1
|
DeVallance E, Bowdridge E, Garner K, Griffith J, Seman M, Batchelor T, Velayutham M, Goldsmith WT, Hussain S, Kelley EE, Nurkiewicz TR. The alarmin, interleukin-33, increases vascular tone via extracellular signal regulated kinase-mediated Ca 2+ sensitization and endothelial nitric oxide synthase inhibition. J Physiol 2024; 602:6087-6107. [PMID: 39540837 DOI: 10.1113/jp286990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Alarmins are classified by their release from damaged or ruptured cells. Many alarmins have been found to increase vascular tone and oppose endothelium-dependent dilatation (EDD). Interleukin (IL)-33 plays a prominent role in lung injury and can be released during vascular injury and in chronic studies found to be cardioprotective. Our recent work has implicated IL-33 in acute vascular dysfunction following inhalation of engineered nanomaterials (ENM). However, the mechanisms linking IL-33 to vascular tone have not been interrogated. We therefore aimed to determine whether IL-33 directly influenced microvascular tone and endothelial function. Isolated feed arteries and in vivo arterioles from male and female Sprague-Dawley rats were used to determine direct vascular actions of IL-33. Mesenteric feed arteries and arterioles demonstrated reduced intraluminal diameters when treated with increasing concentrations of recombinant IL-33. IL-33 activated extracellular signal regulated kinase (ERK)1/2 of rat aortic smooth muscle cells but not phosphorylation of myosin light chain kinase. This suggested IL-33 may sensitize arterioles to Ca2+-mediated responses. Indeed, IL-33 augmented the myogenic- and phenylephrine-induced vasoconstriction. Additionally, incubation of arterioles with 1 ng IL-33 attenuated ACh-mediated EDD. Mechanistically, in human aortic endothelial cells, we demonstrate that IL-33-mediated ERK1/2 activation leads to inhibitory phosphorylation of serine 602 on endothelial nitric oxide synthase. Finally, we demonstrate that IL-33-ERK1/2 contributes to vascular tone following two known inducers of IL-33; ENM inhalation and the rupture endothelial cells. The present study provides novel evidence that IL-33 increases vascular tone via canonical ERK1/2 activation in microvascular smooth muscle and endothelium. Altogether, it is suggested IL-33 plays a critical role in microvascular homeostasis following barrier cell injury. KEY POINTS: Interleukin (IL)-33 causes a concentration-dependent reduction in feed artery diameter. IL-33 acts on vascular smooth muscle cells to augment Ca2+-mediated processes. IL-33 causes inhibitory phosphorylation of endothelial nitric oxide synthase and opposes endothelium-dependent dilatation. Engineered nanomaterial-induced lung injury and endothelial cell rupture in part act through IL-33 to mediate increased vascular tone.
Collapse
MESH Headings
- Animals
- Interleukin-33/metabolism
- Interleukin-33/pharmacology
- Rats, Sprague-Dawley
- Male
- Nitric Oxide Synthase Type III/metabolism
- Female
- Rats
- Vasodilation/drug effects
- Calcium/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Alarmins/metabolism
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiology
- Arterioles/physiology
- Arterioles/drug effects
- Arterioles/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
Collapse
Affiliation(s)
- Evan DeVallance
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Elizabeth Bowdridge
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Krista Garner
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Julie Griffith
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Madison Seman
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - Thomas Batchelor
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Murugesan Velayutham
- Department of Biochemistry and Molecular Medicine, Health Sciences Center, West Virginia University, Morgantown, WV, USA
| | - W Travis Goldsmith
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Salik Hussain
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Eric E Kelley
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R Nurkiewicz
- Department of Physiology, Pharmacology & Toxicology, Health Sciences Center, West Virginia University, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
2
|
Xu K, Phue WH, Basu N, George S. The potential of dietary nanoparticles to enhance allergenicity of milk proteins: an in vitro investigation. Immunol Cell Biol 2023; 101:625-638. [PMID: 37157183 DOI: 10.1111/imcb.12649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
In recent years, the popularity of dietary nanoparticles (NPs) in the food industry as additives has raised concerns because of the lack of knowledge about potential adverse health outcomes ensuing from the interactions of NPs with components of the food matrix and gastrointestinal system. In this study, we used a transwell culture system that consisted of human colorectal adenocarcinoma (Caco-2) cells in the apical insert and Laboratory of Allergic Diseases 2 mast cells in the basal compartment to study the effect of NPs on milk allergen delivery across the epithelial layer, mast cell responses and signaling between epithelial and mast cells in allergenic inflammation. A library of dietary particles (silicon dioxide NPs, titanium dioxide NPs and silver NPs) that varied in particle size, surface chemistry and crystal structures with or without pre-exposure to milk was used in this investigation. Milk-interacted particles were found to acquire surface corona and increased the bioavailability of milk allergens (casein and β-lactoglobulin) across the intestinal epithelial layer. The signaling between epithelial cells and mast cells resulted in significant changes in the early phase and late-phase activation of the mast cells. This study suggested that antigen challenge in mast cells with the presence of dietary NPs may cause the transition of allergic responses from an immunoglobulin E (IgE)-dependent mechanism to a mixed mechanism (both IgE-dependent and IgE-independent mechanisms).
Collapse
Affiliation(s)
- Ke Xu
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Wut Hmone Phue
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Niladri Basu
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Saji George
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
3
|
Zhang L, Lu N, Liu M. Selective serotonin reuptake inhibitors regulate the interrelation between 5-HT and inflammation after myocardial infarction. BMC Cardiovasc Disord 2023; 23:342. [PMID: 37422634 PMCID: PMC10329792 DOI: 10.1186/s12872-023-03378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a main cause of death all around the world. There is a close relationship between myocardial infarction (MI) and depression. MI patients with untreated depression had higher mortality than those without depression. Therefore, this study aimed to explore the effect of escitalopram in treating a model under MI and unpredictable chronic mild stress (UCMS). METHODS Male C57BL/6J mice were treated with sham surgery, or MI surgery, or UCMS, or escitalopram (ES) for a consecutive two weeks. And the mice were divided into Sham group, MI group, MI + UCMS group, MI + UCMS + ES group (n = 8 in each group). After treatment, the mice went through open field test for anxiety behavior, sucrose preference test for depressive behavior. After sacrificed, the blood, heart, hippocampus, and cortex were collected. RESULTS The escitalopram badly increased the area of cardiac fibrosis size. The sucrose preference test demonstrated that escitalopram treatment showed significant effect in improving depressive behaviors of mice under MI + UCMS. The potential mechanism involved the interrelation between 5-HT system and inflammation. MI significantly affected the level of cardiac SERT. Both UCMS and ES significantly affected the level of cortex TNF-α. UCMS significantly affected the level of cardiac IL-33. In the hippocampus tissue, TNF-α was positively correlated with SERT, and IL-10 was positively correlated with SERT. In the cortex tissue, IL-33 was positively correlated with 5-HT4R, and sST2 was positively correlated with 5-HT. CONCLUSIONS Two-week escitalopram treatment might worsen myocardial infarction. But escitalopram could benefit depressive behaviors, which may be related with the interrelationship between the 5-HT system and inflammatory factors in the brain.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Nan Lu
- Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Department of Cardiology, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Meiyan Liu
- Department of Psycho-cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
| |
Collapse
|
4
|
Chen S, Su Y, Zhang M, Zhang Y, Xiu P, Luo W, Zhang Q, Zhang X, Liang H, Lee APW, Shao L, Xiu J. Insights into the toxicological effects of nanomaterials on atherosclerosis: mechanisms involved and influence factors. J Nanobiotechnology 2023; 21:140. [PMID: 37118804 PMCID: PMC10148422 DOI: 10.1186/s12951-023-01899-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/16/2023] [Indexed: 04/30/2023] Open
Abstract
Atherosclerosis is one of the most common types of cardiovascular disease and is driven by lipid accumulation and chronic inflammation in the arteries, which leads to stenosis and thrombosis. Researchers have been working to design multifunctional nanomedicines with the ability to target, diagnose, and treat atherosclerosis, but recent studies have also identified that nanomaterials can cause atherosclerosis. Therefore, this review aims to outline the molecular mechanisms and physicochemical properties of nanomaterials that promote atherosclerosis. By analyzing the toxicological effects of nanomaterials on cells involved in the pathogenesis of atherosclerosis such as vascular endothelial cells, vascular smooth muscle cells and immune cells, we aim to provide new perspectives for the prevention and treatment of atherosclerosis, and raise awareness of nanotoxicology to advance the clinical translation and sustainable development of nanomaterials.
Collapse
Affiliation(s)
- Siyu Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuan Su
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, 528300, China
| | - Manjin Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yulin Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Peiming Xiu
- Guangdong Medical University, Dongguan, 523808, China
| | - Wei Luo
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiuxia Zhang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinlu Zhang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongbin Liang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Alex Pui-Wai Lee
- Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Jiancheng Xiu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Aljabali AA, Obeid MA, Bashatwah RM, Serrano-Aroca Á, Mishra V, Mishra Y, El-Tanani M, Hromić-Jahjefendić A, Kapoor DN, Goyal R, Naikoo GA, Tambuwala MM. Nanomaterials and Their Impact on the Immune System. Int J Mol Sci 2023; 24:2008. [PMID: 36768330 PMCID: PMC9917130 DOI: 10.3390/ijms24032008] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Nanomaterials have been the focus of intensive development and research in the medical and industrial sectors over the past several decades. Some studies have found that these compounds can have a detrimental impact on living organisms, including their cellular components. Despite the obvious advantages of using nanomaterials in a wide range of applications, there is sometimes skepticism caused by the lack of substantial proof that evaluates potential toxicities. The interactions of nanoparticles (NPs) with cells of the immune system and their biomolecule pathways are an area of interest for researchers. It is possible to modify NPs so that they are not recognized by the immune system or so that they suppress or stimulate the immune system in a targeted manner. In this review, we look at the literature on nanomaterials for immunostimulation and immunosuppression and their impact on how changing the physicochemical features of the particles could alter their interactions with immune cells for the better or for the worse (immunotoxicity). We also look into whether the NPs have a unique or unexpected (but desired) effect on the immune system, and whether the surface grafting of polymers or surface coatings makes stealth nanomaterials that the immune system cannot find and get rid of.
