1
|
Tomai XH, Nguyen HT, Nguyen Thi TT, Nguyen TA, Nguyen TV. Prenatal diagnosis of non-typical Chiari malformation type I associated with de novo Nuclear Factor I A gene mutation: a case report. J Med Case Rep 2024; 18:90. [PMID: 38347602 PMCID: PMC10863238 DOI: 10.1186/s13256-024-04361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Chiari malformation is one of the most common Central nervous system (CNS) abnormalities that can be detected in routine fetal scanning. Chiari malformation type I (CMI) is a congenital defect characterized by a displacement of the cerebellar tonsils through the foramen magnum. The etiology of CMI has not been well established and suggested having multifactorial contributions, especially genetic deletion. Clinical characteristics of this anomaly may express in different symptoms from neurological dysfunction and/or skeletal abnormalities in the later age, but it is rarely reported in pregnancy. CASE PRESENTATION We present a case in which the Chiari malformation type I was diagnosed with comorbidities of facial anomalies (flatting forehead and micrognathia) and muscular-skeletal dysmorphologies (clenched hands and clubfeet) at the 24+6 weeks of gestation in a 29-year-old Vietnamese pregnant woman. The couple refused an amniocentesis, and the pregnancy was followed up every 4 weeks until a spontaneous delivery occurred at 38 weeks. The newborn had a severe asphyxia and seizures at birth required to have an emergency resuscitation at delivery. He is currently being treated in the intensive neonatal care unit. He carries the novel heterozygous NFIA gene mutation confirmed after birth. No further postnatal malformation detected. CONCLUSION CMI may only represent with facial abnormalities and muscle-skeletal malformations at the early stage of pregnancy, which may also alert an adverse outcome. A novel heterozygous NFIA gene mutation identified after birth helps to confirm prenatal diagnosis of CMI and to provide an appropriate consultation.
Collapse
Affiliation(s)
- Xuan-Hong Tomai
- University of Alberta, Alberta, Canada
- University of Nam Can Tho, Can Tho, Vietnam
| | - Huu-Trung Nguyen
- University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam. *
- University Medical Center, Branch 2, Ho Chi Minh City, Vietnam. *
| | | | - Tuan-Anh Nguyen
- University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
- University Medical Center, Branch 2, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
2
|
Paschell P, Laukaitis C. Significant phenotypic variability in a multigenerational family with an NFIA missense mutation: Case series and review of the literature. Clin Case Rep 2024; 12:e8307. [PMID: 38188845 PMCID: PMC10769898 DOI: 10.1002/ccr3.8307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/18/2023] [Indexed: 01/09/2024] Open
Abstract
We report the first multigenerational family with NFIA-related disorder from a missense variant. This case highlights the condition's phenotypic variability and the need for genetic testing when an initial diagnosis fails to explain all symptoms.
Collapse
Affiliation(s)
- Peyton Paschell
- Carle Illinois College of MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | - Christina Laukaitis
- Carle Illinois College of MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Carle Foundation HospitalUrbanaIllinoisUSA
| |
Collapse
|
3
|
Dini G, Verrotti A, Gorello P, Soliani L, Cordelli DM, Antona V, Mencarelli A, Colavito D, Prontera P. NFIA haploinsufficiency: case series and literature review. Front Pediatr 2023; 11:1292654. [PMID: 37915986 PMCID: PMC10616848 DOI: 10.3389/fped.2023.1292654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Background NFIA-related disorder (OMIM #613735) is an autosomal dominant neurodevelopmental disorder characterized by a variable degree of cognitive impairment and non-specific dysmorphic features. To date, fewer than thirty patients affected by this disorder have been described. Methods Our study included three children with NFIA haploinsufficiency recruited from three medical genetics centers. Clinical presentations were recorded on a standardized case report form. Results All patients presented a variable degree of intellectual disability. None of the individuals in our cohort had urinary tract malformations. Three novel mutations, c.344G>A, c.261T>G, and c.887_888del are reported here. Conclusion NFIA haploinsufficiency can be suspected through careful observation of specific dysmorphisms, including macrocephaly and craniofacial abnormalities. Instrumental tests such as MRI and renal ultrasound provide further diagnostic clues, while genetic testing can confirm the diagnosis.
