1
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Recent insight into the advances and prospects of microbial lipases and their potential applications in industry. Int Microbiol 2024; 27:1597-1631. [PMID: 38489100 DOI: 10.1007/s10123-024-00498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Enzymes play a crucial role in various industrial sectors. These biocatalysts not only ensure sustainability and safety but also enhance process efficiency through their unique specificity. Lipases possess versatility as biocatalysts and find utilization in diverse bioconversion reactions. Presently, microbial lipases are gaining significant focus owing to the rapid progress in enzyme technology and their widespread implementation in multiple industrial procedures. This updated review presents new knowledge about various origins of microbial lipases, such as fungi, bacteria, and yeast. It highlights both the traditional and modern purification methods, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, the aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF), moreover, delves into the diverse applications of microbial lipases across several industries, such as food, vitamin esters, textile, detergent, biodiesel, and bioremediation. Furthermore, the present research unveils the obstacles encountered in employing lipase, the patterns observed in lipase engineering, and the application of CRISPR/Cas genome editing technology for altering the genes responsible for lipase production. Additionally, the immobilization of microorganisms' lipases onto various carriers also contributes to enhancing the effectiveness and efficiencies of lipases in terms of their catalytic activities. This is achieved by boosting their resilience to heat and ionic conditions (such as inorganic solvents, high-level pH, and temperature). The process also facilitates the ease of recycling them and enables a more concentrated deposition of the enzyme onto the supporting material. Consequently, these characteristics have demonstrated their suitability for application as biocatalysts in diverse industries.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Pramana A, Kurnia D, Firmanda A, Rossi E, Ar NH, Putri VJ. Using palm oil residue for food nutrition and quality: from palm fatty acid distillate to vitamin E toward sustainability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39258508 DOI: 10.1002/jsfa.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024]
Abstract
Increasing global palm oil production yields a valuable palm fatty acid distillate (PFAD) - a rich vitamin E (Vit-E) source and multifunctional ingredient in the food agro-industry - that can be utilized to achieve sustainability. This article reviews trends in the use and role of PFAD and its Vit-E in the food sector and proposes an integrated agro-industrial concept toward sustainability. Vit-E can be separated from PFAD with diverse and impactful pharmaceutical activities, including antioxidant, anti-inflammatory, anticancer and anti-ultraviolet effects. Based on in vivo experimental tests, PFAD and Vit-E supplementation can enhance the productivity and quality of livestock-based food products. PFAD is a plasticizer and antistatic packaging material in food packaging systems, and its derivatives can be used as food additives. Meanwhile, the Vit-E molecule in packaging can extend food shelf life by maintaining color stability, reducing lipid oxidation and rancidity, adding antimicrobial properties, and influencing changes in packaging properties such as water vapor, tensile strength, melting point and other physical properties. Toward sustainability, an integrated agro-industrial design has been proposed to implement clean production, increase the added value of palm oil industry residues, minimize environmental risks and increase profits to achieve long-term social welfare. In conclusion, PFAD residues and their Vit-E content have shown broad benefits in the food sector and prospects toward sustainability. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Angga Pramana
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru, Indonesia
| | - Dihan Kurnia
- Department of Animal Science, Politeknik Pertanian Negeri Payakumbuh, Lima Puluh Kota, Indonesia
| | - Afrinal Firmanda
- Department of Chemical Engineering, Faculty of Engineering, University of Indonesia, Depok, Indonesia
| | - Evy Rossi
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru, Indonesia
| | - Nur Hasnah Ar