Collapse
Affiliation(s)
- Alaa A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Mohammad A. Obeid
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Rasha M. Bashatwah
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab., Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Gowhar A. Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah PC 211, Oman
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
6
|
Zhang G, Luo W, Yang W, Li S, Li D, Zeng Y, Li Y. The importance of the
IL
‐1 family of cytokines in nanoimmunosafety and nanotoxicology. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1850. [DOI: 10.1002/wnan.1850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Guofang Zhang
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Wenhe Luo
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Wenjie Yang
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Su Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Dongjie Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Yanqiao Zeng
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| |
Collapse
|
7
|
Ganesan R, Vasantha-Srinivasan P, Sadhasivam DR, Subramanian R, Vimalraj S, Suk KT. Carbon Nanotubes Induce Metabolomic Profile Disturbances in Zebrafish: NMR-Based Metabolomics Platform. Front Mol Biosci 2021; 8:688827. [PMID: 34277704 PMCID: PMC8283261 DOI: 10.3389/fmolb.2021.688827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
The present study aims to investigate the metabolic effects of single-walled carbon nanotubes (SWCNT) on zebrafish (Danio rerio) using 1H nuclear magnetic resonance (1H-NMR) spectroscopy. However, there is no significant information available regarding the characterization of organic molecules, and metabolites with SWCNT exposure. Noninvasive biofluid methods have improved our understanding of SWCNT metabolism in zebrafish in recent years. Here, we used targeted metabolomics to quantify a set of metabolites within biological systems. SWCNT at various concentrations was given to zebrafish, and the metabolites were extracted using two immiscible solvent systems, methanol and chloroform. Metabolomics profiling was used in association with univariate and multivariate data analysis to determine metabolomic phenotyping. The metabolites, malate, oxalacetate, phenylaniline, taurine, sn-glycero-3-phosphate, glycine, N-acetyl mate, lactate, ATP, AMP, valine, pyruvate, ADP, serine, niacinamide are significantly impacted. The metabolism of amino acids, energy and nucleotides are influenced by SWCNT which might indicate a disturbance in metabolic reaction networks. In conclusion, using high-throughput analytical methods, we provide a perspective of metabolic impacts and the underlying associated metabolic pathways.
Collapse
Affiliation(s)
- Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea.,Department of Biological Sciences, Pusan National University, Busan, Korea.,Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | | | | | - Raghunandhakumar Subramanian
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Selvaraj Vimalraj
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.,Center for Biotechnology, Anna University, Chennai, India
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| |
Collapse
|
8
|
Alsaleh NB. Adverse cardiovascular responses of engineered nanomaterials: Current understanding of molecular mechanisms and future challenges. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102421. [PMID: 34166839 DOI: 10.1016/j.nano.2021.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/14/2021] [Accepted: 05/09/2021] [Indexed: 11/30/2022]
Abstract
Nanotechnology is spanning multiple fields of study from materials science to computer engineering and drug discovery. Since the early 21st century, nanotechnology and nano-enabled research have received great attention and governmental funding accompanied with interest to ensure human and environmental safety of engineered nanomaterials (ENMs). Optimal functioning of the cardiovascular (CV) system is of utmost importance for the overall health of the body. Following exposure, ENMs essentially end up in the circulation (at least partially) and hence it is key to assess any associated adverse CV consequences. Accumulating research suggests that exposure to ENMs (different compositions and physicochemical properties) has the capacity to directly and indirectly interact with CV components resulting in adverse events and worsening of CV complications. However, the underlying molecular mechanisms driving these events remain to be elucidated. In this article, we review state-of-art literature on ENM-associated adverse CV responses and discuss the potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Nasser B Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Nanobiotechnology Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
9
|
Scala G, Delaval MN, Mukherjee SP, Federico A, Khaliullin TO, Yanamala N, Fatkhutdinova LM, Kisin ER, Greco D, Fadeel B, Shvedova AA. Multi-walled carbon nanotubes elicit concordant changes in DNA methylation and gene expression following long-term pulmonary exposure in mice. CARBON 2021; 178:563-572. [PMID: 37206955 PMCID: PMC10193301 DOI: 10.1016/j.carbon.2021.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) causes inflammation and fibrosis. Our previous work has shown that industrially produced MWCNTs trigger specific changes in gene expression in the lungs of exposed animals. To elucidate whether epigenetic effects play a role for these gene expression changes, we performed whole genome bisulphite sequencing to assess DNA methylation patterns in the lungs 56 days after exposure to MWCNTs. Lung tissues were also evaluated with respect to histopathological changes and cytokine profiling of bronchoalveolar lavage (BAL) fluid was conducted using a multi-plex array. Integrated analysis of transcriptomics data and DNA methylation data revealed concordant changes in gene expression. Functional analysis showed that the muscle contraction, immune system/inflammation, and extracellular matrix pathways were the most affected pathways. Taken together, the present study revealed that MWCNTs exert epigenetic effects in the lungs of exposed animals, potentially driving the subsequent gene expression changes.
Collapse
Affiliation(s)
- Giovanni Scala
- Department of Biology, University of Naples, Naples, Italy
| | - Mathilde N. Delaval
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sourav P. Mukherjee
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Naveena Yanamala
- Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA
| | - Liliya M. Fatkhutdinova
- Department of Hygiene and Occupational Medicine, Kazan State Medical University, Kazan, Russia
| | - Elena R. Kisin
- Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Corresponding author. (D. Greco)
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Corresponding author. (B. Fadeel)
| | - Anna A. Shvedova
- Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
- Corresponding author. Health Effects Laboratory Division, NIOSH, CDC, Morgantown, WV, USA. (A.A. Shvedova)
| |
Collapse
|
10
|
Mendoza RP, Fudge DH, Brown JM. Cellular Energetics of Mast Cell Development and Activation. Cells 2021; 10:524. [PMID: 33801300 PMCID: PMC7999080 DOI: 10.3390/cells10030524] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Mast cells are essential first responder granulocytes in the innate immune system that are well known for their role in type 1 immune hypersensitivity reactions. Although mostly recognized for their role in allergies, mast cells have a range of influences on other systems throughout the body and can respond to a wide range of agonists to properly prime an appropriate immune response. Mast cells have a dynamic energy metabolism to allow rapid responsiveness to their energetic demands. However, our understanding of mast cell metabolism and its impact on mast cell activation and development is still in its infancy. Mast cell metabolism during stimulation and development shifts between both arms of metabolism: catabolic metabolism-such as glycolysis and oxidative phosphorylation-and anabolic metabolism-such as the pentose phosphate pathway. The potential for metabolic pathway shifts to precede and perhaps even control activation and differentiation provides an exciting opportunity to explore energy metabolism for clues in deciphering mast cell function. In this review, we discuss literature pertaining to metabolic environments and fluctuations during different sources of activation, especially IgE mediated vs. non-IgE mediated, and mast cell development, including progenitor cell types leading to the well-known resident mast cell.
Collapse
Affiliation(s)
| | | | - Jared M. Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80016, USA; (R.P.M.); (D.H.F.)
| |
Collapse
|
11
|
das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2021; 49:5058-5100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal tissues constitute the largest interface between the body and the surrounding environment and they regulate the access of molecules, supramolecular structures, particulate matter, and pathogens into it. All mucosae are characterized by an outer mucus layer that protects the underlying cells from physicochemical, biological and mechanical insults, a mono-layered or stratified epithelium that forms tight junctions and controls the selective transport of solutes across it and associated lymphoid tissues that play a sentinel role. Mucus is a gel-like material comprised mainly of the glycoprotein mucin and water and it displays both hydrophilic and hydrophobic domains, a net negative charge, and high porosity and pore interconnectivity, providing an efficient barrier for the absorption of therapeutic agents. To prolong the residence time, absorption and bioavailability of a broad spectrum of active compounds upon mucosal administration, mucus-penetrating and mucoadhesive particles have been designed by tuning the chemical composition, the size, the density, and the surface properties. The benefits of utilizing nanomaterials that interact intimately with mucosae by different mechanisms in the nanomedicine field have been extensively reported. To ensure the safety of these nanosystems, their compatibility is evaluated in vitro and in vivo in preclinical and clinical trials. Conversely, there is a growing concern about the toxicity of nanomaterials dispersed in air and water effluents that unintentionally come into contact with the airways and the gastrointestinal tract. Thus, deep understanding of the key nanomaterial properties that govern the interplay with mucus and tissues is crucial for the rational design of more efficient drug delivery nanosystems (nanomedicine) and to anticipate the fate and side-effects of nanoparticulate matter upon acute or chronic exposure (nanotoxicology). This review initially overviews the complex structural features of mucosal tissues, including the structure of mucus, the epithelial barrier, the mucosal-associated lymphatic tissues and microbiota. Then, the most relevant investigations attempting to identify and validate the key particle features that govern nanomaterial-mucosa interactions and that are relevant in both nanomedicine and nanotoxicology are discussed in a holistic manner. Finally, the most popular experimental techniques and the incipient use of mathematical and computational models to characterize these interactions are described.
Collapse
Affiliation(s)
- José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde & INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Roni Sverdlov Arzi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| |
Collapse
|
12
|
Dong J. Signaling Pathways Implicated in Carbon Nanotube-Induced Lung Inflammation. Front Immunol 2020; 11:552613. [PMID: 33391253 PMCID: PMC7775612 DOI: 10.3389/fimmu.2020.552613] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a tissue response to a variety of harmful stimuli, such as pathogens, irritants, and injuries, and can eliminate insults and limit tissue damage. However, dysregulated inflammation is recognized as a cause of many human diseases, exemplified by organ fibrosis and cancer. In this regard, inflammation-promoted fibrosis is commonly observed in human lung diseases, such as idiopathic pulmonary fibrosis and pneumoconiosis. Carbon nanotubes (CNTs) are a type of nanomaterials with unique properties and various industrial and commercial applications. On the other hand, certain forms of CNTs are potent inducers of inflammation and fibrosis in animal lungs. Notably, acute inflammation is a remarkable phenotype elicited by CNTs in the lung during the early acute phase post-exposure; whereas a type 2 immune response is evidently activated and dominates during the late acute and chronic phases, leading to type 2 inflammation and lung fibrosis. Numerous studies demonstrate that these immune responses involve distinct immune cells, various pathologic factors, and specific functions and play crucial roles in the initiation and progression of inflammation and fibrosis in the lung exposed to CNTs. Thus, the mechanistic understanding of the immune responses activated by CNTs has drawn great attention in recent years. This article reviews the major findings on the cell signaling pathways that are activated in immune cells and exert functions in promoting immune responses in CNT-exposed lungs, which would provide new insights into the understanding of CNT-induced lung inflammation and inflammation-driven fibrosis, the application of CNT-induced lung inflammation and fibrosis as a new disease model, and the potential of targeting immune cells as a therapeutic strategy for relevant human lung diseases.