Collapse
Affiliation(s)
- Gianluca Dini
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | | | - Paolo Gorello
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luca Soliani
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC di Neuropsichiatria Dell'Età Pediatrica, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, Bologna, Italy
| | - Duccio Maria Cordelli
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOC di Neuropsichiatria Dell'Età Pediatrica, Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), Università di Bologna, Bologna, Italy
| | - Vincenzo Antona
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D'Alessandro,” University of Palermo, Palermo, Italy
| | - Amedea Mencarelli
- Medical Genetics Unit, S. Maria della Misericordia Hospital, Perugia, Italy
| | | | - Paolo Prontera
- Medical Genetics Unit, S. Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
4
|
Phenotypic Spectrum of NFIA Haploinsufficiency: Two Additional Cases and Review of the Literature. Genes (Basel) 2022; 13:genes13122249. [PMID: 36553517 PMCID: PMC9777632 DOI: 10.3390/genes13122249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
The NFIA (nuclear factor I/A) gene encodes for a transcription factor belonging to the nuclear factor I family and has key roles in various embryonic differentiation pathways. In humans, NFIA is the major contributor to the phenotypic traits of "Chromosome 1p32p31 deletion syndrome". We report on two new cases with deletions involving NFIA without any other pathogenic protein-coding gene alterations. A cohort of 24 patients with NFIA haploinsufficiency as the sole anomaly was selected by reviewing the literature and public databases in order to analyze all clinical features reported and their relative frequencies. This process was useful because it provided an overall picture of the phenotypic outcome of NFIA haploinsufficiency and helped to define a cluster of phenotypic traits that can facilitate clinicians in identifying affected patients. NFIA haploinsufficiency can be suspected by a careful observation of the dysmorphisms (macrocephaly, craniofacial, and first-finger anomalies), and this potential diagnosis is strengthened by the presence of intellectual and developmental disabilities or other neurodevelopmental disorders. Further clues of NFIA haploinsufficiency can be provided by instrumental tests such as MRI and kidney urinary tract ultrasound and confirmed by genetic testing.
Collapse
|
5
|
Colijn MA, Hrynchak M, Hrazdil CT, Willaeys V, White RF, Stowe RM. A 1p31.3 deletion encompassing the nuclear factor 1A gene presenting as possible temporal lobe epilepsy in association with schizoaffective disorder. Neurocase 2022; 28:382-387. [PMID: 36209511 DOI: 10.1080/13554794.2022.2132869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Chromosome 1p32-p31 deletion syndrome, which is characterized by a variety of neurodevelopmental abnormalities, is thought to occur as a result of nuclear factor 1A (NFIA) haploinsufficiency. We present a case of a right-handed 40-year-old female with a 1p31.3 deletion, who exhibited numerous common features of this syndrome, in addition to treatment resistant schizoaffective disorder and possible temporal lobe epilepsy, making her presentation unique. While neither psychosis nor temporal lobe epilepsy has been described in this syndrome previously, these conditions likely occurred in our patient as a result of NFIA haploinsufficiency.
Collapse
Affiliation(s)
- Mark A Colijn
- Department of Psychiatry, The University of Calgary, Calgary, AB, Canada
| | - Monica Hrynchak
- Molecular Cytogenetic Laboratory, Royal Columbian Hospital, The University of British Columbia, New Westminster, BC, Canada
| | - Chantelle T Hrazdil
- Division of Neurology, Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Veerle Willaeys
- BC Psychosis Program, British Columbia Mental Health & Substance Use Services, Vancouver, BC, Canada
| | - Randall F White
- BC Psychosis Program, British Columbia Mental Health & Substance Use Services, Vancouver, BC, Canada.,Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada
| | - Robert M Stowe
- BC Neuropsychiatry Program, Departments of Psychiatry and Neurology (Medicine), and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Ogura Y, Uehara T, Ujibe K, Yoshihashi H, Yamada M, Suzuki H, Takenouchi T, Kosaki K, Hirata H. The p.Thr395Met missense variant of NFIA found in a patient with intellectual disability is a defective variant. Am J Med Genet A 2022; 188:1184-1192. [PMID: 35018717 DOI: 10.1002/ajmg.a.62638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 12/17/2022]
Abstract
Nuclear factor one A (NFIA) is a transcription factor that regulates the development of the central nervous system. Haploinsufficiency of the NFIA gene causes NFIA-related disorder, which includes brain abnormalities and intellectual disability, with or without urinary tract defects. Intragenic deletions, nonsense variants, frameshift variants, and missense variants in one allele of the NFIA gene have been reported to cause various neurological and urogenital symptoms. Here we report a 10-year-old male patient with developmental delay, coarctation of the aorta, and distinctive facial features. Exome analysis identified a rare de novo heterozygous missense variant p.Thr395Met in NFIA. We employed zebrafish as a model organism in our NFIA analysis and found that nfia-/- zebrafish initially showed a loss of commissural axons in the brain, and eventually underwent growth retardation resulting in premature death. Impairment of the commissural neurons in nfia-/- zebrafish embryos could be restored by the expression of wild-type human NFIA protein, but not of mutant human protein harboring the p.Thr395Met substitution, indicating that this variant affects the function of NFIA protein. Taken together, we suggest that the p.Thr395Met allele in the NFIA gene is relevant to the pathogenesis of NFIA-related disorder.