- Department of Agricultural Technology, Faculty of Agriculture, Universitas Riau, Pekanbaru, Indonesia
| | - Vivin Jenika Putri
- Department of Agricultural Technology, Faculty of Agricultural, Lancang Kuning University, Pekanbaru, Indonesia
| |
Collapse
|
3
|
Lobato ADSM, da Silva JAR, Rodrigues TCGDC, Silva AGME, da Cruz AV, Ferreira APD, Costa MM, Cunha AMQ, Lourenço-Costa VV, Barbosa AVC, Prates JAM, da Silva WC, Lourenço-Júnior JDB. Impact of Production Systems on the Levels of Vitamin E, β-Carotene, and Cholesterol in the Liver of Cattle Raised in the Eastern Amazon. Foods 2024; 13:1595. [PMID: 38890823 PMCID: PMC11172091 DOI: 10.3390/foods13111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 06/20/2024] Open
Abstract
The nutritional composition of bovine liver, particularly in terms of vitamins E, β-carotene, and cholesterol concentration, is significantly influenced by the cattle-rearing system and diet. This study aimed to elucidate the impact of four predominant cattle-rearing systems in the Eastern Amazon region on the vitamin E, β-carotene content, and cholesterol levels in bovine liver during the rainy season. Liver-tissue samples were collected from 48 cattle, with twelve specimens representing each rearing system. The systems encompassed two native pastures located in flood-prone areas, cultivated pastures on upland terrain and a confinement-rearing system. Our findings indicate that, when considering all rearing systems collectively, there were no significant differences in the levels of vitamins and cholesterol in the liver tissues (p > 0.05). However, a marked disparity in cholesterol levels emerged when comparing intensive rearing systems to extensive ones, with the former demonstrating notably higher concentrations (p = 0.01). Additionally, the intensive rearing system was associated with elevated levels of β-carotene (p < 0.01), α-tocopherol (p = 0.01), and β-tocopherol (p = 0.01) relative to the extensive systems. No significant variations were observed amongst the different extensive systems (p > 0.05). These results suggest that, while all rearing systems yielded liver tissues with typical concentrations of vitamins and cholesterol, the intensive rearing system led to a higher accumulation of certain vitamin compounds. This study highlights the substantial nutritional implications of different cattle-rearing systems in the Eastern Amazon and provides valuable insights for developing dietary strategies to optimize the nutritional quality of bovine liver. Therefore, the generated results are groundbreaking in the Eastern Amazon, Brazil, and inspire the development of new research projects to address other demands in this field and achieve additional outcomes.
Collapse
Affiliation(s)
- Adriny dos Santos Miranda Lobato
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Castanhal 68746-360, Brazil; (A.d.S.M.L.); (T.C.G.d.C.R.); (A.G.M.e.S.); (A.V.d.C.); (A.P.D.F.); (J.d.B.L.-J.)
| | | | - Thomaz Cyro Guimarães de Carvalho Rodrigues
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Castanhal 68746-360, Brazil; (A.d.S.M.L.); (T.C.G.d.C.R.); (A.G.M.e.S.); (A.V.d.C.); (A.P.D.F.); (J.d.B.L.-J.)
| | - André Guimarães Maciel e Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Castanhal 68746-360, Brazil; (A.d.S.M.L.); (T.C.G.d.C.R.); (A.G.M.e.S.); (A.V.d.C.); (A.P.D.F.); (J.d.B.L.-J.)
| | - Andrea Viana da Cruz
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Castanhal 68746-360, Brazil; (A.d.S.M.L.); (T.C.G.d.C.R.); (A.G.M.e.S.); (A.V.d.C.); (A.P.D.F.); (J.d.B.L.-J.)
| | - Ana Paula Damasceno Ferreira
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Castanhal 68746-360, Brazil; (A.d.S.M.L.); (T.C.G.d.C.R.); (A.G.M.e.S.); (A.V.d.C.); (A.P.D.F.); (J.d.B.L.-J.)
| | - Mónica Mendes Costa
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (M.M.C.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | | | | | | | - José António Mestre Prates
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (M.M.C.); (J.A.M.P.)
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Welligton Conceição da Silva
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Castanhal 68746-360, Brazil; (A.d.S.M.L.); (T.C.G.d.C.R.); (A.G.M.e.S.); (A.V.d.C.); (A.P.D.F.); (J.d.B.L.-J.)
| | - José de Brito Lourenço-Júnior
- Postgraduate Program in Animal Science (PPGCAN), Institute of Veterinary Medicine, Federal University of Pará (UFPA), Castanhal 68746-360, Brazil; (A.d.S.M.L.); (T.C.G.d.C.R.); (A.G.M.e.S.); (A.V.d.C.); (A.P.D.F.); (J.d.B.L.-J.)