Collapse
Affiliation(s)
- Jie Dong
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
13
|
Hussain Z, Thu HE, Haider M, Khan S, Sohail M, Hussain F, Khan FM, Farooq MA, Shuid AN. A review of imperative concerns against clinical translation of nanomaterials: Unwanted biological interactions of nanomaterials cause serious nanotoxicity. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Ma Q. Polarization of Immune Cells in the Pathologic Response to Inhaled Particulates. Front Immunol 2020; 11:1060. [PMID: 32625201 PMCID: PMC7311785 DOI: 10.3389/fimmu.2020.01060] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/01/2020] [Indexed: 12/30/2022] Open
Abstract
Polarization of immune cells is commonly observed in host responses associated with microbial immunity, inflammation, tumorigenesis, and tissue repair and fibrosis. In this process, immune cells adopt distinct programs and perform specialized functions in response to specific signals. Accumulating evidence indicates that inhalation of micro- and nano-sized particulates activates barrier immune programs in the lung in a time- and context-dependent manner, including type 1 and type 2 inflammation, and T helper (Th) 17 cell, regulatory T cell (Treg), innate lymphoid cell (ILC), and myeloid-derived suppressor cell (MDSC) responses, which highlight the polarization of several major immune cell types. These responses facilitate the pulmonary clearance and repair under physiological conditions. When exposure persists and overwhelms the clearance capacity, they foster the chronic progression of inflammation and development of progressive disease conditions, such as fibrosis and cancer. The pulmonary response to insoluble particulates thus represents a distinctive disease process wherein non-infectious, persistent exposures stimulate the polarization of immune cells to orchestrate dynamic inflammatory and immune reactions, leading to pulmonary and pleural chronic inflammation, fibrosis, and malignancy. Despite large variations in particles and their associated disease outcomes, the early response to inhaled particles often follows a common path. The initial reactions entail a barrier immune response dominated by type 1 inflammation that features active phagocytosis by M1 macrophages and recruitment of neutrophils, both of which are fueled by Th1 and proinflammatory cytokines. Acute inflammation is immediately followed by resolution and tissue repair mediated through specialized pro-resolving mediators (SPMs) and type 2 cytokines and cells including M2 macrophages and Th2 lymphocytes. As many particles and fibers cannot be digested by phagocytes, resolution is often extended and incomplete, and type 2 inflammation becomes heightened, which promotes interstitial fibrosis, granuloma formation, and tumorigenesis. Recent studies also reveal the involvement of Th17-, Treg-, ILC-, and MDSC-mediated responses in the pathogenesis caused by inhaled particulates. This review synopsizes the progress in understanding the interplay between inhaled particles and the pulmonary immune functions in disease pathogenesis, with focus on particle-induced polarization of immune cells and its role in the development of chronic inflammation, fibrosis, and cancer in the lung.
Collapse
Affiliation(s)
- Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
15
|
Lim CS, Porter DW, Orandle MS, Green BJ, Barnes MA, Croston TL, Wolfarth MG, Battelli LA, Andrew ME, Beezhold DH, Siegel PD, Ma Q. Resolution of Pulmonary Inflammation Induced by Carbon Nanotubes and Fullerenes in Mice: Role of Macrophage Polarization. Front Immunol 2020; 11:1186. [PMID: 32595644 PMCID: PMC7303302 DOI: 10.3389/fimmu.2020.01186] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary exposure to certain engineered nanomaterials (ENMs) causes chronic lesions like fibrosis and cancer in animal models as a result of unresolved inflammation. Resolution of inflammation involves the time-dependent biosynthesis of lipid mediators (LMs)-in particular, specialized pro-resolving mediators (SPMs). To understand how ENM-induced pulmonary inflammation is resolved, we analyzed the inflammatory and pro-resolving responses to fibrogenic multi-walled carbon nanotubes (MWCNTs, Mitsui-7) and low-toxicity fullerenes (fullerene C60, C60F). Pharyngeal aspiration of MWCNTs at 40 μg/mouse or C60F at a dose above 640 μg/mouse elicited pulmonary effects in B6C3F1 mice. Both ENMs stimulated acute inflammation, predominated by neutrophils, in the lung at day 1, which transitioned to histiocytic inflammation by day 7. By day 28, the lesion in MWCNT-exposed mice progressed to fibrotic granulomas, whereas it remained as alveolar histiocytosis in C60F-exposed mice. Flow cytometric profiling of whole lung lavage (WLL) cells revealed that neutrophil recruitment was the greatest at day 1 and declined to 36.6% of that level in MWCNT- and 16.8% in C60F-treated mice by day 7, and to basal levels by day 28, suggesting a rapid initiation phase and an extended resolution phase. Both ENMs induced high levels of proinflammatory leukotriene B4 (LTB4) and prostaglandin E2 (PGE2) with peaks at day 1, and high levels of SPMs resolvin D1 (RvD1) and E1 (RvE1) with peaks at day 7. MWCNTs and C60F induced time-dependent polarization of M1 macrophages with a peak at day 1 and subsequently of M2 macrophages with a peak at day 7 in the lung, accompanied by elevated levels of type 1 or type 2 cytokines, respectively. M1 macrophages exhibited preferential induction of arachidonate 5-lipoxygenase activating protein (ALOX5AP), whereas M2 macrophages had a high level expression of arachidonate 15-lipoxygenase (ALOX15). Polarization of macrophages in vitro differentially induced ALOX5AP in M1 macrophages or ALOX15 in M2 macrophages resulting in increased preferential biosynthesis of proinflammatory LMs or SPMs. MWCNTs increased the M1- or M2-specific production of LMs accordingly. These findings support a mechanism by which persistent ENM-induced neutrophilic inflammation is actively resolved through time-dependent polarization of macrophages and enhanced biosynthesis of specialized LMs via distinct ALOX pathways.
Collapse
Affiliation(s)
- Chol Seung Lim
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Dale W. Porter
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Marlene S. Orandle
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Brett J. Green
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Mark A. Barnes
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Tara L. Croston
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Michael G. Wolfarth
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Lori A. Battelli
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Michael E. Andrew
- Bioanalytics Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Donald H. Beezhold
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Paul D. Siegel
- Office of the Director, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
16
|
Dong J. Microenvironmental Alterations in Carbon Nanotube-Induced Lung Inflammation and Fibrosis. Front Cell Dev Biol 2020; 8:126. [PMID: 32185174 PMCID: PMC7059188 DOI: 10.3389/fcell.2020.00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/13/2020] [Indexed: 12/30/2022] Open
Abstract
Carbon nanotube (CNT)-induced pulmonary inflammation and fibrosis have been intensively observed and characterized in numerous animal studies in the past decade. Remarkably, CNT-induced fibrotic lesions highly resemble some human fibrotic lung diseases, such as IPF and pneumoconiosis, regarding disease development and pathological features. This notion leads to a serious concern over the health impact of CNTs in exposed human populations, considering the rapidly expanding production of CNT materials for diverse industrial and commercial applications, and meanwhile provides the rationale for exploring CNT-induced pathologic effects in the lung. Accumulating mechanistic understanding of CNT lung pathology at the systemic, cellular, and molecular levels has demonstrated the potential of using CNT-exposed animals as a new disease model for the studies on inflammation, fibrosis, and the interactions between these two disease states. Tissue microenvironment plays critical roles in maintaining homeostasis and physiological functions of organ systems. When aberrant microenvironment forms under intrinsic or extrinsic stimulation, tissue abnormality, organ dysfunction, and pathological outcomes are induced, resulting in disease development. In this article, the cellular and molecular alterations that are induced in tissue microenvironment and implicated in the initiation and progression of inflammation and fibrosis in CNT-exposed lungs, including effector cells, soluble mediators, and functional events exemplified by cell differentiation and extracellular matrix (ECM) modification, are summarized and discussed. This analysis would provide new insights into the mechanistic understanding of lung inflammation and fibrosis induced by CNTs, as well as the development of CNT-exposed animals as a new model for human lung diseases.
Collapse
Affiliation(s)
- Jie Dong
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
17
|
Alsaleh NB, Brown JM. Engineered Nanomaterials and Type I Allergic Hypersensitivity Reactions. Front Immunol 2020; 11:222. [PMID: 32117324 PMCID: PMC7033602 DOI: 10.3389/fimmu.2020.00222] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Type I allergic hypersensitivity disorders (atopy) including asthma, atopic dermatitis, allergic rhinitis, and food allergy are on the rise in developed and developing countries. Engineered nanomaterials (ENMs) span a large spectrum of material compositions including carbonic, metals, polymers, lipid-based, proteins, and peptides and are being utilized in a wide range of industries including healthcare and pharmaceuticals, electronics, construction, and food industry, and yet, regulations for the use of ENMs in consumer products are largely lacking. Prior evidence has demonstrated the potential of ENMs to induce and/or aggravate type I allergic hypersensitivity responses. Furthermore, previous studies have shown that ENMs could directly interact with and activate key T-helper 2 (Th2) effector cell types (such as mast cells) and the complement system, which could result in pseudoallergic (non-IgE-mediated) hypersensitivity reactions. Nevertheless, the underlying molecular mechanisms of ENM-mediated induction and/or exacerbation of type I immune responses are poorly understood. In this review, we first highlight key examples of studies that have demonstrated inherent immunomodulatory properties of ENMs in the context of type I allergic hypersensitivity reactions, and most importantly, we attempt to put together the potential molecular mechanisms that could drive ENM-mediated stimulation and/or aggravation of type I allergic hypersensitivity responses.
