1
|
Boyet M, Chabaud L, Pucheault M. Recent Advances in the Synthesis of Borinic Acid Derivatives. Molecules 2023; 28:molecules28062660. [PMID: 36985634 PMCID: PMC10057197 DOI: 10.3390/molecules28062660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Borinic acids [R2B(OH)] and their chelate derivatives are a subclass of organoborane compounds used in cross-coupling reactions, catalysis, medicinal chemistry, polymer or optoelectronics materials. In this paper, we review the recent advances in the synthesis of diarylborinic acids and their four-coordinated analogs. The main strategies to build up borinic acids rely either on the addition of organometallic reagents to boranes (B(OR)3, BX3, aminoborane, arylboronic esters) or the reaction of triarylboranes with a ligand (diol, amino alcohol, etc.). After general practical considerations of borinic acids, an overview of the main synthetic methods, their scope and limitations is provided. We also discuss some mechanistic aspects.
Collapse
|
2
|
Xiao H, Li T, Sun XL, Wan WM, Bao H, Qian Q, Chen Q. Unpredicted Concentration-Dependent Sensory Properties of Pyrene-Containing NBN-Doped Polycyclic Aromatic Hydrocarbons. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010327. [PMID: 35011557 PMCID: PMC8746585 DOI: 10.3390/molecules27010327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
Pyrene molecules containing NBN-doped polycyclic aromatic hydrocarbons (PAHs) have been synthesized by a simple and efficient intermolecular dehydration reaction between 1-pyrenylboronic acid and aromatic diamine. Pyrene-B (o-phenylenediamine) with a five-membered NBN ring and pyrene-B (1,8-diaminonaphthalene) with a six-membered NBN ring show differing luminescence. Pyrene-B (o-phenylenediamine) shows concentration-dependent luminescence and enhanced emission after grinding at solid state. Pyrene-B (1,8-diaminonaphthalene) exhibits a turn-on type luminescence upon fluoride ion addition at lower concentration, as well as concentration-dependent stability. Further potential applications of Pyrene-B (o-phenylenediamine) on artificial light-harvesting film were demonstrated by using commercial NiR dye as acceptor.
Collapse
Affiliation(s)
- Hang Xiao
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its ReLated Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China;
| | - Tao Li
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its ReLated Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China;
| | - Xiao-Li Sun
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
- Correspondence: (X.-L.S.); (W.-M.W.)
| | - Wen-Ming Wan
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its ReLated Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China;
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
- Correspondence: (X.-L.S.); (W.-M.W.)
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its ReLated Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China;
| | - Qingrong Qian
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
| | - Qinghua Chen
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
| |
Collapse
|
3
|
Shi QX, Xiao H, Sheng YJ, Li DS, Su M, Sun XL, Bao H, Wan WM. Barbier single-atom polymerization induced emission as a one-pot approach towards stimuli-responsive luminescent polymers. Polym Chem 2022. [DOI: 10.1039/d2py00816e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A one-pot strategy for the design of stimuli-responsive luminescent polymers has been demonstrated through Barbier PIE, where the N,N-dimethyl moiety endows the polymers with both stimuli-responsive and red-shifted nonconjugated emission properties.
Collapse
Affiliation(s)
- Quan-Xi Shi
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hang Xiao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Yu-Jing Sheng
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - De-Shan Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Min Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Xiao-Li Sun
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
4
|
Li SS, Zhu N, Jing YN, Li Y, Bao H, Wan WM. Barbier Self-Condensing Ketyl Polymerization-Induced Emission: A Polarity Reversal Approach to Reversed Polymerizability. iScience 2020; 23:101031. [PMID: 32299054 PMCID: PMC7160573 DOI: 10.1016/j.isci.2020.101031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 11/22/2022] Open
Abstract
Carbon-carbon bond formation through polarity reversal ketyl radical anion coupling of carbonyls has inspired new reaction modes to this cornerstone carbonyl group and played significant roles in organic chemistry. The introduction of this resplendent polarity reversal ketyl strategy into polymer chemistry will inspire new polymerization mode with unpredicted discoveries. Here we show the successful introduction of polarity reversal ketyl approach to polymer chemistry to realize self-condensing ketyl polymerization with polymerization-induced emission. In this polarity reversal approach, it exhibits intriguing reversed polymerizability, where traditional excellent leaving groups are not suitable for polymerization but challenging polymerizations involving the cleavage of challenging C-F and C-CF3 bonds are realized under mild Barbier conditions. This polarity reversal approach enables the polymer chemistry with polarity reversal ketyl mode, opens up a new avenue toward the polymerization of challenging C-X bonds under mild conditions, and sparks design inspiration of new reaction, polymerization, and functional polymer.