| |
Collapse
|
4
|
Zha A, Tan B, Wang J, Qi M, Deng Y, Li R, Liao P. Dietary supplementation modified attapulgite promote intestinal epithelial barrier and regulate intestinal microbiota composition to prevent diarrhea in weaned piglets. Int Immunopharmacol 2023; 117:109742. [PMID: 36822096 DOI: 10.1016/j.intimp.2023.109742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 02/25/2023]
Abstract
Attapulgite is a kind of natural clay mineral. Its unique pore structure makes it an ideal adsorption material and carrier material. However, the beneficial effect of modified attapulgites (SLK) in livestock is still unknown. The study was aimed to investigate the beneficial effect of modified attapulgites on diarrhea. 135 piglets were randomly divided into 5 groups and fed with control diet, traditional antibiotic substitute (TAS) supplementation diet, 0.5 mg/kg SLK supplementation diet, 1 mg/kg SLK supplementation diet, and 1.5 mg/kg SLK supplementation diet. This experiment lased two weeks. According to our result, 1.5 mg/kg SLK supplementation diet significantly decreased diarrhea score and diarrhea frequency, and effectively increased survival rate (P < 0.05). Dietary supplementation with 1.5 mg/kg SLK significantly increased high density lipoprotein cholesterol (HDLC), and choline esterase (CHE) concentration in serum (P < 0.05). AS compared with TAS group, 1.5 mg/kg SLK supplementation diet significantly decreased villus height and increased goblet number in jejunum, and increased villus height and decreased goblet number in ileum (P < 0.05). 1.5 mg/kg SLK supplementation diet also significantly changed cecal microbial community composition, including increased Limosilactobacillus abundance (P < 0.05). 1.5 mg/kg SLK supplementation diet significantly increased colonic microbial community composition, including decreased Escherichia-shigella abundance and increased Limosilactobacillus abundance (P < 0.05). Moreover, 1.5 mg/kg SLK supplementation diet significantly increased valerate, propionate, butyrate, and total short chain fatty acid contents in colon (P < 0.05). Valerate, propionate, butyrate, and total short chain fatty acid significantly associated with Lactobacillus. Fourerenilla and Fourerenilla.unclassfied significantly associated with acetate contents in colon (P < 0.05). In conclusion, dietary supplementation with modified apptapulgites significantly regulate intestinal microbial community composition and alleviate intestinal epithelial barrier to prevent diarrhea in piglets.
Collapse
Affiliation(s)
- Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100008, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yuankun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Rui Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Peng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| |
Collapse
|
5
|
Effects of the Vitamin D3 on Alleviating the Oxidative Stress Induced by Diquat in Wenchang Chickens. Animals (Basel) 2023; 13:ani13040711. [PMID: 36830496 PMCID: PMC9951941 DOI: 10.3390/ani13040711] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Vitamin D3 (VD3) is an indispensable micronutrient in livestock and poultry feed. Its function in antioxidant stress has been reported. We investigate whether the addition of different concentrations of VD3 to the diet affects the production performance, slaughter performance, meat quality, organ index, and gut injury on the diquat (DQ)-induced model of oxidative stress in Wenchang chickens. Four hundred and eighty one-day-old chickens were randomly divided into six groups: control (basal diet), 4000 VD (basal diet + VD3 4000 IU per kg feed intake), 1000 VD+DI (DQ, basal diet + VD3 1000 IU per kg feed intake), 2000 VD+DI (DQ, basal diet + VD3 2000 IU per kg feed intake), and 4000 VD+DI (DQ, basal diet + VD3 4000 IU per kg feed intake). The results showed that the addition of VD3 to the diet promoted DQ-induced weight loss and reduced ADFI, slaughter rate, splenic index, and pH after 1 h and 24 h in the leg muscles. VD3 decreased the increase in content of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) among proinflammatory cytokines (p < 0.05) and increased the reduction in anti-inflammatory cytokines content of interleukin-10 (IL-10) (p < 0.05) induced by DQ. In addition, liver and kidney injury biomarkers and the intestinal permeability index in serum were disordered after treatment with DQ (p < 0.05). VD3 perfected the increase of D-lactic acid (D-LA), diamine oxidase (DAO), total cholesterol (T-CHO), creatinine (CR), blood urea nitrogen (BUN), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) content, aspartate transaminase (AST), alanine transaminase (ALT), and lactate dehydrogenase (LDH) activity (p < 0.05); it increased the decrease of albumin (ALB) content (p < 0.05). Meanwhile, VD3 regulated the intestinal morphology and intestinal barrier. Moreover, DQ induced a decrease in total antioxidant capacity and antioxidant enzyme activity in the serum, liver, and jejunum (p < 0.05), and an increase in malonaldehyde (MDA) content (p < 0.05). However, the addition of different levels of VD3 could alleviate the above phenomenon of oxidative stress in Wenchang chickens to different degrees. Thus, this research suggested that the addition of VD3 can relieve the DQ-induced oxidative stress of Wenchang chickens, and the level of VD3 acquisition is positively correlated with the remission effect.