Collapse
Affiliation(s)
- Nasser B Alsaleh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
18
|
Xu Y, Liu Q, Guo X, Xiang L, Zhao G. Resveratrol attenuates IL‑33‑induced mast cell inflammation associated with inhibition of NF‑κB activation and the P38 signaling pathway. Mol Med Rep 2020; 21:1658-1666. [PMID: 32016471 DOI: 10.3892/mmr.2020.10952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/24/2019] [Indexed: 11/05/2022] Open
Abstract
Resveratrol (RSV), a natural polyphenol found in grapes and other herbal plants, has been reported to possess anti‑inflammatory, anti‑oxidative and anti‑proliferative activities. The aim of the present study was to investigate the effect of RSV on interleukin (IL)‑33‑induced inflammatory responses in mast cells and identify the underlying molecular mechanisms. Rat basophilic leukemia (RBL‑2H3) cells were stimulated with IL‑33 in the presence or absence of RSV. MTT, ELISA, reverse transcription‑quantitative PCR and western blot analyses were then performed in order to assess cytotoxicity, inflammatory cytokine production, suppression of tumorigenicity 2 receptor expression, protein expression involved in mitogen‑activated protein kinase (MAPK) and nuclear factor (NF)‑κB signaling, respectively. Finally, rats were used to determine the biological effect of RSV in vivo. The results revealed that RSV inhibited cell viability and increased cytotoxicity in a dose‑dependent manner. Medium concentration of RSV (10 µM) treatment attenuated inflammatory cytokine production, such as IL‑6, IL‑13, tumor necrosis factor‑α and monocyte chemotactic protein‑1, and curbed IL‑33‑induced enhancement of immunoglobulin E‑mediated responses in RBL‑2H3 cells, which were associated with the suppression of NF‑κB‑mediated transcription and inhibition of P38 phosphorylation in response to IL‑33 stimulation, but not extracellular signal regulated kinase or JNK. Notably, RSV application also decreased the levels of inflammatory cytokines in rats induced by IL‑33 injection, which was similar to the anti‑inflammatory effect in vitro. The data from the present study demonstrated that RSV played a regulatory role in antagonizing the effects of IL‑33 on mast cells both in vitro and in vivo, suggesting that it has therapeutic potential in IL‑33‑mediated inflammatory diseases that are associated with mast cells.
Collapse
Affiliation(s)
- Yundan Xu
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Qiang Liu
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Xiaohong Guo
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Lei Xiang
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Gang Zhao
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
19
|
Cui L, Wang X, Sun B, Xia T, Hu S. Predictive Metabolomic Signatures for Safety Assessment of Metal Oxide Nanoparticles. ACS NANO 2019; 13:13065-13082. [PMID: 31682760 DOI: 10.1021/acsnano.9b05793] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The widespread use of metal oxide nanoparticles (MOx NPs) poses a risk of exposure that may lead to adverse health effects on humans. Even though a number of toxicological methodologies are available for assessing nanotoxicity, the effect of MOx NPs on cell metabolism in vitro and in vivo remains largely unknown, especially under the exposure to low-dose or supposedly low-toxicity MOx NPs. In this study, liquid chromatography-mass spectrometry (LC-MS) based metabolomics was used to reveal significantly altered metabolites and metabolic pathways in human bronchial epithelial cells exposed to four different types of MOx NPs (ZnO, SiO2, TiO2, and CeO2) at both high (25 μg/mL) and low (12.5 μg/mL) doses. We demonstrated that high-dose ZnO NPs caused severe cytotoxicity with altered metabolism of amino acids, nucleotides, nucleosides, tricarboxylic acid cycle, lipids, inflammation/redox, and fatty acid oxidation, as well as the elevation of toxic and DNA damage related metabolites. Fewer metabolomic alterations were induced by low-dose ZnO NPs. However, most metabolites significantly altered by high-dose ZnO NPs were also slightly changed by low-dose ZnO NPs. On the other hand, the cells exposed to SiO2, TiO2, and CeO2 NPs at either high or low dose displayed low cytotoxicity with similar metabolomic alterations, although each type of NPs induced distinct changes of certain metabolites. These three NPs significantly affected the metabolic pathways of sphingosine-1-phosphate, fatty acid oxidation, folate cycle, inflammation/redox, and lipid metabolism. In addition, dose-dependent effects were observed for a number of metabolites significantly altered by respective MOx NPs. Representative metabolites of the significantly altered metabolic pathways were successfully validated in vitro using enzymatic assays. More importantly, these representative metabolites were further validated in a mouse model after lung exposure to respective NPs, indicating that in vitro metabolomic findings may be used to effectively predict the toxicological effects in vivo. Despite functional assay results demonstrating that the changes in cellular functions were largely reflected by the metabolomic alterations, LC-MS-based metabolomics was sensitive enough to detect the subtle metabolomic changes when functional cellular assays showed no significant difference. Collectively, our studies have unveiled potential metabolic mechanisms of MOx NP-induced nanotoxicity in lung epithelial cells and demonstrated the sensitivity and feasibility of using metabolomic signatures to understand and predict nanotoxicity in vivo.
Collapse
Affiliation(s)
- Li Cui
- School of Dentistry and Jonsson Comprehensive Cancer Center , University of California , Los Angeles , California 90095 , United States
| | - Xiang Wang
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute , University of California , Los Angeles , California 90095 , United States
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , 2 Linggong Road , 116024 , Dalian , China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute , University of California , Los Angeles , California 90095 , United States
| | - Shen Hu
- School of Dentistry and Jonsson Comprehensive Cancer Center , University of California , Los Angeles , California 90095 , United States
| |
Collapse
|
20
|
Alsaleh NB, Mendoza RP, Brown JM. Exposure to silver nanoparticles primes mast cells for enhanced activation through the high-affinity IgE receptor. Toxicol Appl Pharmacol 2019; 382:114746. [PMID: 31494149 DOI: 10.1016/j.taap.2019.114746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/29/2023]
Abstract
Mast cells are a key effector cell in type I allergic reactions. It has been shown that environmental exposures such as diesel exhaust and heavy metals exacerbate mast cell degranulation and activation. Today, the use of engineered nanomaterials (ENMs) is rapidly expanding and silver nanoparticles (AgNP) are one of the mostly widely utilized ENMs, primarily for their antimicrobial properties, and are being incorporated into many consumer and biomedical products. We assessed whether pre-exposure of bone marrow-derived mast cells (BMMCs) to 20 nm AgNPs enhanced degranulation and activation to an allergen (dinitrophenol-conjugated human serum albumin) by measuring β-hexosaminidase release, LTB4 and IL-6 production. In addition, we assessed reactive oxygen species (ROS) generation, cell oxidative stress and toxicity as well as total and individual protein tyrosine phosphorylation (p-Tyr). We found that pre-exposure of BMMCs to AgNPs results in exacerbated allergen-mediated mast cell degranulation, LTB4 production and IL-6 release. Exposure of BMMCs to AgNPs exacerbated allergen-induced ROS generation, however, this was not associated with oxidative stress nor cell death. Finally, pre-exposure to AgNPs enhanced allergen-mediated global p-Tyr as well as individual proteins including Syk, PLCγ and LAT. Our findings indicate that pre-exposure to AgNPs exacerbates mast cell allergen-mediated phosphorylation of FcεR1-linked tyrosine kinases and ROS generation resulting in amplified early and late-phase responses. These findings suggest that exposure to AgNPs has the potential to prime mast cells to allergic immune responses, which could be of particular concern to atopic populations as the use of AgNPs in consumer and biomedical products rapidly increases.
Collapse
Affiliation(s)
- Nasser B Alsaleh
- Colorado Center for Nanomedicine and Nanosafety, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ryan P Mendoza
- Colorado Center for Nanomedicine and Nanosafety, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jared M Brown
- Colorado Center for Nanomedicine and Nanosafety, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
21
|
Methods for Assessing Mast Cell Responses to Engineered Nanomaterial Exposure. Methods Mol Biol 2019; 1894:31-45. [PMID: 30547453 DOI: 10.1007/978-1-4939-8916-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mast cells are key effector cells in inflammatory and allergic immune responses such as asthma, rhinitis, and atopic dermatitis. Activation of mast cells leads to immediate release of preformed mediators such as histamine and proteases, which can regulate vascular permeability and the function of a number of immune and nonimmune cells. Engineered nanomaterials (ENM) have been utilized for a wide range of applications and introduced into a number of consumer products; yet the consequent increase in human exposure and any potential adverse effects have not been fully evaluated. Modulation of the immune system function has been shown to be a major toxicological consequence of ENM exposure. The implication of mast cells in ENM-mediated toxicity, including the most widely utilized carbon and metal-based ENMs, has been previously demonstrated; and therefore, understanding direct ENM interaction with mast cells at the cellular and molecular level is of critical importance for the safe implementation of ENMs into consumer products.
