1
|
Zhou XA, Jiang Y, Gomez-Cid L, Yu X. Elucidating hemodynamics and neuro-glio-vascular signaling using rodent fMRI. Trends Neurosci 2025; 48:227-241. [PMID: 39843335 PMCID: PMC11903151 DOI: 10.1016/j.tins.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/09/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025]
Abstract
Despite extensive functional mapping studies using rodent functional magnetic resonance imaging (fMRI), interpreting the fMRI signals in relation to their neuronal origins remains challenging due to the hemodynamic nature of the response. Ultra high-resolution rodent fMRI, beyond merely enhancing spatial specificity, has revealed vessel-specific hemodynamic responses, highlighting the distinct contributions of intracortical arterioles and venules to fMRI signals. This 'single-vessel' fMRI approach shifts the paradigm of rodent fMRI, enabling its integration with other neuroimaging modalities to investigate neuro-glio-vascular (NGV) signaling underlying a variety of brain dynamics. Here, we review the emerging trend of combining multimodal fMRI with opto/chemogenetic neuromodulation and genetically encoded biosensors for cellular and circuit-specific recording, offering unprecedented opportunities for cross-scale brain dynamic mapping in rodent models.
Collapse
Affiliation(s)
- Xiaoqing Alice Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Lidia Gomez-Cid
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
2
|
Zhao D, Hu M, Liu S. Glial cells in the mammalian olfactory bulb. Front Cell Neurosci 2024; 18:1426094. [PMID: 39081666 PMCID: PMC11286597 DOI: 10.3389/fncel.2024.1426094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
The mammalian olfactory bulb (OB), an essential part of the olfactory system, plays a critical role in odor detection and neural processing. Historically, research has predominantly focused on the neuronal components of the OB, often overlooking the vital contributions of glial cells. Recent advancements, however, underscore the significant roles that glial cells play within this intricate neural structure. This review discus the diverse functions and dynamics of glial cells in the mammalian OB, mainly focused on astrocytes, microglia, oligodendrocytes, olfactory ensheathing cells, and radial glia cells. Each type of glial contributes uniquely to the OB's functionality, influencing everything from synaptic modulation and neuronal survival to immune defense and axonal guidance. The review features their roles in maintaining neural health, their involvement in neurodegenerative diseases, and their potential in therapeutic applications for neuroregeneration. By providing a comprehensive overview of glial cell types, their mechanisms, and interactions within the OB, this article aims to enhance our understanding of the olfactory system's complexity and the pivotal roles glial cells play in both health and disease.
Collapse
Affiliation(s)
| | | | - Shaolin Liu
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, Department of Biomedical Sciences, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| |
Collapse
|
3
|
Miao X, Paez AG, Rajan S, Cao D, Liu D, Pantelyat AY, Rosenthal LI, van Zijl PCM, Bassett SS, Yousem DM, Kamath V, Hua J. Functional Activities Detected in the Olfactory Bulb and Associated Olfactory Regions in the Human Brain Using T2-Prepared BOLD Functional MRI at 7T. Front Neurosci 2021; 15:723441. [PMID: 34588949 PMCID: PMC8476065 DOI: 10.3389/fnins.2021.723441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Olfaction is a fundamental sense that plays a vital role in daily life in humans, and can be altered in neuropsychiatric and neurodegenerative diseases. Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) using conventional echo-planar-imaging (EPI) based sequences can be challenging in brain regions important for olfactory processing, such as the olfactory bulb (OB) and orbitofrontal cortex, mainly due to the signal dropout and distortion artifacts caused by large susceptibility effects from the sinonasal cavity and temporal bone. To date, few studies have demonstrated successful fMRI in the OB in humans. T2-prepared (T2prep) BOLD fMRI is an alternative approach developed especially for performing fMRI in regions affected by large susceptibility artifacts. The purpose of this technical study is to evaluate T2prep BOLD fMRI for olfactory functional experiments in humans. Olfactory fMRI scans were performed on 7T in 14 healthy participants. T2prep BOLD showed greater sensitivity than GRE EPI BOLD in the OB, orbitofrontal cortex and the temporal pole. Functional activation was detected using T2prep BOLD in the OB and associated olfactory regions. Habituation effects and a bi-phasic pattern of fMRI signal changes during olfactory stimulation were observed in all regions. Both positively and negatively activated regions were observed during olfactory stimulation. These signal characteristics are generally consistent with literature and showed a good intra-subject reproducibility comparable to previous human BOLD fMRI studies. In conclusion, the methodology demonstrated in this study holds promise for future olfactory fMRI studies in the OB and other brain regions that suffer from large susceptibility artifacts.
Collapse
Affiliation(s)
- Xinyuan Miao
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Adrian G Paez
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Suraj Rajan
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Di Cao
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Dapeng Liu
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Alex Y Pantelyat
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Liana I Rosenthal
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Peter C M van Zijl
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Susan S Bassett
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - David M Yousem
- Department of Radiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jun Hua
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
4
|
Sanganahalli BG, Baker KL, Thompson GJ, Herman P, Shepherd GM, Verhagen JV, Hyder F. Orthonasal versus retronasal glomerular activity in rat olfactory bulb by fMRI. Neuroimage 2020; 212:116664. [PMID: 32087375 DOI: 10.1016/j.neuroimage.2020.116664] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/22/2020] [Accepted: 02/16/2020] [Indexed: 02/05/2023] Open
Abstract
Odorants can reach olfactory receptor neurons (ORNs) by two routes: orthonasally, when volatiles enter the nasal cavity during inhalation/sniffing, and retronasally, when food volatiles released in the mouth pass into the nasal cavity during exhalation/eating. Previous work in humans has shown that both delivery routes of the same odorant can evoke distinct perceptions and patterns of neural responses in the brain. Each delivery route is known to influence specific responses across the dorsal region of the glomerular sheet in the olfactory bulb (OB), but spatial distributions across the entire glomerular sheet throughout the whole OB remain largely unexplored. We used functional MRI (fMRI) to measure and compare activations across the entire glomerular sheet in rat OB resulting from both orthonasal and retronasal stimulations of the same odors. We observed reproducible fMRI activation maps of the whole OB during both orthonasal and retronasal stimuli. However, retronasal stimuli required double the orthonasal odor concentration for similar response amplitudes. Regardless, both the magnitude and spatial extent of activity were larger during orthonasal versus retronasal stimuli for the same odor. Orthonasal and retronasal response patterns show overlap as well as some route-specific dominance. Orthonasal maps were dominant in dorsal-medial regions, whereas retronasal maps were dominant in caudal and lateral regions. These different whole OB encodings likely underlie differences in odor perception between these biologically important routes for odorants among mammals. These results establish the relationships between orthonasal and retronasal odor representations in the rat OB.
Collapse
Affiliation(s)
- Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| | - Keeley L Baker
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT, USA
| | - Garth J Thompson
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - Justus V Verhagen
- Department of Neuroscience, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
A methodological investigation of a flexible surface MRI coil to obtain functional signals from the human olfactory bulb. J Neurosci Methods 2020; 335:108624. [PMID: 32032715 DOI: 10.1016/j.jneumeth.2020.108624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Mammalian olfaction begins with transduction in olfactory receptors, continues with extensive processing in the olfactory bulb, and culminates in cortical representation. Most rodent studies on the functional neuroanatomy of olfaction have concentrated on the olfactory bulb, yet whether this structure is tuned only to basic chemical features of odorants or also to higher-order perceptual features is unclear. NEW METHOD Whereas studies of the human brain can typically uncover involvement of higher-order feature extraction, this has not been possible in the case of the olfactory bulb, inaccessible to fMRI. The present study examined whether a novel method of acquisition using a facial coil could overcome this limitation. RESULTS A series of experiments provided preliminary evidence of odor-driven responses in the human olfactory bulb, and found that these responses differed between individuals. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS The present preliminary technical achievement renders possible to design novel human odor fMRI studies by considering the olfactory system from the olfactory bulb to associative areas.
Collapse
|
6
|
Chen X, Tong C, Han Z, Zhang K, Bo B, Feng Y, Liang Z. Sensory evoked fMRI paradigms in awake mice. Neuroimage 2020; 204:116242. [DOI: 10.1016/j.neuroimage.2019.116242] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/08/2019] [Accepted: 10/02/2019] [Indexed: 01/25/2023] Open
|
7
|
Mesoscopic and microscopic imaging of sensory responses in the same animal. Nat Commun 2019; 10:1110. [PMID: 30846689 PMCID: PMC6405955 DOI: 10.1038/s41467-019-09082-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/20/2019] [Indexed: 01/09/2023] Open
Abstract
Imaging based on blood flow dynamics is widely used to study sensory processing. Here we investigated the extent to which local neuronal and capillary responses (two-photon microscopy) are correlated to mesoscopic responses detected with fast ultrasound (fUS) and BOLD-fMRI. Using a specialized chronic olfactory bulb preparation, we report that sequential imaging of the same mouse allows quantitative comparison of odour responses, imaged at both microscopic and mesoscopic scales. Under these conditions, functional hyperaemia occurred at the threshold of neuronal activation and fUS-CBV signals could be detected at the level of single voxels with activation maps varying according to blood velocity. Both neuronal and vascular responses increase non-linearly as a function of odour concentration, whereas both microscopic and mesoscopic vascular responses are linearly correlated to local neuronal calcium. These data establish strengths and limits of mesoscopic imaging techniques to report neural activity. Neuronal activity leads to a local increase in blood flow and volume, a process termed hyperaemia. Here, the authors employ multiple imaging approaches of neuronal and vascular activity at varying resolution to delineate the spatiotemporal dynamics of neurovascular coupling evoked by odours in the olfactory bulb.
