1
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Taguchi H, Niwa T. Reconstituted Cell-free Translation Systems for Exploring Protein Folding and Aggregation. J Mol Biol 2024; 436:168726. [PMID: 39074633 DOI: 10.1016/j.jmb.2024.168726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Protein folding is crucial for achieving functional three-dimensional structures. However, the process is often hampered by aggregate formation, necessitating the presence of chaperones and quality control systems within the cell to maintain protein homeostasis. Despite a long history of folding studies involving the denaturation and subsequent refolding of translation-completed purified proteins, numerous facets of cotranslational folding, wherein nascent polypeptides are synthesized by ribosomes and folded during translation, remain unexplored. Cell-free protein synthesis (CFPS) systems are invaluable tools for studying cotranslational folding, offering a platform not only for elucidating mechanisms but also for large-scale analyses to identify aggregation-prone proteins. This review provides an overview of the extensive use of CFPS in folding studies to date. In particular, we discuss a comprehensive aggregation formation assay of thousands of Escherichia coli proteins conducted under chaperone-free conditions using a reconstituted translation system, along with its derived studies.
Collapse
Affiliation(s)
- Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
3
|
Raychaudhuri R, Naik S, Shreya AB, Kandpal N, Pandey A, Kalthur G, Mutalik S. Pullulan based stimuli responsive and sub cellular targeted nanoplatforms for biomedical application: Synthesis, nanoformulations and toxicological perspective. Int J Biol Macromol 2020; 161:1189-1205. [PMID: 32504712 DOI: 10.1016/j.ijbiomac.2020.05.262] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/23/2020] [Accepted: 05/29/2020] [Indexed: 01/27/2023]
Abstract
With growing interest in polymers of natural origin, innumerable polysaccharides have gained attention for their biomedical application. Pullulan, one of the FDA approved nutraceuticals, possesses multiple unique properties which make them highly advantageous for biomedical applications. This present review encompasses the sources, production, properties and applications of pullulan. It highlights various pullulan based stimuli-responsive systems (temperature, pH, ultrasound, magnetic), subcellular targeted systems (mitochondria, Golgi apparatus/endoplasmic reticulum, lysosome, endosome), lipid-vesicular systems (solid-lipid nanoparticles, liposomes), polymeric nanofibres, micelles, inorganic (SPIONs, gold and silver nanoparticles), carbon-based nanoplatforms (carbon nanotubes, fullerenes, nanodiamonds) and quantum dots. This article also gives insight into different biomedical, therapeutic and diagnostic applications of pullulan viz., imaging, tumor targeting, stem cell therapy, gene therapy, vaccine delivery, cosmetic applications, protein delivery, tissue engineering, photodynamic therapy and chaperone-like activities. The review also includes the toxicological profile of pullulan which is helpful for the development of suitable delivery systems for clinical applications.
Collapse
Affiliation(s)
- Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Santoshi Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ajjappla B Shreya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Neha Kandpal
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| |
Collapse
|
4
|
Artificial chaperones: From materials designs to applications. Biomaterials 2020; 254:120150. [DOI: 10.1016/j.biomaterials.2020.120150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
|
5
|
Shah S, Rangaraj N, Laxmikeshav K, Sampathi S. “Nanogels as drug carriers – Introduction, chemical aspects, release mechanisms and potential applications”. Int J Pharm 2020; 581:119268. [DOI: 10.1016/j.ijpharm.2020.119268] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/28/2022]
|
6
|
Nishimura T, Akiyoshi K. Artificial Molecular Chaperone Systems for Proteins, Nucleic Acids, and Synthetic Molecules. Bioconjug Chem 2020; 31:1259-1267. [DOI: 10.1021/acs.bioconjchem.0c00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoki Nishimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
7
|
Sasaki Y, Tsuchido Y, Yoshimura T, Akiyoshi K. Nanogelation and Thermal Stabilization of Enzyme by Vitamin B 6-Bearing Polysaccharide as Biocrosslinker. ACS Biomater Sci Eng 2019; 5:5752-5758. [PMID: 33405708 DOI: 10.1021/acsbiomaterials.9b00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanogels containing a protein (carbonic anhydrase, CA) were prepared by cross-linking CA and pyridoxal (vitamin B6)-bearing pullulan (PLPP) as a biocrosslinker via Schiff base formation. UV titration and high-performance liquid chromatography confirmed that CA was quantitatively complexed with PLPP in the presence of zinc ions. Dynamic light scattering and transmission electron microscopy showed that the nanogel diameter was about 20 nm. CA retained 90% of its native activity after complexation with PLPP. Moreover, the residual enzymatic activity of CA after heating and its long-term storage stability at room temperature were improved by complexation with PLPP. Enzyme nanogelation with PLPP is an efficient method for enzyme stabilization.