Collapse
|
22
|
Kabadi PK, Rodd AL, Simmons AE, Messier NJ, Hurt RH, Kane AB. A novel human 3D lung microtissue model for nanoparticle-induced cell-matrix alterations. Part Fibre Toxicol 2019; 16:15. [PMID: 30943996 PMCID: PMC6448215 DOI: 10.1186/s12989-019-0298-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/15/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Multi-walled carbon nanotubes (MWCNT) have been shown to elicit the release of inflammatory and pro-fibrotic mediators, as well as histopathological changes in lungs of exposed animals. Current standards for testing MWCNTs and other nanoparticles (NPs) rely on low-throughput in vivo studies to assess acute and chronic toxicity and potential hazard to humans. Several alternative testing approaches utilizing two-dimensional (2D) in vitro assays to screen engineered NPs have reported conflicting results between in vitro and in vivo assays. Compared to conventional 2D in vitro or in vivo animal model systems, three-dimensional (3D) in vitro platforms have been shown to more closely recapitulate human physiology, providing a relevant, more efficient strategy for evaluating acute toxicity and chronic outcomes in a tiered nanomaterial toxicity testing paradigm. RESULTS As inhalation is an important route of nanomaterial exposure, human lung fibroblasts and epithelial cells were co-cultured with macrophages to form scaffold-free 3D lung microtissues. Microtissues were exposed to multi-walled carbon nanotubes, M120 carbon black nanoparticles or crocidolite asbestos fibers for 4 or 7 days, then collected for characterization of microtissue viability, tissue morphology, and expression of genes and selected proteins associated with inflammation and extracellular matrix remodeling. Our data demonstrate the utility of 3D microtissues in predicting chronic pulmonary endpoints following exposure to MWCNTs or asbestos fibers. These test nanomaterials were incorporated into 3D human lung microtissues as visualized using light microscopy. Differential expression of genes involved in acute inflammation and extracellular matrix remodeling was detected using PCR arrays and confirmed using qRT-PCR analysis and Luminex assays of selected genes and proteins. CONCLUSION 3D lung microtissues provide an alternative testing platform for assessing nanomaterial-induced cell-matrix alterations and delineation of toxicity pathways, moving towards a more predictive and physiologically relevant approach for in vitro NP toxicity testing.
Collapse
Affiliation(s)
- Pranita K Kabadi
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA.,AstraZeneca, Gaithersburg, MD, 20878, USA
| | - April L Rodd
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA.
| | - Alysha E Simmons
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Norma J Messier
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Robert H Hurt
- School of Engineering, Brown University, Providence, Rhode Island, 02912, USA
| | - Agnes B Kane
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, 02912, USA.
| |
Collapse
|
23
|
Abukabda AB, McBride CR, Batchelor TP, Goldsmith WT, Bowdridge EC, Garner KL, Friend S, Nurkiewicz TR. Group II innate lymphoid cells and microvascular dysfunction from pulmonary titanium dioxide nanoparticle exposure. Part Fibre Toxicol 2018; 15:43. [PMID: 30413212 PMCID: PMC6230229 DOI: 10.1186/s12989-018-0280-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/24/2018] [Indexed: 01/16/2023] Open
Abstract
Background The cardiovascular effects of pulmonary exposure to engineered nanomaterials (ENM) are poorly understood, and the reproductive consequences are even less understood. Inflammation remains the most frequently explored mechanism of ENM toxicity. However, the key mediators and steps between lung exposure and uterine health remain to be fully defined. The purpose of this study was to determine the uterine inflammatory and vascular effects of pulmonary exposure to titanium dioxide nanoparticles (nano-TiO2). We hypothesized that pulmonary nano-TiO2 exposure initiates a Th2 inflammatory response mediated by Group II innate lymphoid cells (ILC2), which may be associated with an impairment in uterine microvascular reactivity. Methods Female, virgin, Sprague-Dawley rats (8–12 weeks) were exposed to 100 μg of nano-TiO2 via intratracheal instillation 24 h prior to microvascular assessments. Serial blood samples were obtained at 0, 1, 2 and 4 h post-exposure for multiplex cytokine analysis. ILC2 numbers in the lungs were determined. ILC2s were isolated and phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) levels were measured. Pressure myography was used to assess vascular reactivity of isolated radial arterioles. Results Pulmonary nano-TiO2 exposure was associated with an increase in IL-1ß, 4, 5 and 13 and TNF- α 4 h post-exposure, indicative of an innate Th2 inflammatory response. ILC2 numbers were significantly increased in lungs from exposed animals (1.66 ± 0.19%) compared to controls (0.19 ± 0.22%). Phosphorylation of the transactivation domain (Ser-468) of NF-κB in isolated ILC2 and IL-33 in lung epithelial cells were significantly increased (126.8 ± 4.3% and 137 ± 11% of controls respectively) by nano-TiO2 exposure. Lastly, radial endothelium-dependent arteriolar reactivity was significantly impaired (27 ± 12%), while endothelium-independent dilation (7 ± 14%) and α-adrenergic sensitivity (8 ± 2%) were not altered compared to control levels. Treatment with an anti- IL-33 antibody (1 mg/kg) 30 min prior to nano-TiO2 exposure resulted in a significant improvement in endothelium-dependent dilation and a decreased level of IL-33 in both plasma and bronchoalveolar lavage fluid. Conclusions These results provide evidence that the uterine microvascular dysfunction that follows pulmonary ENM exposure may be initiated via activation of lung-resident ILC2 and subsequent systemic Th2-dependent inflammation. Electronic supplementary material The online version of this article (10.1186/s12989-018-0280-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alaeddin Bashir Abukabda
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Carroll Rolland McBride
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Thomas Paul Batchelor
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - William Travis Goldsmith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Elizabeth Compton Bowdridge
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Krista Lee Garner
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Sherri Friend
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Timothy Robert Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center - West Virginia University, Morgantown, WV, 26505-9229, USA. .,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA. .,National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| |
Collapse
|
24
|
Dong J, Ma Q. Type 2 Immune Mechanisms in Carbon Nanotube-Induced Lung Fibrosis. Front Immunol 2018; 9:1120. [PMID: 29872441 PMCID: PMC5972321 DOI: 10.3389/fimmu.2018.01120] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/03/2018] [Indexed: 01/29/2023] Open
Abstract
T helper (Th) 2-dependent type 2 immune pathways have been recognized as an important driver for the development of fibrosis. Upon stimulation, activated Th2 immune cells and type 2 cytokines interact with inflammatory and tissue repair functions to stimulate an overzealous reparative response to tissue damage, leading to organ fibrosis and destruction. In this connection, type 2 pathways are activated by a variety of insults and pathological conditions to modulate the response. Carbon nanotubes (CNTs) are nanomaterials with a wide range of applications. However, pulmonary exposure to CNTs causes a number of pathologic outcomes in animal lungs, dominated by inflammation and fibrosis. These findings, alongside the rapidly expanding production and commercialization of CNTs and CNT-containing materials in recent years, have raised concerns on the health risk of CNT exposure in humans. The CNT-induced pulmonary fibrotic lesions resemble those of human fibrotic lung diseases, such as idiopathic pulmonary fibrosis and pneumoconiosis, to a certain extent with regard to disease development and pathological features. In fibrotic scenarios, immune cells are activated including varying immune pathways, ranging from innate immune cell activation to autoimmune disease. These events often precede and/or accompany the occurrence of fibrosis. Upon CNT exposure, significant induction and activation of Th2 cells and type 2 cytokines in the lungs are observed. Moreover, type 2 pathways are shown to play important roles in promoting CNT-induced lung fibrosis by producing type 2 pro-fibrotic factors and inducing the reparative phenotypes of macrophages in response to CNTs. In light of the vastly increased demand for nanosafety and the apparent induction and multiple roles of type 2 immune pathways in lung fibrosis, we review the current literature on CNT-induced lung fibrosis, with a focus on the induction and activation of type 2 responses by CNTs and the stimulating function of type 2 signaling on pulmonary fibrosis development. These analyses provide new insights into the mechanistic understanding of CNT-induced lung fibrosis, as well as the potential of using type 2 responses as a monitoring target and therapeutic strategy for human fibrotic lung disease.
Collapse
Affiliation(s)
| | - Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
25
|
Mukherjee SP, Bondarenko O, Kohonen P, Andón FT, Brzicová T, Gessner I, Mathur S, Bottini M, Calligari P, Stella L, Kisin E, Shvedova A, Autio R, Salminen-Mankonen H, Lahesmaa R, Fadeel B. Macrophage sensing of single-walled carbon nanotubes via Toll-like receptors. Sci Rep 2018; 8:1115. [PMID: 29348435 PMCID: PMC5773626 DOI: 10.1038/s41598-018-19521-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022] Open
Abstract
Carbon-based nanomaterials including carbon nanotubes (CNTs) have been shown to trigger inflammation. However, how these materials are 'sensed' by immune cells is not known. Here we compared the effects of two carbon-based nanomaterials, single-walled CNTs (SWCNTs) and graphene oxide (GO), on primary human monocyte-derived macrophages. Genome-wide transcriptomics assessment was performed at sub-cytotoxic doses. Pathway analysis of the microarray data revealed pronounced effects on chemokine-encoding genes in macrophages exposed to SWCNTs, but not in response to GO, and these results were validated by multiplex array-based cytokine and chemokine profiling. Conditioned medium from SWCNT-exposed cells acted as a chemoattractant for dendritic cells. Chemokine secretion was reduced upon inhibition of NF-κB, as predicted by upstream regulator analysis of the transcriptomics data, and Toll-like receptors (TLRs) and their adaptor molecule, MyD88 were shown to be important for CCL5 secretion. Moreover, a specific role for TLR2/4 was confirmed by using reporter cell lines. Computational studies to elucidate how SWCNTs may interact with TLR4 in the absence of a protein corona suggested that binding is guided mainly by hydrophobic interactions. Taken together, these results imply that CNTs may be 'sensed' as pathogens by immune cells.