Collapse
|
8
|
Activity Patterns Elicited by Airflow in the Olfactory Bulb and Their Possible Functions. J Neurosci 2017; 37:10700-10711. [PMID: 28972124 DOI: 10.1523/jneurosci.2210-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/23/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022] Open
Abstract
Olfactory sensory neurons (OSNs) can sense both odorants and airflows. In the olfactory bulb (OB), the coding of odor information has been well studied, but the coding of mechanical stimulation is rarely investigated. Unlike odor-sensing functions of OSNs, the airflow-sensing functions of OSNs are also largely unknown. Here, the activity patterns elicited by mechanical airflow in male rat OBs were mapped using fMRI and correlated with local field potential recordings. In an attempt to reveal possible functions of airflow sensing, the relationship between airflow patterns and physiological parameters was also examined. We found the following: (1) the activity pattern in the OB evoked by airflow in the nasal cavity was more broadly distributed than patterns evoked by odors; (2) the pattern intensity increases with total airflow, while the pattern topography with total airflow remains almost unchanged; and (3) the heart rate, spontaneous respiratory rate, and electroencephalograph power in the β band decreased with regular mechanical airflow in the nasal cavity. The mapping results provide evidence that the signals elicited by mechanical airflow in OSNs are transmitted to the OB, and that the OB has the potential to code and process mechanical information. Our functional data indicate that airflow rhythm in the olfactory system can regulate the physiological and brain states, providing an explanation for the effects of breath control in meditation, yoga, and Taoism practices.SIGNIFICANCE STATEMENT Presentation of odor information in the olfactory bulb has been well studied, but studies about breathing features are rare. Here, using blood oxygen level-dependent functional MRI for the first time in such an investigation, we explored the global activity patterns in the rat olfactory bulb elicited by airflow in the nasal cavity. We found that the activity pattern elicited by airflow is broadly distributed, with increasing pattern intensity and similar topography under increasing total airflow. Further, heart rate, spontaneous respiratory rate in the lung, and electroencephalograph power in the β band decreased with regular airflow in the nasal cavity. Our study provides further understanding of the airflow map in the olfactory bulb in vivo, and evidence for the possible mechanosensitivity functions of olfactory sensory neurons.
Collapse
|
9
|
Zhao F, Wang X, Zariwala HA, Uslaner JM, Houghton AK, Evelhoch JL, Hostetler E, Winkelmann CT, Hines CD. fMRI study of the role of glutamate NMDA receptor in the olfactory adaptation in rats: Insights into cellular and molecular mechanisms of olfactory adaptation. Neuroimage 2017; 149:348-360. [DOI: 10.1016/j.neuroimage.2017.01.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/23/2016] [Accepted: 01/28/2017] [Indexed: 11/16/2022] Open
|
10
|
DiNuzzo M, Mascali D, Moraschi M, Bussu G, Maraviglia B, Mangia S, Giove F. Temporal Information Entropy of the Blood-Oxygenation Level-Dependent Signals Increases in the Activated Human Primary Visual Cortex. FRONTIERS IN PHYSICS 2017; 5:7. [PMID: 28451586 PMCID: PMC5404702 DOI: 10.3389/fphy.2017.00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Time-domain analysis of blood-oxygenation level-dependent (BOLD) signals allows the identification of clusters of voxels responding to photic stimulation in primary visual cortex (V1). However, the characterization of information encoding into temporal properties of the BOLD signals of an activated cluster is poorly investigated. Here, we used Shannon entropy to determine spatial and temporal information encoding in the BOLD signal within the most strongly activated area of the human visual cortex during a hemifield photic stimulation. We determined the distribution profile of BOLD signals during epochs at rest and under stimulation within small (19-121 voxels) clusters designed to include only voxels driven by the stimulus as highly and uniformly as possible. We found consistent and significant increases (2-4% on average) in temporal information entropy during activation in contralateral but not ipsilateral V1, which was mirrored by an expected loss of spatial information entropy. These opposite changes coexisted with increases in both spatial and temporal mutual information (i.e., dependence) in contralateral V1. Thus, we showed that the first cortical stage of visual processing is characterized by a specific spatiotemporal rearrangement of intracluster BOLD responses. Our results indicate that while in the space domain BOLD maps may be incapable of capturing the functional specialization of small neuronal populations due to relatively low spatial resolution, some information encoding may still be revealed in the temporal domain by an increase of temporal information entropy.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Daniele Mascali
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Marta Moraschi
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
- Fondazione Santa Lucia (IRCCS), Rome, Italy
| | - Giorgia Bussu
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Bruno Maraviglia
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
- Fondazione Santa Lucia (IRCCS), Rome, Italy
| | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Federico Giove
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
- Fondazione Santa Lucia (IRCCS), Rome, Italy
| |
Collapse
|
11
|
Goense J, Bohraus Y, Logothetis NK. fMRI at High Spatial Resolution: Implications for BOLD-Models. Front Comput Neurosci 2016; 10:66. [PMID: 27445782 PMCID: PMC4923185 DOI: 10.3389/fncom.2016.00066] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 06/15/2016] [Indexed: 11/13/2022] Open
Abstract
As high-resolution functional magnetic resonance imaging (fMRI) and fMRI of cortical layers become more widely used, the question how well high-resolution fMRI signals reflect the underlying neural processing, and how to interpret laminar fMRI data becomes more and more relevant. High-resolution fMRI has shown laminar differences in cerebral blood flow (CBF), volume (CBV), and neurovascular coupling. Features and processes that were previously lumped into a single voxel become spatially distinct at high resolution. These features can be vascular compartments such as veins, arteries, and capillaries, or cortical layers and columns, which can have differences in metabolism. Mesoscopic models of the blood oxygenation level dependent (BOLD) response therefore need to be expanded, for instance, to incorporate laminar differences in the coupling between neural activity, metabolism and the hemodynamic response. Here we discuss biological and methodological factors that affect the modeling and interpretation of high-resolution fMRI data. We also illustrate with examples from neuropharmacology and the negative BOLD response how combining BOLD with CBF- and CBV-based fMRI methods can provide additional information about neurovascular coupling, and can aid modeling and interpretation of high-resolution fMRI.
Collapse
Affiliation(s)
- Jozien Goense
- Department of Psychology, Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | - Yvette Bohraus
- Department of Physiology of Cognitive Processes, Max-Planck Institute for Biological Cybernetics Tübingen, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max-Planck Institute for Biological CyberneticsTübingen, Germany; Divison of Imaging Science and Biomedical Engineering, University of ManchesterManchester, UK
| |
Collapse
|
12
|
Activity in the rat olfactory cortex is correlated with behavioral response to odor: a microPET study. Brain Struct Funct 2016; 222:577-586. [PMID: 27194619 DOI: 10.1007/s00429-016-1235-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
Abstract
How olfactory cortical areas interpret odor maps evoked in the olfactory bulb and translate odor information into behavioral responses is still largely unknown. Indeed, rat olfactory cortices encompass an extensive network located in the ventral part of the brain, thus complicating the use of invasive functional methods. In vivo imaging techniques that were previously developed for brain activation studies in humans have been adapted for use in rodents and facilitate the non-invasive mapping of the whole brain. In this study, we report an initial series of experiments designed to demonstrate that microPET is a powerful tool to investigate the neural processes underlying odor-induced behavioral response in a large-scale olfactory neuronal network. After the intravenous injection of [18F]Fluorodeoxyglucose ([18F]FDG), awake rats were placed in a ventilated Plexiglas cage for 50 min, where odorants were delivered every 3 min for a 10-s duration in a random order. Individual behavioral responses to odor were classified into categories ranging from 1 (head movements associated with a short sniffing period in response to a few stimulations) to 4 (a strong reaction, including rearing, exploring and sustained sniffing activity, to several stimulations). After [18F]FDG uptake, rats were anesthetized to perform a PET scan. This experimental session was repeated 2 weeks later using the same animals without odor stimulation to assess the baseline level of activation in each individual. Two voxel-based statistical analyses (SPM 8) were performed: (1) a two-sample paired t test analysis contrasting baseline versus odor scan and (2) a correlation analysis between voxel FDG activity and behavioral score. As expected, the contrast analysis between baseline and odor session revealed activations in various olfactory cortical areas. Significant increases in glucose metabolism were also observed in other sensory cortical areas involved in whisker movement and in several modules of the cerebellum involved in motor and sensory function. Correlation analysis provided new insight into these results. [18F]FDG uptake was correlated with behavioral response in a large part of the anterior piriform cortex and in some lobules of the cerebellum, in agreement with the previous data showing that both piriform cortex and cerebellar activity in humans can be driven by sniffing activity, which was closely related to the high behavioral scores observed in our experiment. The present data demonstrate that microPET imaging offers an original perspective for rat behavioral neuroimaging.
Collapse
|
13
|
Watanabe H, Rajagopalan UM, Nakamichi Y, Igarashi KM, Kadono H, Tanifuji M. Functional optical coherence tomography of rat olfactory bulb with periodic odor stimulation. BIOMEDICAL OPTICS EXPRESS 2016; 7:841-54. [PMID: 27231593 PMCID: PMC4866460 DOI: 10.1364/boe.7.000841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 05/30/2023]
Abstract
In rodent olfactory bulb (OB), optical intrinsic signal imaging (OISI) is commonly used to investigate functional maps to odorant stimulations. However, in such studies, the spatial resolution in depth direction (z-axis) is lost because of the integration of light from different depths. To solve this problem, we propose functional optical coherence tomography (fOCT) with periodic stimulation and continuous recording. In fOCT experiments of in vivo rat OB, propionic acid and m-cresol were used as odor stimulus presentations. Such a periodic stimulation enabled us to detect the specific odor-responses from highly scattering brain tissue. Swept source OCT operating at a wavelength of 1334 nm and a frequency of 20 kHz, was employed with theoretical depth and lateral resolutions of 6.7 μm and 15.4 μm, respectively. We succeeded in visualizing 2D cross sectional fOCT map across the neural layer structure of OCT in vivo. The detected fOCT signals corresponded to a few glomeruli of the medial and lateral parts of dorsal OB. We also obtained 3D fOCT maps, which upon integration across z-axis agreed well with OISI results. We expect such an approach to open a window for investigating and possibly addressing toward inter/intra-layer connections at high resolutions in the future.