Collapse
Affiliation(s)
- Shun-Shun Li
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China; State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, P. R. of China
| | - Nengbo Zhu
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
| | - Ya-Nan Jing
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China; State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, P. R. of China
| | - Yajun Li
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
| | - Wen-Ming Wan
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China; State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, P. R. of China.
| |
Collapse
|
5
|
Zhu N, Chiou MF, Xiong H, Su M, Su M, Li Y, Wan WM, Bao H. The Introduction of the Radical Cascade Reaction into Polymer Chemistry: A One-Step Strategy for Synchronized Polymerization and Modification. iScience 2020; 23:100902. [PMID: 32106054 PMCID: PMC7044516 DOI: 10.1016/j.isci.2020.100902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
Polymerization and modification play central roles in polymer chemistry and are generally implemented in two steps, which suffer from the time-consuming two-step strategy and present considerable challenge for complete modification. By introducing the radical cascade reaction (RCR) into polymer chemistry, a one-step strategy is demonstrated to achieve synchronized polymerization and complete modification in situ. Attributed to the cascade feature of iron-catalyzed three-component alkene carboazidation RCR exhibiting carbon-carbon bond formation and carbon-azide bond formation with extremely high efficiency and selectivity in one step, radical cascade polymerization therefore enables the in situ synchronized polymerization through continuous carbon-carbon bond formation and complete modification through carbon-azide bond formation simultaneously. This results in a series of α, β, and γ poly(amino acid) precursors. This result not only expands the methodology library of polymerization, but also the possibility for polymer science to achieve functional polymers with tailored chemical functionality from in situ polymerization.
Collapse
Affiliation(s)
- Nengbo Zhu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Mong-Feng Chiou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Haigen Xiong
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Min Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Muqiao Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China.
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. of China.
| |
Collapse
|
6
|
Li SS, Lv XH, Sun XL, Wan WM, Bao H. Well-controlled polymerization of tri-vinyl dynamic covalent boroxine monomer: one dynamic covalent boroxine moiety toward a tunable penta-responsive polymer. Polym Chem 2020. [DOI: 10.1039/d0py00401d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attributed to dynamic characteristics of dynamic covalent boroxine, well-controlled polymerization of tri-vinyl monomer and molecular design of penta-responsive polymer with only one functional moiety are achieved.
Collapse
Affiliation(s)
- Shun-Shun Li
- State Key Laboratory of Structural Chemistry
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Xin-Hu Lv
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China)
- Qingdao 266580
- P. R. of China
| | - Xiao-Li Sun
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China)
- Qingdao 266580
- P. R. of China
| | - Wen-Ming Wan
- State Key Laboratory of Structural Chemistry
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| |
Collapse
|
7
|
Baraniak MK, Lalancette RA, Jäkle F. Electron‐Deficient Borinic Acid Polymers: Synthesis, Supramolecular Assembly, and Examination as Catalysts in Amide Bond Formation. Chemistry 2019; 25:13799-13810. [DOI: 10.1002/chem.201903196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Monika K. Baraniak
- Department of ChemistryRutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Roger A. Lalancette
- Department of ChemistryRutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of ChemistryRutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
8
|
Lv XH, Wang XY, Zhou Y, Xu H, Wan WM. Promoting water dissociation performance by borinic acid for the strong-acid/base-free hydrogen evolution reaction. Chem Commun (Camb) 2019; 55:9821-9824. [DOI: 10.1039/c9cc04569d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Borinic acid is reported as a new proton donor with promoted water dissociation performance for the strong-acid/base-free hydrogen evolution reaction.