Collapse
Affiliation(s)
- Sourav P Mukherjee
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Olesja Bondarenko
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.,Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, 12618, Estonia
| | - Pekka Kohonen
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Fernando T Andón
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.,Laboratory of Cellular Immunology, Humanitas Clinical and Research Institute, 20089, Rozzano-Milano, Italy
| | - Táňa Brzicová
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.,Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine AS CR, 14220, Prague, Czech Republic
| | - Isabel Gessner
- Inorganic and Materials Chemistry, University of Cologne, 50939, Cologne, Germany
| | - Sanjay Mathur
- Inorganic and Materials Chemistry, University of Cologne, 50939, Cologne, Germany
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, 00173, Italy.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Paolo Calligari
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Elena Kisin
- Exposure Assessment Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Anna Shvedova
- Exposure Assessment Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.,Department Pharmacology & Physiology, West Virginia University, Morgantown, WV, 26505, USA
| | - Reija Autio
- Faculty of Social Sciences, University of Tampere, 33014, Tampere, Finland
| | - Heli Salminen-Mankonen
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, and Åbo Akademi University, 20500, Turku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku, 20520 Turku, and Åbo Akademi University, 20500, Turku, Finland
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden.
| |
Collapse
|
26
|
Dong J, Ma Q. Macrophage polarization and activation at the interface of multi-walled carbon nanotube-induced pulmonary inflammation and fibrosis. Nanotoxicology 2018; 12:153-168. [PMID: 29338488 DOI: 10.1080/17435390.2018.1425501] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary exposure to carbon nanotubes (CNTs) induces fibrosing lesions in the lungs that manifest rapid-onset inflammatory and fibrotic responses, leading to chronic fibrosis in animals and health concerns in exposed humans. The mechanisms underlying CNT-induced fibrogenic effects remain undefined. Macrophages are known to play important roles in immune regulation and fibrosis development through their distinct subsets. Here we investigated macrophage polarization and activation in mouse lungs exposed to multi-walled CNTs (MWCNTs). Male C57BL/6J mice were treated with MWCNTs (XNRI MWNT-7) at 40 μg per mouse (∼1.86 mg/kg body weight) by oropharyngeal aspiration. The treatment stimulated prominent acute inflammatory and fibrotic responses. Moreover, it induced pronounced enrichment and polarization of macrophages with significantly increased M1 and M2 populations in a time-dependent manner. Induction of M1 polarization was apparent on day 1 with a peak on day 3, but declined rapidly thereafter. On the other hand, the M2 polarization was induced on day 1 modestly, but was remarkably elevated on day 3 and maintained at a high level through day 7. M1 and M2 macrophages were functionally activated by MWCNTs as indicated by the expression of their distinctive functional markers, such as iNOS and ARG1, with time courses parallel to M1 and M2 polarization, respectively. Molecular analysis revealed MWCNTs boosted specific STAT and IRF signaling pathways to regulate M1 and M2 polarization in the lungs. These findings suggest a new mechanistic connection between inflammation and fibrosis induced by MWCNTs through the polarization and activation of macrophages during MWCNT-induced lung pathologic response.
Collapse
Affiliation(s)
- Jie Dong
- a Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA
| | - Qiang Ma
- a Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention , Morgantown , WV , USA
| |
Collapse
|
27
|
Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, Moghimi SM. Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol 2017; 34:33-51. [DOI: 10.1016/j.smim.2017.08.013] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
|
28
|
Alsaleh NB, Brown JM. Immune responses to engineered nanomaterials: current understanding and challenges. CURRENT OPINION IN TOXICOLOGY 2017; 10:8-14. [PMID: 29577105 DOI: 10.1016/j.cotox.2017.11.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Engineered nanomaterials (ENM) are utilized in many applications due to their unique physicochemical properties. The increasing use of ENMs in consumer products raises concerns of potential adverse effects in humans and the environment. A common outcome of exposure (intentional, environmental or occupational) to ENMs is altered immune responses including inflammation, hypersensitivity, and immunosuppression. ENMs have been shown to interact with the immune system through key effector cells (i.e. mast cells and antigen presenting cells) or via complement activation leading to consequences to both innate and adaptive immunity. Further, upon introduction into a biological system, ENMs are rapidly coated with proteins, lipids and other macromolecules forming a biocorona which impacts immune cell and complement responses. In this current opinion, we highlight key studies and challenges in understanding cellular mechanisms of ENM-mediated immunomodulation and toxicity.
Collapse
Affiliation(s)
- Nasser B Alsaleh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
29
|
Meldrum K, Guo C, Marczylo EL, Gant TW, Smith R, Leonard MO. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol 2017; 14:45. [PMID: 29157272 PMCID: PMC5697410 DOI: 10.1186/s12989-017-0228-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic respiratory disease known for its high susceptibility to environmental exposure. Inadvertent inhalation of engineered or incidental nanomaterials is a concern for human health, particularly for those with underlying disease susceptibility. In this review we provide a comprehensive analysis of those studies focussed on safety assessment of different nanomaterials and their unique characteristics on asthma and allergic airway disease. These include in vivo and in vitro approaches as well as human and population studies. The weight of evidence presented supports a modifying role for nanomaterial exposure on established asthma as well as the development of the condition. Due to the variability in modelling approaches, nanomaterial characterisation and endpoints used for assessment in these studies, there is insufficient information for how one may assign relative hazard potential to individual nanoscale properties. New developments including the adoption of standardised models and focussed in vitro and in silico approaches have the potential to more reliably identify properties of concern through comparative analysis across robust and select testing systems. Importantly, key to refinement and choice of the most appropriate testing systems is a more complete understanding of how these materials may influence disease at the cellular and molecular level. Detailed mechanistic insight also brings with it opportunities to build important population and exposure susceptibilities into models. Ultimately, such approaches have the potential to more clearly extrapolate relevant toxicological information, which can be used to improve nanomaterial safety assessment for human disease susceptibility.
Collapse
Affiliation(s)
- Kirsty Meldrum
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Chang Guo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Emma L Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Timothy W Gant
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Rachel Smith
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| |
Collapse
|
30
|
Nikota J, Banville A, Goodwin LR, Wu D, Williams A, Yauk CL, Wallin H, Vogel U, Halappanavar S. Stat-6 signaling pathway and not Interleukin-1 mediates multi-walled carbon nanotube-induced lung fibrosis in mice: insights from an adverse outcome pathway framework. Part Fibre Toxicol 2017; 14:37. [PMID: 28903780 PMCID: PMC5598059 DOI: 10.1186/s12989-017-0218-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/05/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The accumulation of MWCNTs in the lung environment leads to inflammation and the development of disease similar to pulmonary fibrosis in rodents. Adverse Outcome Pathways (AOPs) are a framework for defining and organizing the key events that comprise the biological changes leading to undesirable events. A putative AOP has been developed describing MWCNT-induced pulmonary fibrosis; inflammation and the subsequent healing response induced by inflammatory mechanisms have been implicated in disease progression. The objective of the present study was to address a key data gap in this AOP: empirical data supporting the essentiality of pulmonary inflammation as a key event prior to fibrosis. Specifically, Interleukin-1 Receptor1 (IL-1R1) and Signal Transducer and Activator of Transcription 6 (STAT6) knock-out (KO) mice were employed to target inflammation and the subsequent healing response using MWCNTs as a model pro-fibrotic stressor to determine whether this altered the development of fibrosis. RESULTS Wild type (WT) C57BL/6, IL-1R1 (KO) or STAT6 KO mice were exposed to a high dose of Mitsui-7 MWCNT by intratracheal administration. Inflammation was assessed 24 h and 28 days post MWCNT administration, and fibrotic lesion development was assessed 28 days post MWCNT administration. MWCNT-induced acute inflammation was suppressed in IL-1R1 KO mice at the 24 h time point relative to WT mice, but this suppression was not observed 28 days post exposure, and IL-1R1 KO did not alter fibrotic disease development. In contrast, STAT6 KO mice exhibited suppressed acute inflammation and attenuated fibrotic disease in response to MWCNT administration compared to STAT6 WT mice. Whole genome analysis of all post-exposure time points identified a subset of differentially expressed genes associated with fibrosis in both KO mice compared to WT mice. CONCLUSION The findings support the essentiality of STAT6-mediated signaling in the development of MWCNT-induced fibrotic disease. The IL-1R1 KO results also highlight the nature of the inflammatory response associated with MWCNT exposure, and indicate a system with multiple redundancies. These data add to the evidence supporting an existing AOP, and will be useful in designing screening strategies that could be used by regulatory agencies to distinguish between MWCNTs of varying toxicity.
Collapse
Affiliation(s)
- Jake Nikota
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Allyson Banville
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Laura Rose Goodwin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Carole Lynn Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| | - Håkan Wallin
- Department of Biological and Chemical Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lerso Parkallé 105, DK-2100 Copenhagen, Denmark
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9 Canada
| |
Collapse
|
31
|
Johnson MM, Mendoza R, Raghavendra AJ, Podila R, Brown JM. Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation. Sci Rep 2017; 7:43570. [PMID: 28262689 PMCID: PMC5337938 DOI: 10.1038/srep43570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/25/2017] [Indexed: 12/25/2022] Open
Abstract
The rapid development of engineered nanomaterials (ENMs) has grown dramatically in the last decade, with increased use in consumer products, industrial materials, and nanomedicines. However, due to increased manufacturing, there is concern that human and environmental exposures may lead to adverse immune outcomes. Mast cells, central to the innate immune response, are one of the earliest sensors of environmental insult and have been shown to play a role in ENM-mediated immune responses. Our laboratory previously determined that mast cells are activated via a non-FcεRI mediated response following silver nanoparticle (Ag NP) exposure, which was dependent upon key physicochemical properties. Using bone marrow-derived mast cells (BMMCs), we tested the hypothesis that ENM physicochemical properties influence mast cell degranulation. Exposure to 13 physicochemically distinct ENMs caused a range of mast degranulation responses, with smaller sized Ag NPs (5 nm and 20 nm) causing the most dramatic response. Mast cell responses were dependent on ENMs physicochemical properties such as size, apparent surface area, and zeta potential. Surprisingly, minimal ENM cellular association by mast cells was not correlated with mast cell degranulation. This study suggests that a subset of ENMs may elicit an allergic response and contribute to the exacerbation of allergic diseases.