Collapse
Affiliation(s)
- Hideyuki Watanabe
- Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
- Course of Health Science, Graduate school of Medicine, Osaka University, 1-7 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Uma Maheswari Rajagopalan
- Department of Food Life Sciences, Faculty of Food Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Ora-gun, Gunma, 374-0193, Japan
| | - Yu Nakamichi
- Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| | - Kei M. Igarashi
- Department of Anatomy and Neurobiology School of Medicine University of California, Irvine Hall Room 112, California 92697, USA
| | - Hirofumi Kadono
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-city, Saitama, 338-08570, Japan
| | - Manabu Tanifuji
- Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-city, Saitama, 351-0198, Japan
| |
Collapse
|
14
|
Sanganahalli BG, Rebello MR, Herman P, Papademetris X, Shepherd GM, Verhagen JV, Hyder F. Comparison of glomerular activity patterns by fMRI and wide-field calcium imaging: Implications for principles underlying odor mapping. Neuroimage 2015; 126:208-18. [PMID: 26631819 DOI: 10.1016/j.neuroimage.2015.11.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022] Open
Abstract
Functional imaging signals arise from distinct metabolic and hemodynamic events at the neuropil, but how these processes are influenced by pre- and post-synaptic activities need to be understood for quantitative interpretation of stimulus-evoked mapping data. The olfactory bulb (OB) glomeruli, spherical neuropil regions with well-defined neuronal circuitry, can provide insights into this issue. Optical calcium-sensitive fluorescent dye imaging (OICa(2+)) reflects dynamics of pre-synaptic input to glomeruli, whereas high-resolution functional magnetic resonance imaging (fMRI) using deoxyhemoglobin contrast reveals neuropil function within the glomerular layer where both pre- and post-synaptic activities contribute. We imaged odor-specific activity patterns of the dorsal OB in the same anesthetized rats with fMRI and OICa(2+) and then co-registered the respective maps to compare patterns in the same space. Maps by each modality were very reproducible as trial-to-trial patterns for a given odor, overlapping by ~80%. Maps evoked by ethyl butyrate and methyl valerate for a given modality overlapped by ~80%, suggesting activation of similar dorsal glomerular networks by these odors. Comparison of maps generated by both methods for a given odor showed ~70% overlap, indicating similar odor-specific maps by each method. These results suggest that odor-specific glomerular patterns by high-resolution fMRI primarily tracks pre-synaptic input to the OB. Thus combining OICa(2+) and fMRI lays the framework for studies of OB processing over a range of spatiotemporal scales, where OICa(2+) can feature the fast dynamics of dorsal glomerular clusters and fMRI can map the entire glomerular sheet in the OB.
Collapse
Affiliation(s)
- Basavaraju G Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| | - Michelle R Rebello
- Department of Neurobiology, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT, USA
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Xenophon Papademetris
- Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Justus V Verhagen
- Department of Neurobiology, Yale University, New Haven, CT, USA; The John B. Pierce Laboratory, New Haven, CT, USA.
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
15
|
Zhao F, Wang X, Zariwala HA, Uslaner JM, Houghton AK, Evelhoch JL, Williams DS, Winkelmann CT. fMRI study of olfaction in the olfactory bulb and high olfactory structures of rats: Insight into their roles in habituation. Neuroimage 2015; 127:445-455. [PMID: 26522425 DOI: 10.1016/j.neuroimage.2015.10.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 01/09/2023] Open
Abstract
Cerebral blood volume (CBV) fMRI with ultrasmall superparamagnetic iron oxide particles (USPIO) as a contrast agent was used to investigate olfactory processing in rats. fMRI data were acquired in sixteen 0.75-mm coronal slices covering the olfactory bulb (OB) and higher olfactory regions (HOR), including the anterior olfactory nucleus and piriform cortex. For each animal, multiple consecutive fMRI measurements were made during a 3-h experiment session, with each measurement consisting of a baseline period, an odorant stimulation period, and a recovery period. Two different stimulation paradigms with a stimulation period of 40s or 80s, respectively, were used to study olfactory processing. Odorant-induced CBV increases were robustly observed in the OB and HOR of each individual animal. Olfactory adaptation, which is characterized by an attenuation of responses to continuous exposure or repeated stimulations, has different characteristics in the OB and HOR. For adaptation to repeated stimuli, while it was observed in both the OB and HOR, CBV responses in the HOR were attenuated more significantly than responses in the OB. In contrast, within each continuous 40-s or 80-s odor exposure, CBV responses in the OB were stable and did not show adaptation, but the CBV responses in the HOR were state dependent, with no adaptation during initial exposures, but significant adaptation during following exposures. These results support previous reports that HOR plays a more significant role than OB in olfactory habituation. The technical approach presented in this study should enable more extensive fMRI studies of olfactory processing in rats.
Collapse
|
16
|
Comparative study of perception and processing of socially or sexually significant odor information in male rats with normal or accelerated senescence using fMRI. Behav Brain Res 2015; 294:89-94. [PMID: 26248295 DOI: 10.1016/j.bbr.2015.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 11/23/2022]
Abstract
Olfaction plays an important role in mammals while aging causes olfactory dysfunction. Here the features of olfactory function in aging male rats were studied. We compared brain activity of regions involved in the perception (olfactory bulbs) and processing (cerebral cortex, hippocampus, hypothalamus) of sexually or socially significant odor stimulus with 11.7 T MR-scanner and odor perception using behavioral tests in 5-month old males with normal (Wistar rats) or accelerated senescence (d-galactose-treated Wistar rats (150 mg/kg/day, i.p., 12 weeks) or OXYS rats with hereditary defined accelerated aging). d-galactose-treated Wistar males had altered BOLD-response in the centers processing socially significant odor information and changed patterns of the functional connectivity. We detected no significant changes in the olfactory function of OXYS males probably due to compensatory processes. In saline-treated Wistar rats, the correlation of BOLD-responses to both types of stimuli in the olfactory bulbs and cerebral cortex indicated changes in odor differentiation. Behavioral tests showed no significant differences between groups. However, the time of odor exploration increased in d-galactose-treated males indicating changes in odor recognition. Thus, we first revealed that in animal model of pharmacologically induced aging olfactory dysfunction occurred at the level of the centers processing socially significant odor information while the centers of odor perception (olfactory bulbs) remained unaffected. Alterations observed in Wistar rats chronically treated with saline evidenced the influence of long-term manipulations with experimental animals on olfactory function per se.
Collapse
|
17
|
Zhao F, Holahan MA, Houghton AK, Hargreaves R, Evelhoch JL, Winkelmann CT, Williams DS. Functional imaging of olfaction by CBV fMRI in monkeys: Insight into the role of olfactory bulb in habituation. Neuroimage 2015; 106:364-72. [DOI: 10.1016/j.neuroimage.2014.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/04/2014] [Accepted: 12/01/2014] [Indexed: 11/26/2022] Open
|
18
|
Zong X, Lee J, John Poplawsky A, Kim SG, Ye JC. Compressed sensing fMRI using gradient-recalled echo and EPI sequences. Neuroimage 2014; 92:312-21. [PMID: 24495813 DOI: 10.1016/j.neuroimage.2014.01.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 01/15/2014] [Accepted: 01/24/2014] [Indexed: 11/25/2022] Open
Abstract
Compressed sensing (CS) may be useful for accelerating data acquisitions in high-resolution fMRI. However, due to the inherent slow temporal dynamics of the hemodynamic signals and concerns of potential statistical power loss, the CS approach for fMRI (CS-fMRI) has not been extensively investigated. To evaluate the utility of CS in fMRI application, we systematically investigated the properties of CS-fMRI using computer simulations and in vivo experiments of rat forepaw sensory and odor stimulations with gradient-recalled echo (GRE) and echo planar imaging (EPI) sequences. Various undersampling patterns along the phase-encoding direction were studied and k-t FOCUSS was used as the CS reconstruction algorithm, which exploits the temporal redundancy of images. Functional sensitivity, specificity, and time courses were compared between fully-sampled and CS-fMRI with reduction factors of 2 and 4. CS-fMRI with GRE, but not with EPI, improves the statistical sensitivity for activation detection over the fully sampled data when the ratio of the fMRI signal change to noise is low. CS improves the temporal resolution and reduces temporal noise correlations. While CS reduces the functional response amplitudes, the noise variance is also reduced to make the overall activation detection more sensitive. Consequently, CS is a valuable fMRI acceleration approach, especially for GRE fMRI studies.
