1
|
Hammood ER, Shirani S, Sadri A, Bahri M, Dehghani S. The Role of Improved Motion-Sensitized Driven Equilibrium Blood Suppression and Fat Saturation on T 2 Relaxation Time, Using GraSE Sequence in Cardiac Magnetic Resonance Imaging. J Magn Reson Imaging 2024; 60:662-672. [PMID: 37850682 DOI: 10.1002/jmri.29079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND T2 mapping is a valuable technique in cardiac MR imaging that offers insights into the microstructural characteristics of myocardial tissue. However, it was shown that myocardial T2 relaxation times (T2) measured vary significantly depending on sequence, sequence parameters, and field strength. PURPOSE To assess T2 variability and image quality in cardiac T2 maps using four variants of the gradient-spin echo (GraSE) sequence, having different methods of blood signal suppression (double inversion recovery (DIR) and improved motion-sensitized driven equilibrium (iMSDE) and with and without the addition of fat saturation (FS). STUDY TYPE Prospective. POPULATION 48 healthy volunteers (46.7 +/- 21.5 years, 24 male) with no cardiac history. FIELD STRENGTH/SEQUENCE GraSE sequence with DIR (GraSEDIR), with iMSDE (GraSEiMSDE) and FS (GraSEDIR-FS) and with both iMSDE and FS (GraSEiMSDE-FS) at 1.5T. ASSESSMENT Global T2 from three short axis myocardial slices. and image quality assessments using a 5-point Lickert scale (1, (non-diagnostic) to 5, (excellent)) were conducted to evaluate the impact of DB and FS techniques on myocardial T2 measurements and image quality. STATISTICAL TESTS Paired t-tests or non-parametric equivalents for comparisons between sequences. The Bland-Altmann plots and Pearson rank correlation analyses, as appropriate. A P value <0.05 was considered statistically significant. RESULTS The mean global T2 values for GraSEDIR, GraSEDIR-FS, GraSEiMSDE, and GraSEiMSDE-FS, were 52.84 ± 5.72 msec, 54.98 ± 3.59 msec, 53.9 ± 4.05 msec, and 55.14 ± 4.28 msec, respectively, with no significant differences (P = 0.092). High image quality scores (>4 out of 5) were obtained for all sequence variants with no significant differences between them (P = 0.11). DATA CONCLUSION All GraSE sequence variants exhibited approximately the same results and variations in the DB technique and addition of FS did not have significant impact on myocardial T2 values. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Ebtihal Raheem Hammood
- Radiation Sciences Department, School of Allied Medical Sciences, International campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Shapoor Shirani
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Sadri
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mousa Bahri
- Radiation Sciences Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadegh Dehghani
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
- Radiation Sciences Department, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Robinson SD, Bachrata B, Eckstein K, Bollmann S, Bollmann S, Hodono S, Cloos M, Tourell M, Jin J, O'Brien K, Reutens DC, Trattnig S, Enzinger C, Barth M. Improved dynamic distortion correction for fMRI using single-echo EPI and a readout-reversed first image (REFILL). Hum Brain Mapp 2023; 44:5095-5112. [PMID: 37548414 PMCID: PMC10502646 DOI: 10.1002/hbm.26440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
The boundaries between tissues with different magnetic susceptibilities generate inhomogeneities in the main magnetic field which change over time due to motion, respiration and system instabilities. The dynamically changing field can be measured from the phase of the fMRI data and corrected. However, methods for doing so need multi-echo data, time-consuming reference scans and/or involve error-prone processing steps, such as phase unwrapping, which are difficult to implement robustly on the MRI host. The improved dynamic distortion correction method we propose is based on the phase of the single-echo EPI data acquired for fMRI, phase offsets calculated from a triple-echo, bipolar reference scan of circa 3-10 s duration using a method which avoids the need for phase unwrapping and an additional correction derived from one EPI volume in which the readout direction is reversed. This Reverse-Encoded First Image and Low resoLution reference scan (REFILL) approach is shown to accurately measure B0 as it changes due to shim, motion and respiration, even with large dynamic changes to the field at 7 T, where it led to a > 20% increase in time-series signal to noise ratio compared to data corrected with the classic static approach. fMRI results from REFILL-corrected data were free of stimulus-correlated distortion artefacts seen when data were corrected with static field mapping. The method is insensitive to shim changes and eddy current differences between the reference scan and the fMRI time series, and employs calculation steps that are simple and robust, allowing most data processing to be performed in real time on the scanner image reconstruction computer. These improvements make it feasible to routinely perform dynamic distortion correction in fMRI.