Collapse
Affiliation(s)
- Monica M Johnson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Ryan Mendoza
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| | - Achyut J Raghavendra
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.,Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, SC 296225, USA
| | - Ramakrishna Podila
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.,Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, SC 296225, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
32
|
Kuempel ED, Jaurand MC, Møller P, Morimoto Y, Kobayashi N, Pinkerton KE, Sargent LM, Vermeulen RCH, Fubini B, Kane AB. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans. Crit Rev Toxicol 2017; 47:1-58. [PMID: 27537422 PMCID: PMC5555643 DOI: 10.1080/10408444.2016.1206061] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Abstract
In an evaluation of carbon nanotubes (CNTs) for the IARC Monograph 111, the Mechanisms Subgroup was tasked with assessing the strength of evidence on the potential carcinogenicity of CNTs in humans. The mechanistic evidence was considered to be not strong enough to alter the evaluations based on the animal data. In this paper, we provide an extended, in-depth examination of the in vivo and in vitro experimental studies according to current hypotheses on the carcinogenicity of inhaled particles and fibers. We cite additional studies of CNTs that were not available at the time of the IARC meeting in October 2014, and extend our evaluation to include carbon nanofibers (CNFs). Finally, we identify key data gaps and suggest research needs to reduce uncertainty. The focus of this review is on the cancer risk to workers exposed to airborne CNT or CNF during the production and use of these materials. The findings of this review, in general, affirm those of the original evaluation on the inadequate or limited evidence of carcinogenicity for most types of CNTs and CNFs at this time, and possible carcinogenicity of one type of CNT (MWCNT-7). The key evidence gaps to be filled by research include: investigation of possible associations between in vitro and early-stage in vivo events that may be predictive of lung cancer or mesothelioma, and systematic analysis of dose-response relationships across materials, including evaluation of the influence of physico-chemical properties and experimental factors on the observation of nonmalignant and malignant endpoints.
Collapse
Affiliation(s)
- Eileen D Kuempel
- a National Institute for Occupational Safety and Health , Cincinnati , OH , USA
| | - Marie-Claude Jaurand
- b Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche , UMR 1162 , Paris , France
- c Labex Immuno-Oncology, Sorbonne Paris Cité, University of Paris Descartes , Paris , France
- d University Institute of Hematology, Sorbonne Paris Cité, University of Paris Diderot , Paris , France
- e University of Paris 13, Sorbonne Paris Cité , Saint-Denis , France
| | - Peter Møller
- f Department of Public Health , University of Copenhagen , Copenhagen , Denmark
| | - Yasuo Morimoto
- g Department of Occupational Pneumology , University of Occupational and Environmental Health , Kitakyushu City , Japan
| | | | - Kent E Pinkerton
- i Center for Health and the Environment, University of California , Davis , California , USA
| | - Linda M Sargent
- j National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Roel C H Vermeulen
- k Institute for Risk Assessment Sciences, Utrecht University , Utrecht , The Netherlands
| | - Bice Fubini
- l Department of Chemistry and "G.Scansetti" Interdepartmental Center , Università degli Studi di Torino , Torino , Italy
| | - Agnes B Kane
- m Department of Pathology and Laboratory Medicine , Brown University , Providence , RI , USA
| |
Collapse
|
33
|
Karch CP, Burkhard P. Vaccine technologies: From whole organisms to rationally designed protein assemblies. Biochem Pharmacol 2016; 120:1-14. [PMID: 27157411 PMCID: PMC5079805 DOI: 10.1016/j.bcp.2016.05.001] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022]
Abstract
Vaccines have been the single most significant advancement in public health, preventing morbidity and mortality in millions of people annually. Vaccine development has traditionally focused on whole organism vaccines, either live attenuated or inactivated vaccines. While successful for many different infectious diseases whole organisms are expensive to produce, require culture of the infectious agent, and have the potential to cause vaccine associated disease in hosts. With advancing technology and a desire to develop safe, cost effective vaccine candidates, the field began to focus on the development of recombinantly expressed antigens known as subunit vaccines. While more tolerable, subunit vaccines tend to be less immunogenic. Attempts have been made to increase immunogenicity with the addition of adjuvants, either immunostimulatory molecules or an antigen delivery system that increases immune responses to vaccines. An area of extreme interest has been the application of nanotechnology to vaccine development, which allows for antigens to be expressed on a particulate delivery system. One of the most exciting examples of nanovaccines are rationally designed protein nanoparticles. These nanoparticles use some of the basic tenants of structural biology, biophysical chemistry, and vaccinology to develop protective, safe, and easily manufactured vaccines. Rationally developed nanoparticle vaccines are one of the most promising candidates for the future of vaccine development.
Collapse
MESH Headings
- Adjuvants, Immunologic/adverse effects
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/therapeutic use
- Allergy and Immunology/history
- Allergy and Immunology/trends
- Animals
- Antigens/adverse effects
- Antigens/chemistry
- Antigens/immunology
- Antigens/therapeutic use
- Biopharmaceutics/history
- Biopharmaceutics/methods
- Biopharmaceutics/trends
- Chemistry, Pharmaceutical/history
- Chemistry, Pharmaceutical/trends
- Communicable Disease Control/history
- Communicable Disease Control/trends
- Communicable Diseases/immunology
- Communicable Diseases/veterinary
- Drug Delivery Systems/adverse effects
- Drug Delivery Systems/trends
- Drug Delivery Systems/veterinary
- Drug Design
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Nanoparticles/adverse effects
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Protein Engineering/trends
- Protein Engineering/veterinary
- Protein Folding
- Recombinant Proteins/adverse effects
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Recombinant Proteins/therapeutic use
- Vaccines/adverse effects
- Vaccines/chemistry
- Vaccines/immunology
- Vaccines/therapeutic use
- Vaccines, Subunit/adverse effects
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/immunology
- Vaccines, Subunit/therapeutic use
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/therapeutic use
- Veterinary Drugs/adverse effects
- Veterinary Drugs/chemistry
- Veterinary Drugs/immunology
- Veterinary Drugs/therapeutic use
Collapse
Affiliation(s)
- Christopher P Karch
- The Institute of Materials Science, 97 North Eagleville Road, Storrs, CT 06269, United States
| | - Peter Burkhard
- The Institute of Materials Science, 97 North Eagleville Road, Storrs, CT 06269, United States; Department of Molecular and Cell Biology, 93 North Eagleville Road, Storrs, CT 06269, United States.
| |
Collapse
|
34
|
Overview on experimental models of interactions between nanoparticles and the immune system. Biomed Pharmacother 2016; 83:1365-1378. [DOI: 10.1016/j.biopha.2016.08.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/14/2016] [Accepted: 08/24/2016] [Indexed: 01/05/2023] Open
|
35
|
Holland NA, Thompson LC, Vidanapathirana AK, Urankar RN, Lust RM, Fennell TR, Wingard CJ. Impact of pulmonary exposure to gold core silver nanoparticles of different size and capping agents on cardiovascular injury. Part Fibre Toxicol 2016; 13:48. [PMID: 27558113 PMCID: PMC4997661 DOI: 10.1186/s12989-016-0159-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The uses of engineered nanomaterials have expanded in biomedical technology and consumer manufacturing. Furthermore, pulmonary exposure to various engineered nanomaterials has, likewise, demonstrated the ability to exacerbate cardiac ischemia reperfusion (I/R) injury. However, the influence of particle size or capping agent remains unclear. In an effort to address these influences we explored response to 2 different size gold core nanosilver particles (AgNP) with two different capping agents at 2 different time points. We hypothesized that a pulmonary exposure to AgNP induces cardiovascular toxicity influenced by inflammation and vascular dysfunction resulting in expansion of cardiac I/R Injury that is sensitive to particle size and the capping agent. METHODS Male Sprague-Dawley rats were exposed to 200 μg of 20 or 110 nm polyvinylprryolidone (PVP) or citrate capped AgNP. One and 7 days following intratracheal instillation serum was analyzed for concentrations of selected cytokines; cardiac I/R injury and isolated coronary artery and aorta segment were assessed for constrictor responses and endothelial dependent relaxation and endothelial independent nitric oxide dependent relaxation. RESULTS AgNP instillation resulted in modest increase in selected serum cytokines with elevations in IL-2, IL-18, and IL-6. Instillation resulted in a derangement of vascular responses to constrictors serotonin or phenylephrine, as well as endothelial dependent relaxations with acetylcholine or endothelial independent relaxations by sodium nitroprusside in a capping and size dependent manner. Exposure to both 20 and 110 nm AgNP resulted in exacerbation cardiac I/R injury 1 day following IT instillation independent of capping agent with 20 nm AgNP inducing marginally greater injury. Seven days following IT instillation the expansion of I/R injury persisted but the greatest injury was associated with exposure to 110 nm PVP capped AgNP resulted in nearly a two-fold larger infarct size compared to naïve. CONCLUSIONS Exposure to AgNP may result in vascular dysfunction, a potentially maladaptive sensitization of the immune system to respond to a secondary insult (e.g., cardiac I/R) which may drive expansion of I/R injury at 1 and 7 days following IT instillation where the extent of injury could be correlated with capping agents and AgNP size.
Collapse
Affiliation(s)
- Nathan A. Holland
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| | - Leslie C. Thompson
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| | - Achini K. Vidanapathirana
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| | - Rahkee N. Urankar
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| | - Robert M. Lust
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| | - Timothy R. Fennell
- RTI International, Discovery Sciences, Research Triangle Park, NC 27709 USA
| | - Christopher J. Wingard
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, NC 27834 USA
| |
Collapse
|
36
|
The complex cascade of cellular events governing inflammasome activation and IL-1β processing in response to inhaled particles. Part Fibre Toxicol 2016; 13:40. [PMID: 27519871 PMCID: PMC4983011 DOI: 10.1186/s12989-016-0150-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/12/2016] [Indexed: 01/05/2023] Open
Abstract
The innate immune system is the first line of defense against inhaled particles. Macrophages serve important roles in particle clearance and inflammatory reactions. Following recognition and internalization by phagocytes, particles are taken up in vesicular phagolysosomes. Intracellular phagosomal leakage, redox unbalance and ionic movements induced by toxic particles result in pro-IL-1β expression, inflammasome complex engagement, caspase-1 activation, pro-IL-1β cleavage, biologically-active IL-1β release and finally inflammatory cell death termed pyroptosis. In this review, we summarize the emerging signals and pathways involved in the expression, maturation and secretion of IL-1β during these responses to particles. We also highlight physicochemical characteristics of particles (size, surface and shape) which determine their capacity to induce inflammasome activation and IL-1β processing.