Collapse
|
6
|
Acacia mearnsii tannin extract and α-tocopherol supplementation in lamb diet: Effects on growth performance, serum lipid peroxidation and meat quality. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Wang Y, Li S, Chen J, Zhu H, Harsh BN, Boler DD, Dilger AC, Shike DW, Suman SP. Supranutritional Supplementation of Vitamin E Influences Myoglobin Post-Translational Modifications in Postmortem Beef Longissimus Lumborum Muscle. MEAT AND MUSCLE BIOLOGY 2022. [DOI: 10.22175/mmb.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modifications (PTM) in myoglobin (Mb) can influence fresh meat color stability. Dietary supplementation of vitamin E improves beef color stability by delaying lipid oxidation–induced Mb oxidation and influences proteome profile of postmortem beef skeletal muscles. Nonetheless, the influence of vitamin E on Mb PTM in postmortem beef skeletal muscles has yet to be investigated. Therefore, the objective of the current study was to examine the effect of dietary vitamin E on Mb PTM in postmortem beef longissimus lumborum muscle. Beef longissimus lumborum muscle samples (24 h postmortem) were obtained from the carcasses of 9 vitamin E–supplemented (VITE; 1,000 IU vitamin E diet/heifer·d−1for 89 d) and 9 control (CONT; no supplemental vitamin E) heifers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to separate Mb from other sarcoplasmic proteins of beef longissimus lumborum muscle. Tandem mass spectrometry identified multiple PTM (phosphorylation, acetylation, 4-hydroxynonenalalkylation, methylation, dimethylation, trimethylation, and carboxymethylation) in the protein bands (17 kDa) representing Mb. The amino acids susceptible to phosphorylation were threonine (T) and tyrosine (Y), whereas lysine (K) residues were prone to other PTM. The same sites of phosphorylation (T34, T67, Y103), carboxymethylation (K77, K78), and 4-hydroxynonenal alkylation (K77, K78, K79) were identified in Mb from CONT and VITE samples, indicating that these PTM were not influenced by the vitamin E supplementation in cattle. Nonetheless, differential occurrence of acetylation, methylation, dimethylation, and trimethylation were identified in Mb from CONT and VITE samples. Overall, a greater number of amino acids were modified in CONT than VITE, suggesting that the supplementation of vitamin E decreased thenumbers of post-translationally modified residues in Mb. Additionally, PTM at K87, K96, K98, and K102 were unique to CONT, whereas PTM at K118 were unique to VITE. These findings suggested that dietary supplementation of vitamin E in beef cattle might protect amino acid residues in Mb—especially those located spatially close to proximal histidine—from undergoing PTM, thereby improving Mb redox stability.