Collapse
Affiliation(s)
- Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 606-8501, Japan
| | - Yuji Tsuchido
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Takahiro Yoshimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 606-8501, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 606-8501, Japan.,The Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), K's Goban-cho bldg., 7 Goban-cho, chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
8
|
Abstract
Nanogels have attracted considerable attention as nanoscopic drug carriers, particularly for site-specific or time-controlled delivery of bioactive mediators. A high diversity of polymer systems and the simple modification of their physicochemical features have provided multipurpose forms of nanogel preparations. Nanogels have outstandingly high stability, drug loading ability, biologic consistence, good permeation capability and can be responsive to environmental stimuli. Great potential has been shown by nanogels in many fields including delivery of genes, chemotherapy drugs, diagnosis, targeting of specific organs and several others. This review focuses mainly on different types of nanogels, methods of preparation including methods of drug loading, different modes of biodegradation mechanisms as well as main mechanisms of drug release from nanogels. Recent applications of nanogels are also briefly discussed and exemplified.
Collapse
|
9
|
Kempf N, Remes C, Ledesch R, Züchner T, Höfig H, Ritter I, Katranidis A, Fitter J. A Novel Method to Evaluate Ribosomal Performance in Cell-Free Protein Synthesis Systems. Sci Rep 2017; 7:46753. [PMID: 28436469 PMCID: PMC5402277 DOI: 10.1038/srep46753] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/21/2017] [Indexed: 02/08/2023] Open
Abstract
Cell-free protein synthesis (CFPS) systems were designed to produce proteins with a minimal set of purified components, thus offering the possibility to follow translation as well as protein folding. In order to characterize the performance of the ribosomes in such a system, it is crucial to separately quantify the two main components of productivity, namely the fraction of active ribosomes and the number of synthesizing cycles. Here, we provide a direct and highly reliable measure of ribosomal activity in any given CFPS system, introducing an enhanced-arrest peptide variant. We observe an almost complete stalling of ribosomes that produce GFPem (~95%), as determined by common centrifugation techniques and fluorescence correlation spectroscopy (FCS). Moreover, we thoroughly study the effect of different ribosomal modifications independently on activity and number of synthesizing cycles. Finally, employing two-colour coincidence detection and two-colour colocalisation microscopy, we demonstrate real-time access to key productivity parameters with minimal sample consumption on a single ribosome level.
Collapse
Affiliation(s)
- Noémie Kempf
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Cristina Remes
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Ralph Ledesch
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Tina Züchner
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Henning Höfig
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany.,Physikalisches Institut (IA), RWTH Aachen, 52062 Aachen, Germany
| | - Ilona Ritter
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany
| | | | - Jörg Fitter
- Institute of Complex Systems ICS-5, Forschungszentrum Jülich, 52428 Jülich, Germany.,Physikalisches Institut (IA), RWTH Aachen, 52062 Aachen, Germany
| |
Collapse
|
10
|
Shimizu T, Kameta N, Ding W, Masuda M. Supramolecular Self-Assembly into Biofunctional Soft Nanotubes: From Bilayers to Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12242-12264. [PMID: 27248715 DOI: 10.1021/acs.langmuir.6b01632] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The inner and outer surfaces of bilayer-based lipid nanotubes can be hardly modified selectively by a favorite functional group. Monolayer-based nanotubes display a definitive difference in their inner and outer functionalities if bipolar wedge-shaped amphiphiles, so-called bolaamphiphiles, as a constituent of the monolayer membrane pack in a parallel fashion with a head-to-tail interface. To exclusively form unsymmetrical monolayer lipid membranes, we focus herein on the rational molecular design of bolaamphiphiles and a variety of self-assembly processes into tubular architectures. We first describe the importance of polymorph and polytype control and then discuss diverse methodologies utilizing a polymer template, multiple hydrogen bonds, binary and ternary coassembly, and two-step self-assembly. Novel biologically important functions of the obtained soft nanotubes, brought about only by completely unsymmetrical inner and outer surfaces, are discussed in terms of protein refolding, drug nanocarriers, lectin detection, a chiral inducer for achiral polymers, the tailored fabrication of polydopamine, and spontaneous nematic alignment.