Collapse
Affiliation(s)
- Yurie Ogura
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.,Department of Clinical Genetics, Aichi Developmental Disability Center Central Hospital, Aichi, Japan
| | - Kota Ujibe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Hiroshi Yoshihashi
- Department of Clinical Genetics, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| |
Collapse
|
7
|
Uehara T, Sanuki R, Ogura Y, Yokoyama A, Yoshida T, Futagawa H, Yoshihashi H, Yamada M, Suzuki H, Takenouchi T, Matsubara K, Hirata H, Kosaki K, Takano‐Shimizu T. Recurrent NFIA K125E substitution represents a loss-of-function allele: Sensitive in vitro and in vivo assays for nontruncating alleles. Am J Med Genet A 2021; 185:2084-2093. [PMID: 33973697 PMCID: PMC8251549 DOI: 10.1002/ajmg.a.62226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/09/2023]
Abstract
Nuclear factor I A (NFIA) is a transcription factor that belongs to the NFI family. Truncating variants or intragenic deletion of the NFIA gene are known to cause the human neurodevelopmental disorder known as NFIA‐related disorder, but no patient heterozygous for a missense mutation has been reported. Here, we document two unrelated patients with typical phenotypic features of the NFIA‐related disorder who shared a missense variant p.Lys125Glu (K125E) in the NFIA gene. Patient 1 was a 6‐year‐old female with global developmental delay, corpus callosum anomaly, macrocephaly, and dysmorphic facial features. Patient 2 was a 14‐month‐old male with corpus callosum anomaly and macrocephaly. By using Drosophila and zebrafish models, we functionally evaluated the effect of the K125E substitution. Ectopic expression of wild‐type human NFIA in Drosophila caused developmental defects such as eye malformation and premature death, while that of human NFIA K125E variant allele did not. nfia‐deficient zebrafish embryos showed defects of midline‐crossing axons in the midbrain/hindbrain boundary. This impairment of commissural neurons was rescued by expression of wild‐type human NFIA, but not by that of mutant variant harboring K125E substitution. In accordance with these in vivo functional analyses, we showed that the K125E mutation impaired the transcriptional regulation of HES1 promoter in cultured cells. Taken together, we concluded that the K125E variant in the NFIA gene is a loss‐of‐function mutation.
Collapse
Affiliation(s)
- Tomoko Uehara
- Center for Medical GeneticsKeio University School of MedicineTokyoJapan
| | - Rikako Sanuki
- Advanced Insect Research Promotion CenterKyoto Institute of TechnologyKyotoJapan
| | - Yurie Ogura
- Department of Chemistry and Biological ScienceCollege of Science and Engineering, Aoyama Gakuin UniversitySagamiharaKanagawaJapan
| | - Atsushi Yokoyama
- Department of PediatricsKyoto University Graduate School of MedicineTokyoJapan
| | - Takeshi Yoshida
- Department of PediatricsKyoto University Graduate School of MedicineTokyoJapan
| | - Hiroshi Futagawa
- Department of GeneticsTokyo Metropolitan Children's Medical CenterTokyoJapan
| | - Hiroshi Yoshihashi
- Department of GeneticsTokyo Metropolitan Children's Medical CenterTokyoJapan
| | - Mamiko Yamada
- Center for Medical GeneticsKeio University School of MedicineTokyoJapan
| | - Hisato Suzuki
- Center for Medical GeneticsKeio University School of MedicineTokyoJapan
| | | | - Kohei Matsubara
- Advanced Insect Research Promotion CenterKyoto Institute of TechnologyKyotoJapan
| | - Hiromi Hirata
- Department of Chemistry and Biological ScienceCollege of Science and Engineering, Aoyama Gakuin UniversitySagamiharaKanagawaJapan
| | - Kenjiro Kosaki
- Center for Medical GeneticsKeio University School of MedicineTokyoJapan
| | | |
Collapse
|
8
|
Zhang Y, Lin CM, Zheng XL, Abuduxikuer K. A novel NFIA gene nonsense mutation in a Chinese patient with macrocephaly, corpus callosum hypoplasia, developmental delay, and dysmorphic features. Mol Genet Genomic Med 2020; 8:e1492. [PMID: 32926563 PMCID: PMC7667355 DOI: 10.1002/mgg3.1492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND NFIA gene (OMIM*600727) has been shown to be associated with a syndrome of central nervous system malformations (corpus callosum and ventriculomegaly) with or without urinary tract defects(BRMUTD) (OMIM#613735) with a low incidence. METHODS AND RESULTS: We presented the clinical data of a 3-month-old Chinese infant with clinical features such as thin corpus callosum, ventriculomegaly, development delay, and dysmorphic features (macrocephaly, hypertelorism, slightly pointed chin, broad forehead, and large ears). Genomic DNA was extracted for Trio Whole Exome Sequencing. Preliminary genetic tests revealed one de novo heterozygous nonsense mutation c.220 C>T (p.Arg74Ter) of the NFIA gene (NM_005595). CONCLUSION Genetic DNA sequencing is a crucial method for diagnosing BRMUTD. This approach enriches the genotype and spectrum of BRMUTD syndrome and the outcome of the patient.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Neurology, Xiamen Children's Hospital, Fujian, China
| | - Cai Mei Lin
- Department of Neurology, Xiamen Children's Hospital, Fujian, China
| | - Xiao Lan Zheng
- Department of Neurology, Xiamen Children's Hospital, Fujian, China
| | | |
Collapse
|