1
|
Chauhan D, Maity D, Yadav PK, Vishwakarma S, Agarwal A, Chourasia MK, Gayen JR. Enhanced oral bioavailability of levormeloxifene and raloxifene by nanoemulsion: simultaneous bioanalysis using liquid chromatography-tandem mass spectrometry. Nanomedicine (Lond) 2024; 19:1051-1068. [PMID: 38639565 PMCID: PMC11225398 DOI: 10.2217/nnm-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
Aim & objective: Levormeloxifene (L-ORM) and raloxifene (RAL) are selective estrogen receptor modulators used in the treatment of postmenopausal osteoporosis and breast cancer. Here, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the simultaneous estimation of both drugs. Materials & methods: A quality-by-design (QbD) approach was used for the optimization of the nanoemulsion, and US FDA guidelines were followed for method validation. Results: Multiple reaction monitoring transitions were used for L-ORM (459.05→98.50), RAL (475.00→112.02) and internal standard (180.10→110.2). Analytes were resolved in a C18 column with 80:20 v/v% acetonitrile (ACN), 0.1% formic acid in triple-distilled water as a mobile phase. The developed method was linear over a concentration range of 1-600 ng/ml. Pharmacokinetic results of free L-ORM-RAL and the L-ORM-RAL nanoemulsion showed Cmax of free L-ORM - 70.65 ± 16.64, free RAL 13.53 ± 2.72, L-ORM nanoemulsion 65.07 ± 14.0 and RAL-nanoemulsion 59.27 ± 17.44 ng/ml. Conclusion: Future findings will contribute to the treatment of postmenopausal osteoporosis and breast cancer using L-ORM and RAL.
Collapse
Affiliation(s)
- Divya Chauhan
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debalina Maity
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Pavan K Yadav
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sachin Vishwakarma
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Arun Agarwal
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Manish K Chourasia
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jiaur R Gayen
- Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Oyanna VO, Bechtold BJ, Lynch KD, Ridge Call M, Graf TN, Oberlies NH, Clarke JD. Green Tea Catechins Decrease Solubility of Raloxifene In Vitro and Its Systemic Exposure in Mice. Pharm Res 2024; 41:557-566. [PMID: 38302834 PMCID: PMC10939713 DOI: 10.1007/s11095-024-03662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
PURPOSE Green tea is a widely consumed beverage. A recent clinical study reported green tea decreased systemic exposure of raloxifene and its glucuronide metabolites by 34-43%. However, the underlying mechanism(s) remains unknown. This study investigated a change in raloxifene's solubility as the responsible mechanism. METHODS The effects of green tea extract, (-)-epigallocatechin gallate (EGCG), and (-)-epigallocatechin (EGC) on raloxifene's solubility were assessed in fasted state simulated intestinal fluids (FaSSIF) and fed state simulated intestinal fluids (FeSSIF). EGCG and EGC represent green tea's main bioactive constituents, flavan-3-gallate and flavan-3-ol catechins respectively, and the tested concentrations (mM) match the µg/mg of each compound in the extract. Our mouse study (n = 5/time point) evaluated the effect of green tea extract and EGCG on the systemic exposure of raloxifene. RESULTS EGCG (1 mM) and EGC (1.27 mM) decreased raloxifene's solubility in FaSSIF by 78% and 13%, respectively. Micelle size in FaSSIF increased with increasing EGCG concentrations (> 1000% at 1 mM), whereas EGC (1.27 mM) did not change micelle size. We observed 3.4-fold higher raloxifene solubility in FeSSIF compared to FaSSIF, and neither green tea extract nor EGCG significantly affected raloxifene solubility or micelle size in FeSSIF. The mice study showed that green tea extract significantly decreased raloxifene Cmax by 44%, whereas EGCG had no effect. Green tea extract and EGCG did not affect the AUC0-24 h of raloxifene or the metabolite-to-parent AUC ratio. CONCLUSIONS This study demonstrated flavan-3-gallate catechins may decrease solubility of poorly water-soluble drugs such as raloxifene, particularly in the fasted state.
Collapse
Affiliation(s)
- Victoria O Oyanna
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
| | - Baron J Bechtold
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
| | - M Ridge Call
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA
| | - Tyler N Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - John D Clarke
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA, 99202, USA.
