1
|
GhavamiNejad A, Liu JF, Mirzaie S, Lu B, Samarikhalaj M, Giacca A, Wu XY. Catechol-based chemistry for hypoglycemia-responsive delivery of zinc-glucagon via hydrogel-based microneedle patch technology. Nat Commun 2025; 16:3124. [PMID: 40169571 PMCID: PMC11961580 DOI: 10.1038/s41467-025-58278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
Hypoglycemia is a serious and potentially life-threatening condition for people with insulin-dependent diabetes. To provide a safeguard against hypoglycemia, we introduce a "smart" microneedle (MN) patch that senses glucose levels and delivers a blood glucose-raising agent (Zinc-Glucagon (Z-GCN)) in response to hypoglycemia. Herein, we describe the use of catechol and boronic acid chemistry to design a self-crosslinkable hydrogel-based MN that stimulates the release of Z-GCN during hypoglycemia. In this design, the catechol groups bind to Z-GCN through metal-ligand complexation. At hyperglycemia, boronic acids react with glucose to generate cyclic boronate esters. As the glucose concentration decreases, the boronic acid groups dissociate and are favored over Z-GCN in binding with catechol, which promotes the release of Z-GCN. We fully characterize the fabricated MN in vitro. Moreover, we further evaluate the MN and demonstrate the in vivo glucose-responsive delivery of Z-GCN from the patch. We also show its effectiveness in preventing hypoglycemia for up to 6 h in type 1 diabetic male rats against two consecutive insulin overdose challenges. Since many proteins/peptides have a high binding affinity to metal ions, the introduced mechanism driven by the competitive binding of catechol-metal ions has great implications in drug delivery applications of various protein/peptide-based therapeutics.
Collapse
Affiliation(s)
- Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Sako Mirzaie
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Melisa Samarikhalaj
- Departments of Physiology and Medicine, Institute of Medical Science and Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Adria Giacca
- Departments of Physiology and Medicine, Institute of Medical Science and Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Klein M, Fesser P, Zechel S, Hager MD, Schubert US. Self-Healing Behavior of Metallopolymers in Complex3D-Structures Obtained by DLP-Based 3D-Printing. Chemistry 2025; 31:e202404267. [PMID: 39853790 PMCID: PMC11924990 DOI: 10.1002/chem.202404267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
This current study focusses on the investigation of the self-healing abilities of metallopolymers containing different kinds of metal complexes, which were processed by direct digital light processing (DLP) based three-dimensional (3D) printing. For this purpose, 2-phenoxyethyl acrylate is mixed with ligand-containing monomers either based on triphenylmethyl(trt)-histidine or terpyridine, respectively. Either zinc(II) or nickel(II) salts are successfully applied for a complexation of the ligand monomers in solution and, subsequently, photopolymerization is performed. The thermo-mechanical properties of the obtained metallopolymers were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) as well as dynamic mechanical thermal analysis (DMTA). Multiple damages with defined forces ranging from 20 to 1500 mN were introduced into the 3D-structures and successfully healed within 24 h at 70 °C or 120 °C, respectively without losing the structural integrity of the overall 3D-structures. Herein, excellent healing efficiencies up to 97 % were determined. Consequently, these hollow structures not only feature very good self-healing abilities but also excellent retention of the 3D-structure at and above the healing temperature.