Collapse
Affiliation(s)
- Toshimi Shimizu
- AIST Fellow, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Naohiro Kameta
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, AIST , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Wuxiao Ding
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, AIST , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Mitsutoshi Masuda
- Research Institute for Sustainable Chemistry, Department of Materials and Chemistry, AIST , Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
11
|
Nakamoto M, Nonaka T, Shea KJ, Miura Y, Hoshino Y. Design of Synthetic Polymer Nanoparticles That Facilitate Resolubilization and Refolding of Aggregated Positively Charged Lysozyme. J Am Chem Soc 2016; 138:4282-5. [DOI: 10.1021/jacs.5b12600] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masahiko Nakamoto
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tadashi Nonaka
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenneth J. Shea
- Department
of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Yoshiko Miura
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Palao-Suay R, Gómez-Mascaraque L, Aguilar M, Vázquez-Lasa B, Román JS. Self-assembling polymer systems for advanced treatment of cancer and inflammation. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2015.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
KODA Y, SASAKI Y, AKIYOSHI K. Formation and Function of Nanogels by Self-Assembly of Associating Graft Copolymers. KOBUNSHI RONBUNSHU 2016; 73:166-174. [DOI: 10.1295/koron.2015-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Yuta KODA
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University
- ERATO Akiyoshi Bio-Nanotranporter Project, JST
| | - Yoshihiro SASAKI
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University
| | - Kazunari AKIYOSHI
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University
- ERATO Akiyoshi Bio-Nanotranporter Project, JST
| |
Collapse
|
14
|
Niwa T, Sasaki Y, Uemura E, Nakamura S, Akiyama M, Ando M, Sawada S, Mukai SA, Ueda T, Taguchi H, Akiyoshi K. Comprehensive study of liposome-assisted synthesis of membrane proteins using a reconstituted cell-free translation system. Sci Rep 2015; 5:18025. [PMID: 26667602 PMCID: PMC4678891 DOI: 10.1038/srep18025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/03/2015] [Indexed: 02/02/2023] Open
Abstract
Membrane proteins play pivotal roles in cellular processes and are key targets for drug discovery. However, the reliable synthesis and folding of membrane proteins are significant problems that need to be addressed owing to their extremely high hydrophobic properties, which promote irreversible aggregation in hydrophilic conditions. Previous reports have suggested that protein aggregation could be prevented by including exogenous liposomes in cell-free translation processes. Systematic studies that identify which membrane proteins can be rescued from irreversible aggregation during translation by liposomes would be valuable in terms of understanding the effects of liposomes and developing applications for membrane protein engineering in the context of pharmaceutical science and nanodevice development. Therefore, we performed a comprehensive study to evaluate the effects of liposomes on 85 aggregation-prone membrane proteins from Escherichia coli by using a reconstituted, chemically defined cell-free translation system. Statistical analyses revealed that the presence of liposomes increased the solubility of >90% of the studied membrane proteins, and ultimately improved the yields of the synthesized proteins. Bioinformatics analyses revealed significant correlations between the liposome effect and the physicochemical properties of the membrane proteins.