Collapse
Affiliation(s)
- Xiaopeng Zong
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juyoung Lee
- Bio-Imaging & Signal Processing Lab., Korea Advanced Institute of Science & Technology (KAIST), 373-1 Guseong-Dong, Yuseong-Gu, Daejon 305-701, Republic of Korea
| | - Alexander John Poplawsky
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Seong-Gi Kim
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15203, USA; Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746, Republic of Korea; Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jong Chul Ye
- Bio-Imaging & Signal Processing Lab., Korea Advanced Institute of Science & Technology (KAIST), 373-1 Guseong-Dong, Yuseong-Gu, Daejon 305-701, Republic of Korea
| |
Collapse
|
19
|
Poplawsky AJ, Kim SG. Layer-dependent BOLD and CBV-weighted fMRI responses in the rat olfactory bulb. Neuroimage 2014; 91:237-51. [PMID: 24418506 DOI: 10.1016/j.neuroimage.2013.12.067] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 12/10/2013] [Accepted: 12/29/2013] [Indexed: 10/25/2022] Open
Abstract
The olfactory bulb is a laminarized brain structure involved in odor sensation that has important implications to basic neuroscience research, like mechanisms for neurovascular coupling and early disease diagnosis. To investigate laminar-dependent responses to odor exposure, blood oxygenation level-dependent (BOLD) and cerebral blood volume weighted (CBVw) fMRI with iron oxide nanoparticle contrast agent were obtained with 110×110×500μm(3) resolution in urethane-anesthetized rats at 9.4T. The baseline total CBV is the largest at the olfactory bulb surface and midline, and decreases in the deeper layers, while a band of increased microvasculature density is observed at the glomerular, external plexiform and mitral cell layers. With odor exposure, CBVw fMRI is more sensitive and reproducible than BOLD. BOLD fMRI had the greatest activation on the bulb surface, midline, olfactory nerve and glomerular layers, while CBVw activation peaked in glomerular and external plexiform layers, but was still significant in mitral cell layer. Negative BOLD responses were observed in the bulb midline and near large blood vessels. CBVw laminar profiles are similar to the layer-dependent metabolic changes to the same odor exposure reported by previous glucose metabolism studies. Unique activation patterns for two different odor conditions were also differentiated with CBVw fMRI. Our study suggests that CBVw activation better represents the spatial location of metabolic activity in the olfactory bulb than BOLD.
Collapse
Affiliation(s)
- Alexander John Poplawsky
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Seong-Gi Kim
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience Imaging Research, Institute of Basic Science (IBS), Sungkyunkwan University, Suwon 440-746, Republic of Korea; Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
20
|
Lau C, Zhang JW, Cheng JS, Zhou IY, Cheung MM, Wu EX. Noninvasive fMRI investigation of interaural level difference processing in the rat auditory subcortex. PLoS One 2013; 8:e70706. [PMID: 23940631 PMCID: PMC3733930 DOI: 10.1371/journal.pone.0070706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/21/2013] [Indexed: 12/02/2022] Open
Abstract
Objective Interaural level difference (ILD) is the difference in sound pressure level (SPL) between the two ears and is one of the key physical cues used by the auditory system in sound localization. Our current understanding of ILD encoding has come primarily from invasive studies of individual structures, which have implicated subcortical structures such as the cochlear nucleus (CN), superior olivary complex (SOC), lateral lemniscus (LL), and inferior colliculus (IC). Noninvasive brain imaging enables studying ILD processing in multiple structures simultaneously. Methods In this study, blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is used for the first time to measure changes in the hemodynamic responses in the adult Sprague-Dawley rat subcortex during binaural stimulation with different ILDs. Results and Significance Consistent responses are observed in the CN, SOC, LL, and IC in both hemispheres. Voxel-by-voxel analysis of the change of the response amplitude with ILD indicates statistically significant ILD dependence in dorsal LL, IC, and a region containing parts of the SOC and LL. For all three regions, the larger amplitude response is located in the hemisphere contralateral from the higher SPL stimulus. These findings are supported by region of interest analysis. fMRI shows that ILD dependence occurs in both hemispheres and multiple subcortical levels of the auditory system. This study is the first step towards future studies examining subcortical binaural processing and sound localization in animal models of hearing.
Collapse
Affiliation(s)
- Condon Lau
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
21
|
Olman CA, Yacoub E. High-field FMRI for human applications: an overview of spatial resolution and signal specificity. Open Neuroimag J 2011; 5:74-89. [PMID: 22216080 PMCID: PMC3245408 DOI: 10.2174/1874440001105010074] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/15/2011] [Accepted: 03/13/2011] [Indexed: 11/23/2022] Open
Abstract
In the last decade, dozens of 7 Tesla scanners have been purchased or installed around the world, while 3 Tesla systems have become a standard. This increased interest in higher field strengths is driven by a demonstrated advantage of high fields for available signal-to-noise ratio (SNR) in the magnetic resonance signal. Functional imaging studies have additional advantages of increases in both the contrast and the spatial specificity of the susceptibility based BOLD signal. One use of this resultant increase in the contrast to noise ratio (CNR) for functional MRI studies at high field is increased image resolution. However, there are many factors to consider in predicting exactly what kind of resolution gains might be made at high fields, and what the opportunity costs might be. The first part of this article discusses both hardware and image quality considerations for higher resolution functional imaging. The second part draws distinctions between image resolution, spatial specificity, and functional specificity of the fMRI signals that can be acquired at high fields, suggesting practical limitations for attainable resolutions of fMRI experiments at a given field, given the current state of the art in imaging techniques. Finally, practical resolution limitations and pulse sequence options for studies in human subjects are considered.
Collapse
|
22
|
DiNuzzo M, Gili T, Maraviglia B, Giove F. Modeling the contribution of neuron-astrocyte cross talk to slow blood oxygenation level-dependent signal oscillations. J Neurophysiol 2011; 106:3010-8. [PMID: 21917999 DOI: 10.1152/jn.00416.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A consistent and prominent feature of brain functional magnetic resonance imaging (fMRI) data is the presence of low-frequency (<0.1 Hz) fluctuations of the blood oxygenation level-dependent (BOLD) signal that are thought to reflect spontaneous neuronal activity. In this report we provide modeling evidence that cyclic physiological activation of astroglial cells produces similar BOLD oscillations through a mechanism mediated by intracellular Ca(2+) signaling. Specifically, neurotransmission induces pulses of Ca(2+) concentration in astrocytes, resulting in increased cerebral perfusion and neuroactive transmitter release by these cells (i.e., gliotransmission), which in turn stimulates neuronal activity. Noticeably, the level of neuron-astrocyte cross talk regulates the periodic behavior of the Ca(2+) wave-induced BOLD fluctuations. Our results suggest that the spontaneous ongoing activity of neuroglial networks is a potential source of the observed slow fMRI signal oscillations.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy.
| | | | | | | |
Collapse
|
23
|
Pain F, L'heureux B, Gurden H. Visualizing odor representation in the brain: a review of imaging techniques for the mapping of sensory activity in the olfactory glomeruli. Cell Mol Life Sci 2011; 68:2689-709. [PMID: 21584811 PMCID: PMC11114686 DOI: 10.1007/s00018-011-0708-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 03/30/2011] [Accepted: 04/21/2011] [Indexed: 01/15/2023]
Abstract
The brain transforms clues from the external world, the sensory stimuli, into activities in neuroglial networks. These circuits are activated in specialized sensory cortices where specific functional modules are responsible for the spatiotemporal coding of the stimulus. A major challenge in the neuroscience field has been to image the spatial distribution and follow the temporal dynamics of the activation of such large populations in vivo. Functional imaging techniques developed in the last 30 years have enabled researchers to solve this critical issue, and are reviewed here. These techniques utilize sources of contrast of radioisotopic, magnetic and optical origins and exploit two major families of signals to image sensory activity: the first class uses sources linked to cellular energy metabolism and hemodynamics, while the second involves exogenous indicators of neuronal activity. The whole panel of imaging techniques has fostered the functional exploration of the olfactory bulb which is one of the most studied sensory structures. We summarize the major results obtained using these techniques that describe the spatial and temporal activity patterns in the olfactory glomeruli, the first relay of olfactory information processing in the main olfactory bulb. We conclude this review by describing promising technical developments in optical imaging and future directions in the study of olfactory spatiotemporal coding.
Collapse
Affiliation(s)
- F Pain
- Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie, UMR Université Paris Sud, CNRS, Campus d'Orsay Bat, France.
| | | | | |
Collapse
|
24
|
Kida I, Iguchi Y, Hoshi Y. Blood oxygenation level-dependent functional magnetic resonance imaging of bilateral but asymmetrical responses to gustatory stimulation in the rat insular cortex. Neuroimage 2011; 56:1520-5. [DOI: 10.1016/j.neuroimage.2011.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/21/2011] [Accepted: 03/02/2011] [Indexed: 10/18/2022] Open
|
25
|
Abstract
In the brain, neuronal activation triggers a local increase in cerebral blood flow, a response named functional hyperemia. The extent to which functional hyperemia faithfully reports brain activation, spatially or temporally, remains a matter of debate. Here, we used the olfactory bulb glomerulus as a neurovascular model and two-photon microscopy imaging to investigate the correlation between calcium signals in glutamatergic terminals of olfactory sensory neurons and local vascular responses. We find that, depending on odor stimulation intensity, vascular responses are differently coupled to calcium signals. Upon moderate odor stimulation, glomerular vascular responses increase accordingly with calcium signals. In contrast, in silent glomeruli neighboring strongly activated ones and in glomeruli adapting upon high odor stimulation, vascular responses are independent of or negatively coupled to presynaptic calcium signals, respectively. Hence, functional hyperemia, a key signal used in functional imaging, can be, at times, an unreliable marker of local brain activation.
Collapse
|
26
|
Hamilton NB, Attwell D, Hall CN. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. FRONTIERS IN NEUROENERGETICS 2010; 2. [PMID: 20725515 PMCID: PMC2912025 DOI: 10.3389/fnene.2010.00005] [Citation(s) in RCA: 362] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 04/28/2010] [Indexed: 12/18/2022]
Abstract
Because regional blood flow increases in association with the increased metabolic demand generated by localized increases in neural activity, functional imaging researchers often assume that changes in blood flow are an accurate read-out of changes in underlying neural activity. An understanding of the mechanisms that link changes in neural activity to changes in blood flow is crucial for assessing the validity of this assumption, and for understanding the processes that can go wrong during disease states such as ischaemic stroke. Many studies have investigated the mechanisms of neurovascular regulation in arterioles but other evidence suggests that blood flow regulation can also occur in capillaries, because of the presence of contractile cells, pericytes, on the capillary wall. Here we review the evidence that pericytes can modulate capillary diameter in response to neuronal activity and assess the likely importance of neurovascular regulation at the capillary level for functional imaging experiments. We also discuss evidence suggesting that pericytes are particularly sensitive to damage during pathological insults such as ischaemia, Alzheimer's disease and diabetic retinopathy, and consider the potential impact that pericyte dysfunction might have on the development of therapeutic interventions and on the interpretation of functional imaging data in these disorders.