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, WA, USA.
| |
Collapse
|
3
|
Lu Y, Sheng X, Liu C, Liang Z, Wang X, Liu L, Wen Z, Yang Z, Du Q, Liu W. SERD-NHC-Au(I) complexes for dual targeting ER and TrxR to induce ICD in breast cancer. Pharmacol Res 2023; 190:106731. [PMID: 36933755 DOI: 10.1016/j.phrs.2023.106731] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
The development of selective estrogen receptor degraders (SERDs) has brought new ideas for the clinical treatment of ER-positive advanced breast cancer. The successful application of combinational therapy inspired the exploration of other targets to prevent breast cancer progression. Thioredoxin reductase (TrxR) is an important enzyme that can regulate redox balance in cells and it was considered as a potential target for anticancer treatment. In this study, we firstly combine a clinical SERD candidate--G1T48 (NCT03455270), with a TrxR inhibitor--N-heterocyclic carbene gold(I) [NHC-Au(I)] to form dual targeting complexes that can regulate both signaling pathways. The most efficacious complex 23 exhibited significant antiproliferative profile through degrading ER and inhibiting TrxR activity. Interestingly, it can induce immunogenic cell death (ICD) caused by ROS. This is the first evidence to elucidate the role of ER/TrxR-ROS-ICD axis in ER positive breast cancer and this research may inspire new drug development with novel mechanisms. The in vivo xenograft study demonstrated that complex 23 had excellent antiproliferative activity toward MCF-7 cells in mice model.
Collapse
Affiliation(s)
- Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xinyu Sheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xin Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Lijuan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zhibin Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali 671000, PR China
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
4
|
Lu Y, Liu C, Wang X, Liu L, Zhao Z, Liang Z, Liu Y, Wen Z, Du Q, Liu W. Design, synthesis and biological evaluation of fluorinated selective estrogen receptor degraders (FSERDs) - A promising strategy for advanced ER positive breast cancer. Eur J Med Chem 2023; 253:115324. [PMID: 37019030 DOI: 10.1016/j.ejmech.2023.115324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Although endocrine therapies involving pharmaceuticals, such as tamoxifen and aromatase inhibitors, had initially demonstrated good responses in patients with estrogen receptor-positive (ER+) breast cancer, they often led to drug resistance. ER plays a vital role in the progression of metastatic diseases. Fulvestrant, a first generation selective estrogen receptor degrader (SERD), can effectively downregulate the ER protein and inhibit its downstream signaling pathways. However, as the drug needs to be intramuscularly injected, its widespread use is limited owing to poor patient compliance. Herein, we described a novel class of orally bioavailable fluorine-substituted SERDs that exhibit improved pharmacokinetic profiles. We substituted the hydroxyl group of clinical SERD candidate 6 with a fluorine atom to diminish phase II metabolism. The subsequent structure-activity relationship (SAR) investigation identified 22h and 27b, which can effectively degrade ER in a dose-dependent manner and exhibit considerable antiproliferative potency and efficacy in vitro and in vivo. The excellent pharmacokinetic profiles of 27b render it promising candidate of clinically useful oral SERD.
Collapse
Affiliation(s)
- Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, PR China
| | - Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xin Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Lijuan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhihao Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhenlin Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Yuanhao Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Qianming Du
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 541004, Guilin, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
5
|
Wu Y, Jin X, Ashrafzadeh Afshar E, Taher MA, Xia C, Joo SW, Mashifana T, Vasseghian Y. Simple turn-off fluorescence sensor for determination of raloxifene using gold nanoparticles stabilized by chitosan hydrogel. CHEMOSPHERE 2022; 305:135392. [PMID: 35753416 DOI: 10.1016/j.chemosphere.2022.135392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
It is essential to develop a simple, applicable, and reliable assay to anticancer drug raloxifene (RAF) because of its significant usage and side effect due to entering residue in the environment. Fluorescence sensors developed and widely used because of them high selectivity, fast-response, and highly-sensitivity. The gold nanoparticles using chitosan hydrogel was synthesized and applied as a fluorescence sensor to determine the trace amount of RAF. The characterization methods including DLS, FE-SEM, EDX, XRD, and FT-IR were performed to confirm the synthesized structure. This sensor turned off the fluorescent signals proportional to RAF concentrations at 400 nm. The RAF can be detected in the linear range from 5 × 10-7 to 5 × 10-5 M. Limits of detection and quantification were obtained as 34 × 10-8 and 11 × 10-7 M as well as the relative standard deviation calculated as 1.63% in RAF measuring. The effective parameters on quenching efficiency were studied by central composite design (CCD) with response surface methodology (RSM). The effective parameters in RAF determination, include analyte concentration, temperature, contact time, and pH, were obtained as 35 μM, 30 °C, 8 min, and pH = 8.5. The sensor was applied to determine the RAF concentrations in biological and environmental samples with satisfactory recoveries between 97.5% and 109%.
