aeruginosa. The algicidal bacteria strain has important theoretical and practical significance for economic and feasible algae removal and provides good germplasm resources and technical support for the control of cyanobacterial bloom.
Collapse
|