Collapse
Affiliation(s)
- Xin-Hu Lv
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao
- People's Republic of China
| | - Xue-Yuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao
- People's Republic of China
| | - Yan Zhou
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao
- People's Republic of China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao
- People's Republic of China
| | - Wen-Ming Wan
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology
- China University of Petroleum (East China)
- Qingdao
- People's Republic of China
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
| |
Collapse
|
9
|
Wan W, Tian D, Jing Y, Zhang X, Wu W, Ren H, Bao H. NBN‐Doped Conjugated Polycyclic Aromatic Hydrocarbons as an AIEgen Class for Extremely Sensitive Detection of Explosives. Angew Chem Int Ed Engl 2018; 57:15510-15516. [PMID: 30255542 DOI: 10.1002/anie.201809844] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/22/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Wen‐Ming Wan
- School of Materials Science and EngineeringCenter for Bioengineering and BiotechnologyChina University of Petroleum (East China) No. 66, West Changjiang Road Qingdao 266580 China
- Key Laboratory of Coal to Ethylene Glycol and Its Related TechnologyCenter for Excellence in Molecular SynthesisFujian Institute of Research on the Structure of Matter 155 West Yangqiao Road Fuzhou 350002 China
| | - Di Tian
- School of Materials Science and EngineeringCenter for Bioengineering and BiotechnologyChina University of Petroleum (East China) No. 66, West Changjiang Road Qingdao 266580 China
| | - Ya‐Nan Jing
- School of Materials Science and EngineeringCenter for Bioengineering and BiotechnologyChina University of Petroleum (East China) No. 66, West Changjiang Road Qingdao 266580 China
- Key Laboratory of Coal to Ethylene Glycol and Its Related TechnologyCenter for Excellence in Molecular SynthesisFujian Institute of Research on the Structure of Matter 155 West Yangqiao Road Fuzhou 350002 China
| | - Xiao‐Yun Zhang
- School of Materials Science and EngineeringCenter for Bioengineering and BiotechnologyChina University of Petroleum (East China) No. 66, West Changjiang Road Qingdao 266580 China
| | - Wei Wu
- School of Materials Science and EngineeringCenter for Bioengineering and BiotechnologyChina University of Petroleum (East China) No. 66, West Changjiang Road Qingdao 266580 China
| | - Hao Ren
- School of Materials Science and EngineeringCenter for Bioengineering and BiotechnologyChina University of Petroleum (East China) No. 66, West Changjiang Road Qingdao 266580 China
| | - Hong‐Li Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related TechnologyCenter for Excellence in Molecular SynthesisFujian Institute of Research on the Structure of Matter 155 West Yangqiao Road Fuzhou 350002 China
| |
Collapse
|
10
|
Wan W, Tian D, Jing Y, Zhang X, Wu W, Ren H, Bao H. NBN‐Doped Conjugated Polycyclic Aromatic Hydrocarbons as an AIEgen Class for Extremely Sensitive Detection of Explosives. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809844] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wen‐Ming Wan
- School of Materials Science and EngineeringCenter for Bioengineering and BiotechnologyChina University of Petroleum (East China) No. 66, West Changjiang Road Qingdao 266580 China
- Key Laboratory of Coal to Ethylene Glycol and Its Related TechnologyCenter for Excellence in Molecular SynthesisFujian Institute of Research on the Structure of Matter 155 West Yangqiao Road Fuzhou 350002 China
| | - Di Tian
- School of Materials Science and EngineeringCenter for Bioengineering and BiotechnologyChina University of Petroleum (East China) No. 66, West Changjiang Road Qingdao 266580 China
| | - Ya‐Nan Jing
- School of Materials Science and EngineeringCenter for Bioengineering and BiotechnologyChina University of Petroleum (East China) No. 66, West Changjiang Road Qingdao 266580 China