Collapse
Affiliation(s)
- Tatsuya Niwa
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Eri Uemura
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Shugo Nakamura
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Minato Akiyama
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Mitsuru Ando
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Shinichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Sada-atu Mukai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Takuya Ueda
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, FSB401, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Hideki Taguchi
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
15
|
Fang X, Yang T, Wang L, Yu J, Wei X, Zhou Y, Wang C, Liang W. Nano-cage-mediated refolding of insulin by PEG-PE micelle. Biomaterials 2015; 77:139-48. [PMID: 26595505 DOI: 10.1016/j.biomaterials.2015.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
Abstract
Insulin aggregation has pronounced pharmaceutical implications and biological importance. Deposition of insulin aggregates is associated with type II diabetes and instability of pharmaceutical formulations. We present in this study the renaturation effect of PEG-PE micelle on dithiothreitol (DTT)-denatured insulin revealed by techniques including turbidity assay, circular dichroism (CD), thioflavinT (ThT) binding assay, bis-ANS binding assay, agarose gel electrophoresis and MALDI-TOF MS. The obtained results show that PEG-PE micelle having a hydrophilic nano-cage-like structure in which with a negative charge layer, can capture DTT-induced insulin A and B chains, and block their hydrophobic interaction, thereby preventing aggregation. The reduced insulin A and B chain in the nano-cage are capable of recognizing each other and form the native insulin with yields of ∼30% as measured by hypoglycemic activity analysis in mice. The observed insulin refolding assisted by PEG-PE micelle may be applicable to other proteins.
Collapse
Affiliation(s)
- Xiaocui Fang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No.11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
| | - Tao Yang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Luoyang Wang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jibing Yu
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Xiuli Wei
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Yinjian Zhou
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Chen Wang
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No.11 ZhongGuanCun BeiYiTiao, Beijing 100190, China.
| | - Wei Liang
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| |
Collapse
|
16
|
Dodevski I, Markou GC, Sarkar CA. Conceptual and methodological advances in cell-free directed evolution. Curr Opin Struct Biol 2015; 33:1-7. [PMID: 26093059 DOI: 10.1016/j.sbi.2015.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/14/2015] [Accepted: 04/30/2015] [Indexed: 12/13/2022]
Abstract
Although cell-free directed evolution methods have been used to engineer proteins for nearly two decades, selections on more complex phenotypes have largely remained in the domain of cell-based engineering approaches. Here, we review recent conceptual advances that now enable in vitro display of multimeric proteins, integral membrane proteins, and proteins with an expanded amino acid repertoire. Additionally, we discuss methodological improvements that have enhanced the accessibility, efficiency, and robustness of cell-free approaches. Coupling these advances with the in vitro advantages of creating exceptionally large libraries and precisely controlling all experimental conditions, cell-free directed evolution is poised to contribute significantly to our understanding and engineering of more complex protein phenotypes.
Collapse
Affiliation(s)
- Igor Dodevski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - George C Markou
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
17
|
Chemla Y, Ozer E, Schlesinger O, Noireaux V, Alfonta L. Genetically expanded cell-free protein synthesis using endogenous pyrrolysyl orthogonal translation system. Biotechnol Bioeng 2015; 112:1663-72. [DOI: 10.1002/bit.25587] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Yonatan Chemla
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Eden Ozer
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Orr Schlesinger
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Vincent Noireaux
- School of Physics and Astronomy; University of Minnesota; Minneapolis Minnesota 55401
| | - Lital Alfonta
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| |
Collapse
|
18
|
Nanogels based on alginic aldehyde and gelatin by inverse miniemulsion technique: synthesis and characterization. Carbohydr Polym 2015; 119:118-25. [PMID: 25563951 DOI: 10.1016/j.carbpol.2014.11.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 11/17/2022]
|
19
|
Zhang X, Malhotra S, Molina M, Haag R. Micro- and nanogels with labile crosslinks – from synthesis to biomedical applications. Chem Soc Rev 2015; 44:1948-73. [DOI: 10.1039/c4cs00341a] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We emphasize the synthetic strategies to produce micro-/nanogels and the importance of degradable linkers incorporated in the gel network.