Collapse
Affiliation(s)
- Nicola B Hamilton
- Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | | | | |
Collapse
|
27
|
Goense J, Logothetis NK, Merkle H. Flexible, phase-matched, linear receive arrays for high-field MRI in monkeys. Magn Reson Imaging 2010; 28:1183-91. [PMID: 20456890 DOI: 10.1016/j.mri.2010.03.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 02/23/2010] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
High signal-to-noise ratios (SNR) are essential for high-resolution anatomical and functional MRI. Phased arrays are advantageous for this but have the drawback that they often have inflexible and bulky configurations. Particularly in experiments where functional MRI is combined with simultaneous electrophysiology, space constraints can be prohibitive. To this end we developed a highly flexible multiple receive element phased array for use on anesthetized monkeys. The elements are interchangeable and different sizes and combinations of coil elements can be used, for instance, combinations of single and overlapped elements. The preamplifiers including control electronics are detachable and can serve a variety of prefabricated and phase matched arrays of different configurations, allowing the elements to always be placed in close proximity to the area of interest. Optimizing performance of the individual elements ensured high SNR at the cortical surface as well as in deeper laying structures. Performance of a variety of arrangements of gapped linear arrays was evaluated at 4.7 and 7T in high-resolution anatomical and functional MRI.
Collapse
Affiliation(s)
- Jozien Goense
- Department of Physiology of Cognitive Processes, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | | | | |
Collapse
|
28
|
|
29
|
Song X, Li L, Aksenov D, Miller MJ, Wyrwicz AM. Mapping rabbit whisker barrels using discriminant analysis of high field fMRI data. Neuroimage 2010; 51:775-82. [PMID: 20171289 DOI: 10.1016/j.neuroimage.2010.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/04/2010] [Accepted: 02/10/2010] [Indexed: 11/18/2022] Open
Abstract
High field (>4T) functional magnetic resonance imaging (fMRI) techniques provide increased spatial resolution that enables the noninvasive, repeatable study of the sensory cortices at the level of their basic functional units. The examination of these units is important for studies of sensory information processing, learning- or experience-related brain plasticity, or the fundamental relationship between hemodynamic and neuronal activity. However functional units cannot always be distinguished from their surrounding areas by conventional activation mapping methods such as correlation or hypothesis tests, which only consider temporal variation within each individual voxel. We report a novel method to detect individual whisker barrels by using discriminant analysis to jointly characterize high order dependency among multiple voxels. Our results in the whisker barrel cortex of the awake rabbit indicate that the proposed method can differentiate reliably small clusters of activated voxels corresponding to individual whisker barrels within larger areas of functional activation, even in the case of adjacent whiskers in unanesthetized subjects. This method is computationally efficient, requires no specific experimental design for fMRI acquisition, and should be applicable to studies of other sensory systems.
Collapse
Affiliation(s)
- Xiaomu Song
- Center for Basic MR Research, NorthShore University HealthSystem Research Institute, 1033 University Place, Suite 100, Evanston, IL 60201, USA.
| | | | | | | | | |
Collapse
|
30
|
Chuang KH, Belluscio L, Koretsky AP. In vivo detection of individual glomeruli in the rodent olfactory bulb using manganese enhanced MRI. Neuroimage 2010; 49:1350-6. [PMID: 19800011 PMCID: PMC2789874 DOI: 10.1016/j.neuroimage.2009.09.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/02/2009] [Accepted: 09/24/2009] [Indexed: 11/29/2022] Open
Abstract
MRI contrast based on relaxation times, proton density, or signal phase have been applied to delineate neural structures in the brain. However, neural units such as cortical layers and columns have been difficult to identify using these methods. Manganese ion delivered either systemically or injected directly has been shown to accumulate specifically within cellular areas of the brain enabling the differentiation of layers within the hippocampus, cortex, cerebellum, and olfactory bulb in vivo. Here we show the ability to detect individual olfactory glomeruli using manganese enhanced MRI (MEMRI). Glomeruli are anatomically distinct structures ( approximately 150 microm in diameter) on the surface of the olfactory bulb that represent the first processing units for olfactory sensory information. Following systemic delivery of MnCl(2) we used 3D-MRI with 50 microm isotropic resolution to detect discrete spots of increased signal intensity between 100 and 200 microm in diameter in the glomerular layer of the rat olfactory bulb. Inflow effects of arterial blood and susceptibility effects of venous blood were suppressed and were evaluated by comparing the location of vessels in the bulb to areas of manganese enhancement using iron oxide to increase vessel contrast. These potential vascular effects did not explain the contrast detected. Nissl staining of individual glomeruli were also compared to MEMRI images from the same animals clearly demonstrating that many of the manganese enhanced regions corresponded to individual olfactory glomeruli. Thus, MEMRI can be used as a non-invasive means to detect olfactory glomeruli for longitudinal studies looking at neural plasticity during olfactory development or possible degeneration associated with disease.
Collapse
Affiliation(s)
- Kai-Hsiang Chuang
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
31
|
Intra- and inter-subject variability of high field fMRI digit maps in somatosensory area 3b of new world monkeys. Neuroscience 2009; 165:252-64. [PMID: 19799969 DOI: 10.1016/j.neuroscience.2009.09.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 11/23/2022]
Abstract
This study evaluates the intra- and inter-subject variability of digit maps in area 3b of anesthetized squirrel monkeys. Maps were collected using high field blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). BOLD responses to individual digit stimulations were mapped and their response properties (location, area of activation, % signal change, time to peak response) were compared within and across imaging sessions separated by up to 20 months. During single digit stimulation using a block design, the spatiotemporal response of the BOLD signal for individual runs within and across sessions and animals was well conserved, with a time to peak BOLD response of 20+/-4 s. The variability in the center of BOLD activation in area 3b was 0.41+/-0.24 mm (mean+/-SD) across individual 5-7 min runs within a scanning session and 0.55+/-0.15 mm across sessions. The average signal change across all animals, runs and sessions was 0.62+/-0.38%, and varied 32% within and 40% across sessions. In a comparison of the stability and reproducibility of the area of single digit activation obtained using three approaches, use of a fixed statistical threshold (P<10(-5)) yielded an average area of 4.8+/-3.5 mm(2) (mean+/-SD), adaptive statistical thresholding 1.32+/-1.259 mm(2) (mean+/-SD), and combined fixed statistical and adaptive BOLD signal amplitude 4.4+/-2.5 mm(2) (mean+/-SD) across image runs and sessions. The somatotopic organization was stable within animals across sessions, while across animals, there was some variation in overall activation pattern and inter-digit distances. These results confirm that BOLD activation maps of single digits in area 3b as characterized by activation center, signal amplitudes, and temporal profile are very stable. The activation sizes determined by various criteria are the most variable measure in this preparation, but adaptive statistical thresholding appears to yield the most stable and reproducible maps. This study serves as a baseline assessment of the limits imposed on the detection of plastic changes by experimental variations of the digit BOLD fMRI activation maps in normal animals, and as an indicator of the likely performance limits in human studies.
Collapse
|
32
|
Johnson BA, Xu Z, Ali SS, Leon M. Spatial representations of odorants in olfactory bulbs of rats and mice: similarities and differences in chemotopic organization. J Comp Neurol 2009; 514:658-73. [PMID: 19363812 DOI: 10.1002/cne.22046] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In previous studies, we mapped glomerular layer 2-deoxyglucose uptake evoked by hundreds of both systematically related and chemically distinct odorants in rat olfactory bulbs. To determine which principles of chemotopic organization revealed in these studies may be more fundamental and which may be more species typical, we now have characterized patterns of responses to 30 of these odorants in mice. We found that only a few odorants evoked their multiple foci of peak activity in exactly the same locations in the two species. In mice, as in rats, odorants that shared molecular features evoked overlapping patterns, but the locations of the feature-responsive domains often differed in rats and mice. In rats, increasing carbon number within a homologous series of aliphatic odorants is generally associated with rostral and ventral progressions of activity within domains responding to odorant functional group and/or hydrocarbon backbone. Such chemotopic progressions were not obvious in mice, which instead showed more abrupt differences in activated glomeruli within the domains for odorants differing by a single methylene group. Despite the differences, quantitative relationships between overall uptake patterns exhibited a similar organization with respect to odorant chemistry for the two species, probably as a result of partial overlaps of peak domains and more extensive overlaps in large, low-activity areas for rats and mice. We conclude that clustering responses to shared odorant features may be a general strategy for odor coding but that the specific locations of high-activity domains may be unique to a species.