Collapse
Affiliation(s)
- Michael Klein
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Patrick Fesser
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Martin D Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Helmholtz-Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstr. 12-14, 07443, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Helmholtz-Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstr. 12-14, 07443, Jena, Germany
- Helmholtz-Zentrum Berlin (HZB), Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| |
Collapse
|
3
|
Chen B, Debsharma T, Fenimore LM, Wang T, Chen Y, Purwanto NS, Torkelson JM. Rapidly Self-Healable and Melt-Extrudable Polyethylene Reprocessable Network Enabled with Dialkylamino Disulfide Dynamic Chemistry. Macromol Rapid Commun 2024; 45:e2400460. [PMID: 39047164 PMCID: PMC11583293 DOI: 10.1002/marc.202400460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Catalyst-free, radical-based reactive processing is used to transform low-density polyethylene (LDPE) into polyethylene covalent adaptable networks (PE CANs) using a dialkylamino disulfide crosslinker, BiTEMPS methacrylate (BTMA). Two versions of BTMA are used, BTMA-S2, with nearly exclusively disulfide bridges, and BTMA-Sn, with a mixture of oligosulfide bridges, to produce S2 PE CAN and Sn PE CAN, respectively. The two PE CANs exhibit identical crosslink densities, but the S2 PE CAN manifests faster stress relaxation, with average relaxation times ∼4.5 times shorter than those of Sn PE CAN over a 130 to 160 °C temperature range. The more rapid dynamics of the S2 PE CAN translate into a shorter compression-molding reprocessing time at 160 °C of only 5 min (vs 30 min for the Sn PE CAN) to achieve full recovery of crosslink density. Both PE CANs are melt-extrudable and exhibit full recovery within experimental uncertainty of crosslink density after extrusion. Both PE CANs are self-healable, with a crack fully repaired and the original tensile properties restored after 30 min for the S2 PE CAN or 60 min for the Sn PE CAN at a temperature slightly above the LDPE melting point and without the assistance of external forces.
Collapse
Affiliation(s)
- Boran Chen
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Tapas Debsharma
- Department of ChemistryIndian Institute of Technology KharagpurKharagpur721302India
| | - Logan M. Fenimore
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Tong Wang
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Yixuan Chen
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Nathan S. Purwanto
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - John M. Torkelson
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
| |
Collapse
|
4
|
Pruksawan S, Chong YT, Zen W, Loh TJE, Wang F. Sustainable Vat Photopolymerization-Based 3D-Printing through Dynamic Covalent Network Photopolymers. Chem Asian J 2024; 19:e202400183. [PMID: 38509002 DOI: 10.1002/asia.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Vat photopolymerization (VPP) based three-dimensional (3D) printing, including stereolithography (SLA) and digital light projection (DLP), is known for producing intricate, high-precision prototypes with superior mechanical properties. However, the challenge lies in the non-recyclability of covalently crosslinked thermosets used in these printing processes, limiting the sustainable utilization of printed prototypes. This review paper examines the recently explored avenue of VPP 3D-printed dynamic covalent network (DCN) polymers, which enable reversible crosslinks and allow for the reprocessing of printed prototypes, promoting sustainability. These reversible crosslinks facilitate the rearrangement of crosslinked polymers, providing printed polymers with chemical/physical recyclability, self-healing capabilities, and degradability. While various mechanisms for DCN polymer systems are explored, this paper focuses solely on photocurable polymers to highlight their potential to revolutionize the sustainability of VPP 3D printing.
Collapse
Affiliation(s)
- Sirawit Pruksawan
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yi Ting Chong
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Wylma Zen
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- College of Design and Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore, 117583, Republic of Singapore
| | - Terence Jun En Loh
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Nanyang Polytechnic, 180 Ang Mo Kio Avenue 8, Singapore, 569830, Republic of Singapore
| | - FuKe Wang
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| |
Collapse
|
5
|
Gao J, Cong X, Tang Y, Guo J. Movable type printing-inspired information storage enabled by self-healable fluorescent liquid crystal elastomers. SCIENCE CHINA MATERIALS 2024; 67:355-362. [DOI: 10.1007/s40843-023-2694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2025]
|
6
|
Yi H, Gao J, Lin S, Ma J, Guo J. Photoresponsive α-cyanostilbene-containing fluorescent liquid crystal polymers based on ring-opening metathesis polymerization for information storage and encryption. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
E7 nematic liquid crystal encapsulated in a polymeric photonic crystal. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|