Collapse
Affiliation(s)
- Xuejiao Zhang
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Shashwat Malhotra
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Maria Molina
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| |
Collapse
|
20
|
Sharma A, Garg T, Aman A, Panchal K, Sharma R, Kumar S, Markandeywar T. Nanogel--an advanced drug delivery tool: Current and future. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:165-77. [PMID: 25053442 DOI: 10.3109/21691401.2014.930745] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nanogels are robust nanoparticles that could be used to deliver active drug compounds in controlled drug delivery applications. Nanogels drug delivery system is more effective and safer for both hydrophilic and hydrophobic drugs due to their chemical composition and formulations that are inappropriate for other formulations. Nanogels have enabled enlargement of functionalized nanoparticles, which act as a drug carriers that can be loaded with drugs and other active material to be released in a controlled manner at specific site. This review aims at providing general introduction on nanogels, recent synthesis methodology and their novel application in different fields.
Collapse
Affiliation(s)
- Ankita Sharma
- a Department of Pharmaceutics , ISF College of Pharmacy, Punjab Technical University , Moga , Punjab , India
| | - Tarun Garg
- a Department of Pharmaceutics , ISF College of Pharmacy, Punjab Technical University , Moga , Punjab , India
| | - Amrinder Aman
- a Department of Pharmaceutics , ISF College of Pharmacy, Punjab Technical University , Moga , Punjab , India
| | - Kushan Panchal
- a Department of Pharmaceutics , ISF College of Pharmacy, Punjab Technical University , Moga , Punjab , India
| | - Rajiv Sharma
- b Department of Pharmaceutical Chemistry , ISF College of Pharmacy, Punjab Technical University , Moga , Punjab , India
| | - Sahil Kumar
- b Department of Pharmaceutical Chemistry , ISF College of Pharmacy, Punjab Technical University , Moga , Punjab , India
| | - Tanmay Markandeywar
- a Department of Pharmaceutics , ISF College of Pharmacy, Punjab Technical University , Moga , Punjab , India
| |
Collapse
|
21
|
Rosenblum G, Cooperman BS. Engine out of the chassis: cell-free protein synthesis and its uses. FEBS Lett 2013; 588:261-8. [PMID: 24161673 DOI: 10.1016/j.febslet.2013.10.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 12/15/2022]
Abstract
The translation machinery is the engine of life. Extracting the cytoplasmic milieu from a cell affords a lysate capable of producing proteins in concentrations reaching to tens of micromolar. Such lysates, derivable from a variety of cells, allow the facile addition and subtraction of components that are directly or indirectly related to the translation machinery and/or the over-expressed protein. The flexible nature of such cell-free expression systems, when coupled with high throughput monitoring, can be especially suitable for protein engineering studies, allowing one to bypass multiple steps typically required using conventional in vivo protein expression.
Collapse
Affiliation(s)
- Gabriel Rosenblum
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States.
| | - Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| |
Collapse
|
22
|
Sun J, Ruchmann J, Pallier A, Jullien L, Desmadril M, Tribet C. Unfolding of Cytochrome c upon Interaction with Azobenzene-Modified Copolymers. Biomacromolecules 2012; 13:3736-46. [DOI: 10.1021/bm301200p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jing Sun
- Ecole Normale Supérieure, Département de chimie, UMR8640 CNRS-ENS-UPMC, 24 rue Lhomond, F-75005 Paris, France
| | - Juliette Ruchmann
- Ecole Normale Supérieure, Département de chimie, UMR8640 CNRS-ENS-UPMC, 24 rue Lhomond, F-75005 Paris, France
| | - A. Pallier
- ESPCI, Physico-Chimie
des Polymeres et Milieux Disperses, CNRS UMR7615, 10 rue Vauquelin, 75005 Paris, France
| | - L. Jullien
- Ecole Normale Supérieure, Département de chimie, UMR8640 CNRS-ENS-UPMC, 24 rue Lhomond, F-75005 Paris, France
| | - M. Desmadril
- Laboratoire de Modélisation
et d’Ingénierie des Protéines, UMR8619, Université de Paris-Sud, Bât 430, F-91405
ORSAY CEDEX, France
| | - Christophe Tribet
- Ecole Normale Supérieure, Département de chimie, UMR8640 CNRS-ENS-UPMC, 24 rue Lhomond, F-75005 Paris, France
| |
Collapse
|
23
|