Collapse
Affiliation(s)
- Brett A Johnson
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697-4550, USA.
| | | | | | | |
Collapse
|
33
|
Mangia S, Giove F, Tkác I, Logothetis NK, Henry PG, Olman CA, Maraviglia B, Di Salle F, Uğurbil K. Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings. J Cereb Blood Flow Metab 2009; 29:441-63. [PMID: 19002199 PMCID: PMC2743443 DOI: 10.1038/jcbfm.2008.134] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unraveling the energy metabolism and the hemodynamic outcomes of excitatory and inhibitory neuronal activity is critical not only for our basic understanding of overall brain function, but also for the understanding of many brain disorders. Methodologies of magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are powerful tools for the noninvasive investigation of brain metabolism and physiology. However, the temporal and spatial resolution of in vivo MRS and MRI is not suitable to provide direct evidence for hypotheses that involve metabolic compartmentalization between different cell types, or to untangle the complex neuronal microcircuitry, which results in changes of electrical activity. This review aims at describing how the current models of brain metabolism, mainly built on the basis of in vitro evidence, relate to experimental findings recently obtained in vivo by (1)H MRS, (13)C MRS, and MRI. The hypotheses related to the role of different metabolic substrates, the metabolic neuron-glia interactions, along with the available theoretical predictions of the energy budget of neurotransmission will be discussed. In addition, the cellular and network mechanisms that characterize different types of increased and suppressed neuronal activity will be considered within the sensitivity-constraints of MRS and MRI.
Collapse
Affiliation(s)
- Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Odor-evoked oxygen consumption by action potential and synaptic transmission in the olfactory bulb. J Neurosci 2009; 29:1424-33. [PMID: 19193889 DOI: 10.1523/jneurosci.4817-08.2009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The relationship between metabolism of neuronal activity, microvascular organization, and blood flow dynamics is critical for interpreting functional brain imaging. Here we used the rat dorsal olfactory bulb as a model to determine in vivo the correlation between action potential propagation, synaptic transmission, oxygen consumption, and capillary density during odor stimulation. We find that capillary lumen occupies approximately 3% of the glomerular volume, where synaptic transmission occurs, and only 0.1% of the overlying nerve layer. In glomeruli, odor triggers a local early decrease in tissue oxygen partial pressure that results principally from dendritic activation rather than from firing of axon terminals, transmitter release or astrocyte activation. In the nerve layer, action potential propagation does not generate local changes in tissue oxygen partial pressure. We conclude that capillary density is tightly correlated with the oxidative metabolism of synaptic transmission, and suggest that action potential propagation operates mainly anaerobically.
Collapse
|
35
|
Sanganahalli BG, Bailey CJ, Herman P, Hyder F. Tactile and non-tactile sensory paradigms for fMRI and neurophysiologic studies in rodents. Methods Mol Biol 2009; 489:213-42. [PMID: 18839094 PMCID: PMC3703391 DOI: 10.1007/978-1-59745-543-5_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has become a popular functional imaging tool for human studies. Future diagnostic use of fMRI depends, however, on a suitable neurophysiologic interpretation of the blood oxygenation level dependent (BOLD) signal change. This particular goal is best achieved in animal models primarily due to the invasive nature of other methods used and/or pharmacological agents applied to probe different nuances of neuronal (and glial) activity coupled to the BOLD signal change. In the last decade, we have directed our efforts towards the development of stimulation protocols for a variety of modalities in rodents with fMRI. Cortical perception of the natural world relies on the formation of multi-dimensional representation of stimuli impinging on the different sensory systems, leading to the hypothesis that a sensory stimulus may have very different neurophysiologic outcome(s) when paired with a near simultaneous event in another modality. Before approaching this level of complexity, reliable measures must be obtained of the relatively small changes in the BOLD signal and other neurophysiologic markers (electrical activity, blood flow) induced by different peripheral stimuli. Here we describe different tactile (i.e., forepaw, whisker) and non-tactile (i.e., olfactory, visual) sensory paradigms applied to the anesthetized rat. The main focus is on development and validation of methods for reproducible stimulation of each sensory modality applied independently or in conjunction with one another, both inside and outside the magnet. We discuss similarities and/or differences across the sensory systems as well as advantages they may have for studying essential neuroscientific questions. We envisage that the different sensory paradigms described here may be applied directly to studies of multi-sensory interactions in anesthetized rats, en route to a rudimentary understanding of the awake functioning brain where various sensory cues presumably interrelate.
Collapse
Affiliation(s)
- Basavaraju G. Sanganahalli
- Department of Diagnostic Radiology Yale University, New Haven, Connecticut, USA,Department of Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, Connecticut, USA,Department of Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Christopher J. Bailey
- Department of Diagnostic Radiology Yale University, New Haven, Connecticut, USA,Department of Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA,Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Peter Herman
- Department of Diagnostic Radiology Yale University, New Haven, Connecticut, USA,Department of Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, Connecticut, USA,Department of Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA,Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Fahmeed Hyder
- Department of Diagnostic Radiology Yale University, New Haven, Connecticut, USA,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA,Department of Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, Connecticut, USA,Department of Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
36
|
Tiret P, Chaigneau E, Lecoq J, Charpak S. Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Methods Mol Biol 2009; 489:81-91. [PMID: 18839088 DOI: 10.1007/978-1-59745-543-5_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two-photon laser scanning microscopy (TPLSM) is an efficient tool to study cerebral blood flow (CBF) and cellular activity in depth in the brain. We describe here the advantages and weaknesses of the olfactory bulb as a model to study neurovascular coupling using TPLSM. By combining intra- and extracellular recordings, TPLSM of CBF in individual capillaries, local application of drugs, we show that odor triggers odorant-specific and concentration-dependent increases in CBF. We also demonstrate that activation of neurons is required to trigger blood flow responses.
Collapse
Affiliation(s)
- Pascale Tiret
- Laboratory of Neurophysiology; Université Paris Descartes, INSERM U603, Paris, France
| | | | | | | |
Collapse
|
37
|
Dynamic magnetic resonance imaging of cerebral blood flow using arterial spin labeling. Methods Mol Biol 2008; 489:277-95. [PMID: 18839097 DOI: 10.1007/978-1-59745-543-5_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Modern functional neuroimaging techniques, including positron emission tomography, optical imaging of intrinsic signals, and magnetic resonance imaging (MRI) rely on a tight coupling between neural activity and cerebral blood flow (CBF) to visualize brain activity using CBF as a surrogate marker. Because the spatial and temporal resolution of neuroimaging modalities is ultimately determined by the spatial and temporal specificity of the underlying hemodynamic signals, characterization of the spatial and temporal profiles of the hemodynamic response to focal brain stimulation is of paramount importance for the correct interpretation and quantification of functional data. The ability to properly measure and quantify CBF with MRI is a major determinant of progress in our understanding of brain function. We review the dynamic arterial spin labeling (DASL) method to measure CBF and the CBF functional response with high temporal resolution.
Collapse
|
38
|
Petzold GC, Albeanu DF, Sato TF, Murthy VN. Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways. Neuron 2008; 58:897-910. [PMID: 18579080 PMCID: PMC2922004 DOI: 10.1016/j.neuron.2008.04.029] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 01/31/2008] [Accepted: 04/25/2008] [Indexed: 11/19/2022]
Abstract
Functional neuroimaging uses activity-dependent changes in cerebral blood flow to map brain activity, but the contributions of presynaptic and postsynaptic activity are incompletely understood, as are the underlying cellular pathways. Using intravital multiphoton microscopy, we measured presynaptic activity, postsynaptic neuronal and astrocytic calcium responses, and erythrocyte velocity and flux in olfactory glomeruli during odor stimulation in mice. Odor-evoked functional hyperemia in glomerular capillaries was highly correlated with glutamate release, but did not require local postsynaptic activity. Odor stimulation induced calcium transients in astrocyte endfeet and an associated dilation of upstream arterioles. Calcium elevations in astrocytes and functional hyperemia depended on astrocytic metabotropic glutamate receptor 5 and cyclooxygenase activation. Astrocytic glutamate transporters also contributed to functional hyperemia through mechanisms independent of calcium rises and cyclooxygenase activation. These local pathways initiated by glutamate account for a large part of the coupling between synaptic activity and functional hyperemia in the olfactory bulb.
Collapse
Affiliation(s)
- Gabor C. Petzold
- Department of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Dinu F. Albeanu
- Department of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Tomokazu F. Sato
- Department of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Venkatesh N. Murthy
- Department of Molecular and Cellular Biology, and Center for Brain Science, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
39
|
Sanganahalli BG, Herman P, Hyder F. Frequency-dependent tactile responses in rat brain measured by functional MRI. NMR IN BIOMEDICINE 2008; 21:410-6. [PMID: 18435491 PMCID: PMC2774500 DOI: 10.1002/nbm.1259] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We measured frequency-dependent functional MRI (fMRI) activations (at 11.7 T) in the somatosensory cortex with whisker and forepaw stimuli in the same alpha-chloralose anesthetized rats. Whisker and forepaw stimuli were attained by computer-controlled pulses of air puffs and electrical currents, respectively. Air puffs deflected (+/-2 mm) the chosen whisker(s) in the right snout in the rostral to caudal direction, and electrical currents (2 mA amplitude, 0.3 ms duration) stimulated the left forepaw with subcutaneous copper electrodes placed between the second and fourth digits. In the same subject, unimodal stimulation of whisker and forepaw gave rise to significant blood oxygen level-dependent (BOLD) signal increases in corresponding contralateral somatosensory areas of whisker barrel field (S1BF) and forelimb (S1FL), respectively, with no significant spatial overlap between these regions. The BOLD responses in S1(BF) and S1(FL) regions were found to be differentially variable with frequency of each stimulus type. In the S1BF, a linear increase in the BOLD response was observed with whisker stimulation frequency of up to approximately 12 Hz, beyond which the response seemed to saturate (and/or slightly attenuate) up to the maximum frequency studied (i.e. 30 Hz). In the S1FL, the magnitude of the BOLD response was largest at forepaw stimulation frequency between 1.5 and 3 Hz, beyond which the response diminished with little or no activity at frequencies higher than 20 Hz. The volume of tissue activated by each stimulus type followed a similar pattern to that of the stimulation frequency dependence. These results of bimodal whisker and forepaw stimuli in the same subject may provide a framework to study interactions of different tactile modules, with both fMRI and neurophysiology (i.e. inside and outside the magnet).