- Key Laboratory of Coal to Ethylene Glycol and Its Related TechnologyCenter for Excellence in Molecular SynthesisFujian Institute of Research on the Structure of Matter 155 West Yangqiao Road Fuzhou 350002 China
| | - Xiao‐Yun Zhang
- School of Materials Science and EngineeringCenter for Bioengineering and BiotechnologyChina University of Petroleum (East China) No. 66, West Changjiang Road Qingdao 266580 China
| | - Wei Wu
- School of Materials Science and EngineeringCenter for Bioengineering and BiotechnologyChina University of Petroleum (East China) No. 66, West Changjiang Road Qingdao 266580 China
| | - Hao Ren
- School of Materials Science and EngineeringCenter for Bioengineering and BiotechnologyChina University of Petroleum (East China) No. 66, West Changjiang Road Qingdao 266580 China
| | - Hong‐Li Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related TechnologyCenter for Excellence in Molecular SynthesisFujian Institute of Research on the Structure of Matter 155 West Yangqiao Road Fuzhou 350002 China
| |
Collapse
|
11
|
Zang Y, Zhu H, Xue H. Design of a novel “ON-OFF” switchable enzymatic biofuel cell based on pH-sensitive PS-b-P4VP diblock copolymer. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
The introduction of the Barbier reaction into polymer chemistry. Nat Commun 2017; 8:1210. [PMID: 29084940 PMCID: PMC5662735 DOI: 10.1038/s41467-017-01472-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/20/2017] [Indexed: 11/08/2022] Open
Abstract
The Barbier reaction, a widely utilized reaction for carbon-carbon bond formation, has played important roles in modern organic chemistry for more than a century. Here, we show its successful introduction to polymer chemistry. Through one-pot Barbier polyaddition (both A2+B2 type and AB type) of monomers containing an organic halide and a benzoyl group, a series of phenylmethanol group containing polymers, including polymonophenylmethanol (PMPM), polydiphenylmethanol (PDPM), and polytriphenylmethanol (PTPM), have been synthesized. Para-PTPM exhibits interesting aggregation-induced emission, tunable thermo-responsive over a wide temperature range, sensory, luminescence enhancement of fluorescent dye in solid-state and processing properties. This significantly expands the libraries of monomer and polymer, and opens up an avenue for the design and application of functional polymer materials.
Collapse
|
13
|
Wan WM, Li SS, Liu DM, Lv XH, Sun XL. Synthesis of Electron-Deficient Borinic Acid Polymers with Multiresponsive Properties and Their Application in the Fluorescence Detection of Alizarin Red S and Electron-Rich 8-Hydroxyquinoline and Fluoride Ion: Substituent Effects. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Wen-Ming Wan
- State Key Laboratory of Heavy
Oil Processing, Centre for Bioengineering and Biotechnology, and College
of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development
Zone, Qingdao, Shandong 266580, People’s Republic of China
| | - Shun-Shun Li
- State Key Laboratory of Heavy
Oil Processing, Centre for Bioengineering and Biotechnology, and College
of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development
Zone, Qingdao, Shandong 266580, People’s Republic of China
| | - Dong-Ming Liu
- State Key Laboratory of Heavy
Oil Processing, Centre for Bioengineering and Biotechnology, and College
of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development
Zone, Qingdao, Shandong 266580, People’s Republic of China
| | - Xin-Hu Lv
- State Key Laboratory of Heavy
Oil Processing, Centre for Bioengineering and Biotechnology, and College
of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development
Zone, Qingdao, Shandong 266580, People’s Republic of China
| | - Xiao-Li Sun
- State Key Laboratory of Heavy
Oil Processing, Centre for Bioengineering and Biotechnology, and College
of Science, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao Economic Development
Zone, Qingdao, Shandong 266580, People’s Republic of China
| |
Collapse
|