Haferkamp I, Linka N. Functional expression and characterisation of membrane transport proteins. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:675-90. [PMID: 22639981 DOI: 10.1111/j.1438-8677.2012.00591.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Membrane transporters set the framework organising the complexity of plant metabolism in cells, tissues and organisms. Their substrate specificity and controlled activity in different cells is a crucial part for plant metabolism to run pathways in concert. Transport proteins catalyse the uptake and exchange of ions, substrates, intermediates, products and cofactors across membranes. Given the large number of metabolites, a wide spectrum of transporters is required. The vast majority of in silico annotated membrane transporters in plant genomes, however, has not yet been functionally characterised. Hence, to understand the metabolic network as a whole, it is important to understand how transporters connect and control the metabolic pathways of plant cells. Heterologous expression and in vitro activity studies of recombinant transport proteins have highly improved their functional analysis in the last two decades. This review provides a comprehensive overview of the recent advances in membrane protein expression and functional characterisation using various host systems and transport assays.
Collapse
Affiliation(s)
- I Haferkamp
- Plant Physiology, Technical University of Kaiserslautern, Kaiserslautern, Germany Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - N Linka
- Plant Physiology, Technical University of Kaiserslautern, Kaiserslautern, Germany Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
24
|
Moya-Ortega MD, Alvarez-Lorenzo C, Concheiro A, Loftsson T. Cyclodextrin-based nanogels for pharmaceutical and biomedical applications. Int J Pharm 2012; 428:152-63. [PMID: 22388054 DOI: 10.1016/j.ijpharm.2012.02.038] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 11/18/2022]
Abstract
Hydrophilic nanogels combine the advantages of hydrogels with certain advantages that are inherent in their nanoscale size. Similar to macrogels, nanogels can contain and protect drugs and regulate their release by incorporating high-affinity functional groups, stimuli-responsive conformations and biodegradable bonds into the polymer network. Similar to nanoparticles, nanogels can easily be administered in liquid form for parenteral drug delivery. The nanoscale size of nanogels gives them a high specific surface area that is available for further bioconjugation of active targeting agents. Biodistribution and drug release can be modulated through size adjustments. The incorporation of hydrophilic cyclodextrin (CD) moieties into the polymeric network of the nanogels provides them with a drug loading and release mechanism that is based on the formation of inclusion complexes without decreasing the hydrophilicity of the network. The covalent attachment of CD molecules to the chemically crosslinked networks may enable the CDs to display fully their ability to form complexes, while simultaneously preventing drug release upon media dilution. The preparation, characterization and advantages for pharmaceutical and biomedical applications of CD-based nanogels are reviewed in this article.
Collapse
Affiliation(s)
- Maria D Moya-Ortega
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | | | | | | |
Collapse
|
25
|
Cell-free protein synthesis: applications come of age. Biotechnol Adv 2011; 30:1185-94. [PMID: 22008973 DOI: 10.1016/j.biotechadv.2011.09.016] [Citation(s) in RCA: 490] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/30/2011] [Accepted: 09/30/2011] [Indexed: 12/17/2022]
Abstract
Cell-free protein synthesis has emerged as a powerful technology platform to help satisfy the growing demand for simple and efficient protein production. While used for decades as a foundational research tool for understanding transcription and translation, recent advances have made possible cost-effective microscale to manufacturing scale synthesis of complex proteins. Protein yields exceed grams protein produced per liter reaction volume, batch reactions last for multiple hours, costs have been reduced orders of magnitude, and reaction scale has reached the 100-liter milestone. These advances have inspired new applications in the synthesis of protein libraries for functional genomics and structural biology, the production of personalized medicines, and the expression of virus-like particles, among others. In the coming years, cell-free protein synthesis promises new industrial processes where short protein production timelines are crucial as well as innovative approaches to a wide range of applications.
Collapse
|