Collapse
Affiliation(s)
- Basavaraju G. Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
| | - Peter Herman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
40
|
Silva AC, Lee JH, Wu CWH, Tucciarone J, Pelled G, Aoki I, Koretsky AP. Detection of cortical laminar architecture using manganese-enhanced MRI. J Neurosci Methods 2007; 167:246-57. [PMID: 17936913 DOI: 10.1016/j.jneumeth.2007.08.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/21/2007] [Accepted: 08/21/2007] [Indexed: 11/16/2022]
Abstract
Changes in manganese-enhanced MRI (MEMRI) contrast across the rodent somatosensory cortex were compared to the cortical laminae as identified by tissue histology and administration of an anatomical tracer to cortex and thalamus. Across the cortical thickness, MEMRI signal intensity was low in layer I, increased in layer II, decreased in layer III until mid-layer IV, and increased again, peaking in layer V, before decreasing through layer VI. The reeler mouse mutant was used to confirm that the cortical alternation in MEMRI contrast was related to laminar architecture. Unlike in wild-type mice, the reeler cortex showed no appreciable changes in MEMRI signal, consistent with absence of cortical laminae in histological slides. The tract tracing ability of MEMRI was used to further confirm assignments and demonstrate laminar specificity. Twelve to 16 h after stereotaxic injections of MnCl(2) to the ventroposterior thalamic nuclei, an overall increase in signal intensity was detected in primary somatosensory cortex compared to other brain regions. Maximum intensity projection images revealed a distinctly bright stripe located 600-700 microm below the pial surface, in layer IV. The data show that both systemic and tract tracing forms of MEMRI are useful for studying laminar architecture in the brain.
Collapse
Affiliation(s)
- Afonso C Silva
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Chaigneau E, Tiret P, Lecoq J, Ducros M, Knöpfel T, Charpak S. The relationship between blood flow and neuronal activity in the rodent olfactory bulb. J Neurosci 2007; 27:6452-60. [PMID: 17567806 PMCID: PMC6672435 DOI: 10.1523/jneurosci.3141-06.2007] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the brain, neuronal activation triggers an increase in cerebral blood flow (CBF). Here, we use two animal models and several techniques (two-photon imaging of CBF and neuronal calcium dynamics, intracellular and extracellular recordings, local pharmacology) to analyze the relationship between neuronal activity and local CBF during odor stimulation in the rodent olfactory bulb. Application of glutamate receptor antagonists or tetrodotoxin directly into single rat olfactory glomeruli blocked postsynaptic responses but did not affect the local odor-evoked CBF increases. This suggests that in our experimental conditions, odor always activates more than one glomerulus and that silencing one of a few clustered glomeruli does not affect the vascular response. To block synaptic transmission more widely, we then superfused glutamate antagonists over the surface of the olfactory bulb in transgenic G-CaMP2 mice. This was for two reasons: (1) mice have a thin olfactory nerve layer compared to rats and this will favor drug access to the glomerular layer, and (2) transgenic G-CaMP2 mice express the fluorescent calcium sensor protein G-CaMP2 in mitral cells. In G-CaMP2 mice, odor-evoked, odor-specific, and concentration-dependent calcium increases in glomeruli. Superfusion of glutamate receptor antagonists blocked odor-evoked postsynaptic calcium signals and CBF responses. We conclude that activation of postsynaptic glutamate receptors and rises in dendritic calcium are major steps for neurovascular coupling in olfactory bulb glomeruli.
Collapse
Affiliation(s)
- Emmanuelle Chaigneau
- Institut National de la Santé et de la Recherche Médicale U603, 75006 Paris, France
- Laboratory of Neurophysiology, Université Paris Descartes, 75006 Paris, France, and
| | - Pascale Tiret
- Institut National de la Santé et de la Recherche Médicale U603, 75006 Paris, France
- Laboratory of Neurophysiology, Université Paris Descartes, 75006 Paris, France, and
| | - Jérôme Lecoq
- Institut National de la Santé et de la Recherche Médicale U603, 75006 Paris, France
- Laboratory of Neurophysiology, Université Paris Descartes, 75006 Paris, France, and
| | - Mathieu Ducros
- Institut National de la Santé et de la Recherche Médicale U603, 75006 Paris, France
- Laboratory of Neurophysiology, Université Paris Descartes, 75006 Paris, France, and
| | - Thomas Knöpfel
- Laboratory for Neural Circuit Dynamics, Riken Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Serge Charpak
- Institut National de la Santé et de la Recherche Médicale U603, 75006 Paris, France
- Laboratory of Neurophysiology, Université Paris Descartes, 75006 Paris, France, and
| |
Collapse
|
42
|
Chahboune H, Ment LR, Stewart WB, Ma X, Rothman DL, Hyder F. Neurodevelopment of C57B/L6 mouse brain assessed by in vivo diffusion tensor imaging. NMR IN BIOMEDICINE 2007; 20:375-82. [PMID: 17451176 DOI: 10.1002/nbm.1130] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Heterogeneous spatiotemporal patterns of C57B/L6 murine brain maturation during the first 7 weeks after birth (i.e. P15 to P45) were assessed in vivo by diffusion tensor imaging (DTI) at 9.4 T. Maps of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were used to assess developmental changes. Because directionally encoded color (DEC) maps provide an efficient and straightforward way to visualize anisotropy direction, they were used to highlight the orientation-dominant anisotropic tissues. In the corpus callosum, the increases in FA (approximately 0.4 to approximately 0.6 from P15 to P45) were primarily dominant in the medial-lateral direction, whereas the ADC decreased slightly (approximately 0.8 x 10(-3) to approximately 0.5 x 10(-3) mm(2)/s from P15 to P45). Similar increases in FA (approximately 0.3 to approximately 0.4 from P15 to P45) and decreases in ADC (approximately 0.8 x 10(-3) to approximately 0.5 x 10(-3) mm(2)/s from P15 to P45) were found in the cingulate, but these anisotropic changes were dominant in the anterior-posterior direction. In the caudate putamen, there were significant FA increases (approximately 0.1 to approximately 0.2 from P15 to P45) dominant in the dorsal-ventral and anterior-posterior directions, whereas the ADC increased rapidly early in development (approximately 0.3 x 10(-3) to approximately 0.7 x 10(-3) mm(2)/s from P15 to P17). There were no significant changes in tissue anisotropy in the somatosensory regions (whisker, forelimb), but the ADC decreased slightly (approximately 0.7 x 10(-3) to approximately 0.5 x 10(-3) mm(2)/s from P15 to P45). Although the major differences in DEC values were mainly observed in white matter pathways, other cortical and subcortical regions showed some potential morphological changes that were consistent with classical histological findings. In summary, these results show that high-resolution DTI at high magnetic fields allows detection and quantification of brain structures throughout normal development in C57B/L6 mice in vivo.
Collapse
Affiliation(s)
- Halima Chahboune
- Department of Diagnostic Radiology, Yale University, 300 Cedar Street, New Haven, CT 06510, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Martin C, Grenier D, Thévenet M, Vigouroux M, Bertrand B, Janier M, Ravel N, Litaudon P. fMRI visualization of transient activations in the rat olfactory bulb using short odor stimulations. Neuroimage 2007; 36:1288-93. [PMID: 17512755 DOI: 10.1016/j.neuroimage.2007.04.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 04/05/2007] [Accepted: 04/06/2007] [Indexed: 11/17/2022] Open
Abstract
Odor-evoked activity in the olfactory bulb displays both spatial and temporal organization. The difficulty when assessing spatio-temporal dynamics of olfactory representation is to find a method that reconciles the appropriate resolution for both dimensions. Imaging methods based on optical recordings can reach high temporal and spatial resolution but are limited to the observation of the accessible dorsal surface. Functional magnetic resonance imaging (fMRI) may be useful to overcome this limitation as it allows recording from the whole brain. In this study, we combined ultra fast imaging sequence and short stimulus duration to improve temporal resolution of odor-evoked BOLD responses. Short odor stimulations evoked high amplitude BOLD responses and patterns of activation were similar to those obtained in previous studies using longer stimulations. Moreover, short odor exposures prevented habituation processes. Analysis of the BOLD signal time course in the different areas of activation revealed that odorant response maps are not static entities but rather are temporally dynamic as reported by recent studies using optical imaging. These data demonstrated that fMRI is a non-invasive method which could represent a powerful tool to study not only the spatial dimension of odor representation but also the temporal dimension of information processing.
Collapse
Affiliation(s)
- C Martin
- Neurosciences Sensorielles, Comportement et Cognition, CNRS UMR 5020-Université Claude Bernard Lyon 1, IFR19, Institut Fédératif des Neurosciences de Lyon, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ramu J, Bockhorst KH, Grill RJ, Mogatadakala KV, Narayana PA. Cortical reorganization in NT3-treated experimental spinal cord injury: Functional magnetic resonance imaging. Exp Neurol 2007; 204:58-65. [PMID: 17112518 DOI: 10.1016/j.expneurol.2006.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 09/27/2006] [Accepted: 09/28/2006] [Indexed: 10/23/2022]
Abstract
Functional magnetic resonance imaging (fMRI) studies were performed for visualizing ongoing brain plasticity in Neurotrophin-3 (NT3)-treated experimental spinal cord injury (SCI). In response to the electrical stimulation of the forepaw, the NT3-treated animals showed extensive activation of brain structures that included contralateral cortex, thalamus, caudate putamen, hippocampus, and periaqueductal gray. Quantitative analysis of the fMRI data indicated significant changes both in the volume and center of activations in NT3-treated animals relative to saline-treated controls. A strong activation in both ipsi- and contralateral periaqueductal gray and thalamus was observed in NT3-treated animals. These studies indicate ongoing brain reorganization in the SCI animals. The fMRI results also suggest that NT3 may influence nociceptive pathways.