Collapse
Affiliation(s)
- Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Elham Ashrafzadeh Afshar
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran; Young Research Societies, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Ali Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; DeHua TB New Decoration Materials Co., Ltd., Huzhou, Zhejiang, 313200, China.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Tebogo Mashifana
- The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein, 2088, South Africa
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein, 2088, South Africa; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
6
|
Du T, Sun R, Etim I, Zheng Z, Liang D, Hu M, Gao S. Age-and Region-Dependent Disposition of Raloxifene in Rats. Pharm Res 2021; 38:1357-1367. [PMID: 34322833 PMCID: PMC8452384 DOI: 10.1007/s11095-021-03084-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Raloxifene undergoes extensive glucuronidation in the gastrointestinal (GI) tract and the liver. However, the impact of age on raloxifene disposition has never been studied. The purpose of this paper is to determine glucuronidation and Pharmacokinetics (PK) profiles of raloxifene in rats at different ages. METHODS Raloxifene glucuronidation was characterized using S9 fractions prepared from different intestinal segments and the liver of F344 rats at 4-, 11-, and 28-week. PK studies were conducted to determine raloxifene oral bioavailability at different ages. Raloxifene and its glucuronides were quantified using LC-MS/MS. RESULTS Raloxifene-6-glucuronide and raloxifene-4'-glucuronide were detected as the major metabolites and the ratio of these two glucuronides were different ranging from 2.1 to 4.9 folds in the ileum, jejunum, liver, and duodenum, and from 14.5 to 50 folds in the colon. The clearances in the duodenum at 4-week for both two glucuronides were significantly lower than those at the other two ages. PK studies showed that the oral bioavailability of raloxifene is age dependent. The absolute oral bioavailability of raloxifene was 3.5-folds higher at 4-week compared to that at 11-weeks. When raloxifene was administered through IV bolus, its half-life was 5.9 ± 1.16 h and 3.7 ± 0.68 h at 11-and 4-week, respectively. CONCLUSION These findings suggested that raloxifene metabolism in the duodenum was significantly slower at young age in rats, which increased the oral bioavailability of raloxifene. At 11-week, enterohepatic recycling efficiency was higher than that of 4-week. Raloxifene's dose at different ages should be carefully considered.
Collapse
Affiliation(s)
- Ting Du
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, Texas, 77004, USA
| | - Rongjin Sun
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 4901 Calhoun Street, Houston, Texas, 77204, USA
| | - Imoh Etim
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, Texas, 77004, USA
| | - Zicong Zheng
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 4901 Calhoun Street, Houston, Texas, 77204, USA
| | - Dong Liang
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, Texas, 77004, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 4901 Calhoun Street, Houston, Texas, 77204, USA.
| | - Song Gao
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne St, Houston, Texas, 77004, USA.
| |
Collapse
|
7
|
Du T, Sun R, Siddiqui N, Moatamed L, Zhang Y, Liang D, Hu M, Gao S. A positive-negative switching LC-MS/MS method for quantification of fenoldopam and its phase II metabolites: Applications to a pharmacokinetic study in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122854. [PMID: 34242859 PMCID: PMC8403159 DOI: 10.1016/j.jchromb.2021.122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Fenoldopam is an approved drug used to treat hypotension. The purpose of this study is to develop and validate an LC-MS method to quantify fenoldopam and its major metabolites fenoldopam-glucuronide and fenoldopam-sulfate in plasma and apply the method to a pharmacokinetic study in rats. A Waters C18 column was used with 0.1% formic acid in acetonitrile and 0.1% formic acid in water as the mobile phases to elute the analytes. A positive-negative switching method was performed in a triple quadrupole mass spectrometer using Multiple Reaction Monitoring (MRM) mode. A one-step protein precipitation using methanol and ethyl acetate was successfully applied for plasma sample preparation. The method was validated following the FDA guidance. The results show that the LLOQ of fenoldopam, fenoldopam-glucuronide and fenoldopam-sulfate is 0.98, 9.75 and 0.98 nM, respectively. The intraday and interday variance is less than 8.4% and the accuracy is between 82.5 and 116.0 %. The extraction recovery for these three analytes ranged from 81.3 ± 4.1% to 113.9 ± 13.2%. There was no significant matrix effect and no significant degradation under the experimental conditions. PK studies showed that fenoldopam was rapidly eliminated (t1/2 = 0.63 ± 0.24 h) from the plasma and glucuronide is the major metabolite. This method was suitably selective and sensitive for pharmacokinetic and phase II metabolism studies.
Collapse
Affiliation(s)
- Ting Du
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Rongjin Sun
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 4901 Calhoun Street, Houston, TX 77204, USA
| | - Nyma Siddiqui
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Linda Moatamed
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Yun Zhang
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Dong Liang
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 4901 Calhoun Street, Houston, TX 77204, USA
| | - Song Gao
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA.
| |
Collapse
|