Collapse
Affiliation(s)
- Yifei Wang
- University of Kentucky Department of Animal and Food Sciences
| | - Shuting Li
- University of Kentucky Department of Animal and Food Sciences
| | - Jing Chen
- University of Kentucky Proteomics Core Facility
| | - Haining Zhu
- University of Kentucky Proteomics Core Facility
| | - Bailey N. Harsh
- University of Illinois Urbana-Champaign Department of Animal Sciences
| | - Dustin D. Boler
- University of Illinois Urbana-Champaign Department of Animal Sciences
| | - Anna C. Dilger
- University of Illinois Urbana-Champaign Department of Animal Sciences
| | - Daniel W. Shike
- University of Illinois Urbana-Champaign Department of Animal Sciences
| | | |
Collapse
|
8
|
Essential Oils as a Dietary Additive for Small Ruminants: A Meta-Analysis on Performance, Rumen Parameters, Serum Metabolites, and Product Quality. Vet Sci 2022; 9:vetsci9090475. [PMID: 36136691 PMCID: PMC9502430 DOI: 10.3390/vetsci9090475] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
There is an increasing pressure to identify natural feed additives that improve the productivity and health of livestock, without affecting the quality of derived products. The objective of this study was to evaluate the effects of dietary supplementation with essential oils (EOs) on productive performance, rumen parameters, serum metabolites, and quality of products (meat and milk) derived from small ruminants by means of a meta-analysis. Seventy-four peer-reviewed publications were included in the data set. Weighted mean differences (WMD) between the EOs treatments and the control treatment were used to assess the magnitude of effect. Dietary inclusion of EOs increased (p < 0.05) dry matter intake (WMD = 0.021 kg/d), dry matter digestibility (WMD = 14.11 g/kg of DM), daily weight gain (WMD = 0.008 kg/d), and feed conversion ratio (WMD = −0.111). The inclusion of EOs in small ruminants’ diets decreased (p < 0.05) ruminal ammonia nitrogen concentration (WMD = −0.310 mg/dL), total protozoa (WMD = −1.426 × 105/mL), methanogens (WMD = −0.60 × 107/mL), and enteric methane emissions (WMD = −3.93 L/d) and increased ruminal propionate concentration (WMD = 0.726 mol/100 mol, p < 0.001). The serum urea concentration was lower (WMD = −0.688 mg/dL; p = 0.009), but serum catalase (WMD = 0.204 ng/mL), superoxide dismutase (WMD = 0.037 ng/mL), and total antioxidant capacity (WMD = 0.749 U/mL) were higher (p < 0.05) in response to EOs supplementation. In meat, EOs supplementation decreased (p < 0.05) the cooking loss (WMD = −0.617 g/100 g), malondialdehyde content (WMD = −0.029 mg/kg of meat), yellowness (WMD = −0.316), and total viable bacterial count (WMD = −0.780 CFU/g of meat). There was higher (p < 0.05) milk production (WMD = 0.113 kg/d), feed efficiency (WMD = 0.039 kg/kg), protein (WMD = 0.059 g/100 g), and lactose content in the milk (WMD = 0.100 g/100 g), as well as lower somatic cell counts in milk (WMD = −0.910 × 103 cells/mL) in response to EOs supplementation. In conclusion, dietary supplementation with EOs improves productive performance as well as meat and milk quality of small ruminants. In addition, EOs improve antioxidant status in blood serum and rumen fermentation and decrease environmental impact.
Collapse
|
9
|
Abstract
Lipases are efficient enzymes with promising applications in the nutraceutical and food industry, as they can offer high yields, pure products under achievable reaction conditions, and are an environmentally friendly option. This review addresses the production of high-value-added compounds such as fatty acid esters, with the potential to be used as flavoring agents or antioxidant and antimicrobial agents, as well as structured lipids that offer specific functional properties that do not exist in nature, with important applications in different food products, and pharmaceuticals. In addition, the most recent successful cases of reactions with lipases to produce modified compounds for food and nutraceuticals are reported.
Collapse
|
10
|
Álvarez-Rodríguez J, Urrutia O, Lobón S, Ripoll G, Bertolín JR, Joy M. Insights into the role of major bioactive dietary nutrients in lamb meat quality: a review. J Anim Sci Biotechnol 2022; 13:20. [PMID: 35125115 PMCID: PMC8819927 DOI: 10.1186/s40104-021-00665-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
Feed supplementation with α-linolenic acid (ALA) and linoleic acid (LA) increases their content in muscle, ALA increases n-3 polyunsaturated fatty acids and decrease n-6/n-3 ratio in muscle, and LA increases rumenic acid. However, high LA supplementation may have negative effects on lambs’ lipid oxidative stability of meat. When the sources of ALA and LA are fed as fresh forage, the negative effects are counterbalanced by the presence of other bioactive compounds, as vitamin E (mainly α-tocopherol) and polyphenols, which delay the lipid oxidation in meat. There is a wide consensus on the capability of vitamin E delaying lipid oxidation on lamb meat, and its feed content should be adjusted to the length of supplementation. A high dietary inclusion of proanthocyanidins, phenolic compounds and terpenes reduce the lipid oxidation in muscle and may improve the shelf life of meat, probably as a result of a combined effect with dietary vitamin E. However, the recommended dietary inclusion levels depend on the polyphenol type and concentration and antioxidant capacity of the feedstuffs, which cannot be compared easily because no routine analytical grading methods are yet available. Unless phenolic compounds content in dietary ingredients/supplements for lambs are reported, no specific association with animal physiology responses may be established.
Collapse
|