Collapse
Affiliation(s)
- Simon Daniel Robinson
- Centre of Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- Department of NeurologyMedical University of GrazGrazAustria
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
- Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal ImagingViennaAustria
| | - Beata Bachrata
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
- Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal ImagingViennaAustria
- Department of Medical EngineeringCarinthia University of Applied SciencesKlagenfurtAustria
| | - Korbinian Eckstein
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Saskia Bollmann
- Centre of Advanced ImagingUniversity of QueenslandBrisbaneAustralia
| | - Steffen Bollmann
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
| | - Shota Hodono
- Centre of Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- ARC Training Centre for Innovation in Biomedical Imaging Technology (CIBIT)The University of QueenslandBrisbaneAustralia
| | - Martijn Cloos
- Centre of Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- ARC Training Centre for Innovation in Biomedical Imaging Technology (CIBIT)The University of QueenslandBrisbaneAustralia
| | - Monique Tourell
- Centre of Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- Siemens Healthcare Pty Ltd.BrisbaneAustralia
| | - Jin Jin
- Siemens Healthcare Pty Ltd.BrisbaneAustralia
| | | | - David C. Reutens
- Centre of Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- ARC Training Centre for Innovation in Biomedical Imaging Technology (CIBIT)The University of QueenslandBrisbaneAustralia
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | | | - Markus Barth
- Centre of Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
3
|
Dimov AV, Li J, Nguyen TD, Roberts AG, Spincemaille P, Straub S, Zun Z, Prince MR, Wang Y. QSM Throughout the Body. J Magn Reson Imaging 2023; 57:1621-1640. [PMID: 36748806 PMCID: PMC10192074 DOI: 10.1002/jmri.28624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/08/2023] Open
Abstract
Magnetic materials in tissue, such as iron, calcium, or collagen, can be studied using quantitative susceptibility mapping (QSM). To date, QSM has been overwhelmingly applied in the brain, but is increasingly utilized outside the brain. QSM relies on the effect of tissue magnetic susceptibility sources on the MR signal phase obtained with gradient echo sequence. However, in the body, the chemical shift of fat present within the region of interest contributes to the MR signal phase as well. Therefore, correcting for the chemical shift effect by means of water-fat separation is essential for body QSM. By employing techniques to compensate for cardiac and respiratory motion artifacts, body QSM has been applied to study liver iron and fibrosis, heart chamber blood and placenta oxygenation, myocardial hemorrhage, atherosclerotic plaque, cartilage, bone, prostate, breast calcification, and kidney stone.
Collapse
Affiliation(s)
- Alexey V. Dimov
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Jiahao Li
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Thanh D. Nguyen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | | | - Pascal Spincemaille
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Sina Straub
- Department of Radiology, Mayo Clinic, Jacksonville, FL, United States
| | - Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Martin R. Prince
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
4
|
Cheng J, Zheng Q, Xu M, Xu Z, Zhu L, Liu L, Han S, Chen W, Feng Y, Cheng J. New 3D phase-unwrapping method based on voxel clustering and local polynomial modeling: application to quantitative susceptibility mapping. Quant Imaging Med Surg 2023; 13:1550-1562. [PMID: 36915306 PMCID: PMC10006161 DOI: 10.21037/qims-22-525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022]
Abstract
Background To develop an accurate and robust 3-dimensional (3D) phase-unwrapping method that works effectively in the presence of severe noise, disconnected regions, rapid phase changes, and open-ended lines for quantitative susceptibility mapping (QSM). Methods We developed a 3D phase-unwrapping method based on voxel clustering and local polynomial modeling named CLOSE3D, which firstly explores the 26-neighborhood to calculate local variation of the phasor and the phase, and then according to the local variation of the phasor, clusters the phase data into easy-to-unwrap blocks and difficult-to-unwrap residual voxels. Next, CLOSE3D sequentially performs intrablock, interblock, and residual-voxel unwrapping by using the region-growing local polynomial modeling method. CLOSED3D was evaluated in simulation and using in vivo brain QSM data, and was compared with classical region-growing and region-expanding labeling for unwrapping estimates methods. Results The simulation experiments showed that CLOSE3D achieved accurate phase-unwrapping results with a mean error ratio <0.39%, even in the presence of serious noise, disconnected regions, and rapid phase changes. The error ratios of region-growing (P=0.000 and P=0.000) and region-expanding labeling for unwrapping estimates (P=0.007, P=0.014) methods were both significantly higher than that of CLOSE3D, when the noise level was ≥60%. The results of the in vivo brain QSM experiments showed that CLOSE3D unwrapped the phase data and accurately reconstructed quantitative susceptibility data, even with serious noise, rapid-varying phase, or an open-ended cutline. Conclusions CLOSE3D achieves phase unwrapping with high accuracy and robustness, which will help phase-related 3D magnetic resonance imaging (MRI) applications such as QSM and susceptibility weighted imaging.