Collapse
Affiliation(s)
- Jaivijay Ramu
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
45
|
Ramu J, Bockhorst KH, Mogatadakala KV, Narayana PA. Functional magnetic resonance imaging in rodents: Methodology and application to spinal cord injury. J Neurosci Res 2007; 84:1235-44. [PMID: 16941500 DOI: 10.1002/jnr.21030] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional MRI (fMRI) on spinal cord-injured rodents at 4 and 8 weeks post injury (PI) is described. The paradigm for fMRI, based on electrical stimulation of rat paws, was automated using an in-house designed microprocessor-based controller that was interfaced to a stimulator. The MR images were spatially normalized to the Paxinos and Watson atlas using publicly available digital images of the cryosections. In normal uninjured animals, the activation was confined to the contralateral somatosensory cortex. In contrast, in injured animals, extensive activation, which included structures such as ipsilateral cortex, thalamus, hippocampus, and the caudate putamen, was observed at 4 and 8 weeks PI. Quantitative cluster analysis was carried out to calculate the volumes and centers of activation in individual brain structures. Based on this analysis, significant increase in activation between 4 and 8 weeks was observed only in the ipsilateral caudate putamen and thalamus. These studies suggest extensive and ongoing brain reorganization in spinal cord-injured animals.
Collapse
Affiliation(s)
- Jaivijay Ramu
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
46
|
McBride K, Slotnick B. Discrimination between the enantiomers of carvone and of terpinen-4-ol odorants in normal rats and those with lesions of the olfactory bulbs. J Neurosci 2006; 26:9892-901. [PMID: 17005853 PMCID: PMC6674478 DOI: 10.1523/jneurosci.0504-06.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We assessed (1) whether the enantiomers of terpinen-4-ol, odorants that activate nearly identical areas of the olfactory bulb, are more difficult to discriminate than those of carvone, odorants that activate different areas of the olfactory bulb, and (2) whether olfactory bulb lesions that disrupt the pattern of bulbar activation produced by these enantiomers degraded the ability of rats to discriminate between them. In psychophysical tests, normal rats discriminated between the enantiomers of terpinen-4-ol and of carvone equally well. Surgical lesions that removed the majority of bulbar glomeruli activated by these odorants (as demonstrated in previous olfactory bulb studies using intrinsic optical imaging and 2-deoxyglucose) resulted in increased detection thresholds but few or no deficits in discriminating between suprathreshold concentrations of the enantiomers. These results fail to confirm predictions based on 2-deoxyglucose maps of bulbar activity that enantiomers of terpinen-4-ol should be more difficult to discriminate than those of carvone and that the ability to discriminate between enantiomers of an odorant are based on differences in patterns of bulbar activation revealed in such maps.
Collapse
Affiliation(s)
- Kathleen McBride
- Department of Psychology, American University, Washington, DC 20016, and
| | - Burton Slotnick
- Department of Psychology, University of South Florida, Tampa, Florida 33620
| |
Collapse
|
47
|
Schafer JR, Kida I, Xu F, Rothman DL, Hyder F. Reproducibility of odor maps by fMRI in rodents. Neuroimage 2006; 31:1238-46. [PMID: 16632382 DOI: 10.1016/j.neuroimage.2005.12.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/26/2005] [Accepted: 12/29/2005] [Indexed: 10/24/2022] Open
Abstract
The interactions of volatile odorants with the approximately 1000 types of olfactory receptor neurons in the olfactory mucosa are represented in the olfactory bulb by glomerular spatial activity maps. If these spatial maps underlie the perceptual identification of odorants then, for a given organism, they must be both specific and reproducible. However, this intra-organism reproducibility need not be present between organisms because genetic and developmental studies of olfactory bulb wiring suggest that there is substantial variation between the glomerular arrangements of closely related organisms and even between the two bulbs in a given animal. The ability of functional MRI (fMRI) to record responses of the entire rodent olfactory bulb repeatedly within the same subject has made it possible to assess the reproducibility of odor-induced spatial activity maps both within and between subjects exposed to equivalent stimuli. For a range of odorants, representing multiple chemical classes, a level of fMRI reproducibility (at 7.0 T and 9.4 T) comparable or superior to other cortical regions was demonstrated. While the responses of different bulbs to the same odorant could be localized within the same broad regions of the glomerular sheet, the precise magnitude and topology of the response within those regions were both often highly variable. These results demonstrate the robustness of high-field fMRI as a tool for assaying olfactory bulb function and provide evidence that equivalent perceptual outcomes may arise from divergent neural substrates.
Collapse
Affiliation(s)
- James R Schafer
- Department of Neurobiology, Magnetic Resonance Research Center, Yale University, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
48
|
Schafer JR, Kida I, Rothman DL, Hyder F, Xu F. Adaptation in the rodent olfactory bulb measured by fMRI. Magn Reson Med 2005; 54:443-8. [PMID: 16032685 DOI: 10.1002/mrm.20588] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Effective evaluation of the odor environment necessitates the ability to attenuate responses to potent background odors in favor of novel and less robust stimuli. Olfactory receptor neuron studies suggest that some of this adaptation takes place in the primary sensory neurons, but the more extensive adaptation seen in higher cortical areas implies the involvement of additional neural mechanisms. At 7.0 T, high-resolution fMRI was used to assess the response of the rodent olfactory bulb, the most peripheral cortical structure involved in olfactory processing, to a variety of odor stimuli. The results suggest that there are additional regulatory mechanisms in the olfactory bulb that result in greater adaptation in deeper areas than that seen in sensory receptors alone and that the resultant adaptation is positively affected by increasing stimulus duration and concentration and decreasing recovery time. The implications of these findings for the integration of peripheral input with perception are discussed.
Collapse
Affiliation(s)
- James R Schafer
- Department of Neurobiology, Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
49
|
Kida I, Smith AJ, Blumenfeld H, Behar KL, Hyder F. Lamotrigine suppresses neurophysiological responses to somatosensory stimulation in the rodent. Neuroimage 2005; 29:216-24. [PMID: 16112588 DOI: 10.1016/j.neuroimage.2005.07.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 06/30/2005] [Accepted: 07/05/2005] [Indexed: 12/21/2022] Open
Abstract
Neurotransmitter release and voltage-gated ion channel activity in excitatory neurons are critical for understanding and interpreting neuroimaging signals. Couplings between changes in neural activity and energetic/vascular responses are assumed for interpretation of neuroimaging signals. To investigate involvement of neural events to neuroenergetic/neurovascular responses, we conducted multi-modal magnetic resonance imaging (MRI) measurements (at 7.0 T) and electrophysiological recordings (with high impedance microelectrodes) for local field potential (LFP) and spiking frequency (nu) in alpha-chloralose-anesthetized rats. The rats underwent forepaw stimulation before and after treatment of lamotrigine, a neuronal voltage-gated ion channel blocker and glutamate release inhibitor. Multi-modal MRI measurements of cerebral blood flow (CBF) and blood oxygenation level-dependent (BOLD) signal were combined to estimate changes in cerebral metabolic rate of oxygen consumption (CMRo2). Lamotrigine did not appreciably affect values of nu, CBF, and CMRo2 in the resting state. After lamotrigine treatment, evoked changes in LFP and nu were attenuated, which were consistent with commensurate declines in deltaCBF and deltaCMRo2. While number of evoked BOLD-activated voxels was considerably reduced with lamotrigine, intensities of voxels in middle cortical layers were affected to a lesser degree by lamotrigine. The results suggest that lamotrigine suppresses evoked neurophysiological (i.e., neural/energetic/vascular) responses, both in terms of volume of tissue activated and degree of activation in the foci. Since lamotrigine affects evoked responses but not the basal signals, it can be suggested that glutamate release and activity of voltage-gated ion channels are essential for initiating evoked energetic/vascular responses, and thereby important for interpretation of incremental changes in neuroimaging signal.
Collapse
Affiliation(s)
- Ikuhiro Kida
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
50
|
Kida I, Maciejewski PK, Hyder F. Dynamic imaging of perfusion and oxygenation by functional magnetic resonance imaging. J Cereb Blood Flow Metab 2004; 24:1369-81. [PMID: 15625411 DOI: 10.1097/01.wcb.0000141501.12558.9b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cerebral blood flow can be measured with magnetic resonance imaging (MRI) by arterial spin labeling techniques, where magnetic labeling of flowing spins in arterial blood water functions as the endogenous tracer upon mixing with the unlabeled stationary spins of tissue water. The consequence is that the apparent longitudinal relaxation time (T1) of tissue water is attenuated. A modified functional MRI scheme for dynamic CBF measurement is proposed that depends on extraction of T1 weighting from the blood oxygenation level-dependent (BOLD) image contrast, because the functional MRI signal also has an intrinsic T1 weighting that can be altered by variations of the excitation flip angle. In the alpha-chloralose-anesthetized rat model at 7T, the authors show that the stimulation-induced BOLD signal change measured with two different flip angles can be combined to obtain a T1-weighted MRI signal, reflecting the magnitude of the CBF change, which can be deconvolved to obtain dynamic changes in CBF. The deconvolution of the T1-weighted MRI signal, which is a necessary step for accurate reflection of the dynamic changes in CBF, was made possible by a transfer function obtained from parallel laser-Doppler flowmetry experiments. For all stimulus durations (ranging from 4 to 32 seconds), the peak CBF response measured by MRI after the deconvolution was reached at 4.5 +/- 1.0 seconds, which is in good agreement with (present and prior) laser-Doppler measurements. Because the low flip angle data can also provide dynamic changes of the conventional BOLD image contrast, this method can be used for simultaneous imaging of CBF and BOLD dynamics.
Collapse
Affiliation(s)
- Ikuhiro Kida
- Magnetic Resonance Research Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|