Collapse
Affiliation(s)
- Junying Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Zheng
- College of software Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Man Xu
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongbiao Xu
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Li Zhu
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Liu
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wufan Chen
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Gorniak SL, Meng H, Pollonini L. Correlation between subcutaneous adipose tissue of the head and body mass index: Implications for functional neuroimaging. Hum Mov Sci 2022; 85:102997. [PMID: 36041254 PMCID: PMC11908070 DOI: 10.1016/j.humov.2022.102997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
Abstract
High body mass index (BMI) is generally assumed to represent overall amounts of body adipose tissue (fat). Increased adipose tissue amounts in persons with increased BMI has been cited as a barrier to assessment of body tissues such as muscle. Significant increases in the amount of adipose tissue between the dermal layer and the skull may result in high electrical impedance and/or increased light diffusion causing a lower signal to noise ratio during use of neuroimaging tools such as electroencepholography (EEG), transcranial direct current stimulation (tDCS), and functional near infrared spectroscopy (fNIRS). Investigating how subcutaneous adipose tissue in the head region increases with respect to total body fat percentage and BMI is an important step in developing mathematical corrections in neuroimaging measurements as BMI increases, as recommended in other measurement modalities such as electromyography (EMG). We hypothesized that percentage of subcutaneous adipose tissue in the head region would increase with respect to both total body fat percentage and BMI. A statistically significant increase in subcutaneous head fat percentage occurred with increased BMI and total body fat percentage. The data investigated in this study indicate that participant age, sex, and BMI are important features to consider in model corrections during data signal processing and analyses for subcutaneous head fat in neuroimaging approaches. The data in this project serve to provide physiological justification for this practice along with regression analyses to be considered for physiologically-based signal to noise correction algorithms.
Collapse
Affiliation(s)
- Stacey L Gorniak
- Department of Health and Human Performance, University of Houston, Houston, TX 77204, United States of America.
| | - Hao Meng
- Department of Health and Human Performance, University of Houston, Houston, TX 77204, United States of America
| | - Luca Pollonini
- Department of Engineering Technology, University of Houston, Houston, TX 77204, United States of America
| |
Collapse
|
6
|
Hanspach J, Bollmann S, Grigo J, Karius A, Uder M, Laun FB. Deep learning-based quantitative susceptibility mapping (QSM) in the presence of fat using synthetically generated multi-echo phase training data. Magn Reson Med 2022; 88:1548-1560. [PMID: 35713187 DOI: 10.1002/mrm.29265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 03/22/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE To enable a fast and automatic deep learning-based QSM reconstruction of tissues with diverse chemical shifts, relevant to most regions outside the brain. METHODS A UNET was trained to reconstruct susceptibility maps using synthetically generated, unwrapped, multi-echo phase data as input. The RMS error with respect to synthetic validation data was computed. The method was tested on two in vivo knee and two pelvis data sets. Comparisons were made to a conventional fat-water separation pipeline by applying a commonly used graph-cut algorithm, both without and with an extended mask for background field removal (FWS-CONV-QSM and FWS-MASK-CONV-QSM, respectively). Several regions of interest were segmented and compared. Furthermore, the approach was tested on a prostate cancer patient receiving low-dose-rate brachytherapy, to detect and localize the seeds by MRI. RESULTS The RMS error was 0.292 ppm with FWS-CONV-QSM and 0.123 ppm for the UNET approach. Susceptibility maps were reconstructed much faster (< 10 s) and completely automatically (no background masking needed) by the UNET compared with the other applied techniques (5 min 51 s and 22 min 44 s for CONV-QSM and FWS-MASK-CONV-QSM, respectively. Background artifacts, fat-water swaps, and hypointense artifacts between I-125 seeds of a patient receiving low-dose brachytherapy in the prostate were largely reduced in the UNET approach. CONCLUSIONS Deep learning-based QSM reconstruction, trained solely with synthetic data, is well-suited to rapidly reconstructing high-quality susceptibility maps in the presence of fat without needing masking for background field removal.
Collapse
Affiliation(s)
- Jannis Hanspach
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Bollmann
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia
| | - Johanna Grigo
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Andre Karius
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|