Collapse
|
37
|
Hashimoto M, Asai A, Kawagishi H, Mikawa R, Iwashita Y, Kanayama K, Sugimoto K, Sato T, Maruyama M, Sugimoto M. Elimination of p19 ARF-expressing cells enhances pulmonary function in mice. JCI Insight 2016; 1:e87732. [PMID: 27699227 DOI: 10.1172/jci.insight.87732] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Senescent cells accumulate in many tissues as animals age and are considered to underlie several aging-associated pathologies. The tumor suppressors p19ARF and p16INK4a, both of which are encoded in the CDKN2A locus, play critical roles in inducing and maintaining permanent cell cycle arrest during cellular senescence. Although the elimination of p16INK4a-expressing cells extends the life span of the mouse, it is unclear whether tissue function is restored by the elimination of senescent cells in aged animals and whether and how p19ARF contributes to tissue aging. The aging-associated decline in lung function is characterized by an increase in compliance as well as pathogenic susceptibility to pulmonary diseases. We herein demonstrated that pulmonary function in 12-month-old mice was reversibly restored by the elimination of p19ARF-expressing cells. The ablation of p19ARF-expressing cells using a toxin receptor-mediated cell knockout system ameliorated aging-associated lung hypofunction. Furthermore, the aging-associated gene expression profile was reversed after the elimination of p19ARF. Our results indicate that the aging-associated decline in lung function was, at least partly, attributed to p19ARF and was recovered by eliminating p19ARF-expressing cells.
Collapse
Affiliation(s)
- Michihiro Hashimoto
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Azusa Asai
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Hiroyuki Kawagishi
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Ryuta Mikawa
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yuji Iwashita
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | | | - Kazushi Sugimoto
- Department of Molecular and Laboratory Medicine, Mie University School of Medicine, Tsu, Mie, Japan
| | - Tadashi Sato
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Mitsuo Maruyama
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Masataka Sugimoto
- Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
38
|
Sabareeswaran A, Ansar EB, Harikrishna Varma PRV, Mohanan PV, Kumary TV. Effect of surface-modified superparamagnetic iron oxide nanoparticles (SPIONS) on mast cell infiltration: An acute in vivo study. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1523-33. [DOI: 10.1016/j.nano.2016.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 01/19/2016] [Accepted: 02/15/2016] [Indexed: 12/17/2022]
|
39
|
Vietti G, Lison D, van den Brule S. Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP). Part Fibre Toxicol 2016; 13:11. [PMID: 26926090 PMCID: PMC4772332 DOI: 10.1186/s12989-016-0123-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/12/2016] [Indexed: 12/17/2022] Open
Abstract
Several experimental studies have shown that carbon nanotubes (CNT) can induce respiratory effects, including lung fibrosis. The cellular and molecular events through which these effects develop are, however, not clearly elucidated. The purpose of the present review was to analyze the key events involved in the lung fibrotic reaction induced by CNT and to assess their relationships. We thus address current knowledge and gaps with a view to draft an Adverse Outcome Pathway (AOP) concerning the fibrotic potential of CNT. As for many inhaled particles, CNT can indirectly activate fibroblasts through the release of pro-inflammatory (IL-1β) and pro-fibrotic (PDGF and TGF-β) mediators by inflammatory cells (macrophages and epithelial cells) via the induction of oxidative stress, inflammasome or NF-kB. We also highlight here direct effects of CNT on fibroblasts, which appear as a new mode of toxicity relatively specific for CNT. Direct effects of CNT on fibroblasts include the induction of fibroblast proliferation, differentiation and collagen production via ERK 1/2 or Smad signaling. We also point out the physico-chemical properties of CNT important for their toxicity and the relationship between in vitro and in vivo effects. This knowledge provides evidence to draft an AOP for the fibrogenic activity of CNT, which allows developing simple in vitro models contributing to predict the CNT effects in lung fibrosis, and risk assessment tools for regulatory decision.
Collapse
Affiliation(s)
- Giulia Vietti
- Louvain centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Avenue E. Mounier, 52 - bte B1.52.12, 1200, Brussels, Belgium.
| | - Dominique Lison
- Louvain centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Avenue E. Mounier, 52 - bte B1.52.12, 1200, Brussels, Belgium.
| | - Sybille van den Brule
- Louvain centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Avenue E. Mounier, 52 - bte B1.52.12, 1200, Brussels, Belgium.
| |
Collapse
|
40
|
Fibrogenic and Immunotoxic Responses to Carbon Nanotubes. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2016. [DOI: 10.1007/978-4-431-55732-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Approaching a Unified Theory for Particle-Induced Inflammation. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2016. [DOI: 10.1007/978-4-431-55732-6_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Thompson LC, Holland NA, Snyder RJ, Luo B, Becak DP, Odom JT, Harrison BS, Brown JM, Gowdy KM, Wingard CJ. Pulmonary instillation of MWCNT increases lung permeability, decreases gp130 expression in the lungs, and initiates cardiovascular IL-6 transsignaling. Am J Physiol Lung Cell Mol Physiol 2015; 310:L142-54. [PMID: 26589480 DOI: 10.1152/ajplung.00384.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 11/06/2015] [Indexed: 12/24/2022] Open
Abstract
Pulmonary instillation of multiwalled carbon nanotubes (MWCNT) has the potential to promote cardiovascular derangements, but the mechanisms responsible are currently unclear. We hypothesized that exposure to MWCNT would result in increased epithelial barrier permeability by 24 h postexposure and initiate a signaling process involving IL-6/gp130 transsignaling in peripheral vascular tissue. To test this hypothesis we assessed the impact of 1 and 10 μg/cm(2) MWCNT on transepithelial electrical resistance (TEER) and expression of barrier proteins and cell activation in vitro using normal human bronchial epithelial primary cells. Parallel studies using male Sprague-Dawley rats instilled with 100 μg MWCNT measured bronchoalveolar lavage (BAL) differential cell counts, BAL fluid total protein, and lung water-to-tissue weight ratios 24 h postexposure and quantified serum concentrations of IL-6, soluble IL-6r, and soluble gp130. Aortic sections were examined immunohistochemically for gp130 expression, and gp130 mRNA/protein expression was evaluated in rat lung, heart, and aortic tissue homogenates. Our in vitro findings indicate that 10 μg/cm(2) MWCNT decreased the development of TEER and zonula occludens-1 expression relative to the vehicle. In rats MWCNT instillation increased BAL protein, lung water, and induced pulmonary eosinophilia. Serum concentrations of soluble gp130 decreased, aortic endothelial expression of gp130 increased, and expression of gp130 in the lung was downregulated in the MWCNT-exposed group. We propose that pulmonary exposure to MWCNT can manifest as a reduced epithelial barrier and activator of vascular gp130-associated transsignaling that may promote susceptibility to cardiovascular derangements.
Collapse
Affiliation(s)
- Leslie C Thompson
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Nathan A Holland
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Ryan J Snyder
- NanoHealth Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina; and
| | - Bin Luo
- Department of Pharmacology & Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Daniel P Becak
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Jillian T Odom
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Benjamin S Harrison
- Wake Forest University Institute of Regenerative Medicine, Winston-Salem, North Carolina
| | - Jared M Brown
- Department of Pharmacology & Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Kymberly M Gowdy
- Department of Pharmacology & Toxicology, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Christopher J Wingard
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina;
| |
Collapse
|
43
|
Frank EA, Birch ME, Yadav JS. MyD88 mediates in vivo effector functions of alveolar macrophages in acute lung inflammatory responses to carbon nanotube exposure. Toxicol Appl Pharmacol 2015; 288:322-9. [PMID: 26272622 PMCID: PMC4623709 DOI: 10.1016/j.taap.2015.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/23/2015] [Accepted: 08/07/2015] [Indexed: 01/17/2023]
Abstract
Carbon nanotubes (CNTs) are rapidly emerging as high-priority occupational toxicants. CNT powders contain fibrous particles that aerosolize readily in places of manufacture and handling, posing an inhalation risk for workers. Studies using animal models indicate that lung exposure to CNTs causes prolonged inflammatory responses and diffuse alveolar injury. The mechanisms governing CNT-induced lung inflammation are not fully understood but have been suggested to involve alveolar macrophages (AMs). In the current study, we sought to systematically assess the effector role of AMs in vivo in the induction of lung inflammatory responses to CNT exposures and investigate their cell type-specific mechanisms. Multi-wall CNTs characterized for various physicochemical attributes were used as the CNT type. Using an AM-specific depletion and repopulation approach in a mouse model, we unambiguously demonstrated that AMs are major effector cells necessary for the in vivo elaboration of CNT-induced lung inflammation. We further investigated in vitro AM responses and identified molecular targets which proved critical to pro-inflammatory responses in this model, namely MyD88 as well as MAPKs and Ca(2+)/CamKII. We further demonstrated that MyD88 inhibition in donor AMs abrogated their capacity to reconstitute CNT-induced inflammation when adoptively transferred into AM-depleted mice. Taken together, this is the first in vivo demonstration that AMs act as critical effector cell types in CNT-induced lung inflammation and that MyD88 is required for this in vivo effector function. AMs and their cell type-specific mechanisms may therefore represent potential targets for future therapeutic intervention of CNT-related lung injury.
Collapse
Affiliation(s)
- Evan A Frank
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - M Eileen Birch
- National Institute for Occupational Safety and Health, Cincinnati, OH 45213, USA
| | - Jagjit S Yadav
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
44
|
Shannahan JH, Bai W, Brown JM. Implications of scavenger receptors in the safe development of nanotherapeutics. ACTA ACUST UNITED AC 2015; 2:e811. [PMID: 26005702 DOI: 10.14800/rci.811] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanomaterials (NMs) are being utilized in a variety of biomedical applications including drug delivery, diagnostics, and therapeutic targeting. These applications are made possible due to the unique physicochemical properties that are exhibited at the nanoscale. To ensure safe development of NMs for clinical use, it is necessary to understand their interactions with cells and specifically cell surface receptors, which will facilitate either their toxicity and/or clinical function. Recently our research and others have investigated the role of scavenger receptors in mediating NM-cell interactions and responses. Scavenger receptors are expressed by a variety of cell types that are first to encounter NMs during clinical use such as macrophages and endothelial cells. Scavenger receptors are recognized to facilitate uptake of a wide variety of ligands ranging from foreign substances to endogenous lipids/proteins. While interaction of NMs with scavenger receptors may allow therapeutic targeting in some instances, it also presents a challenge for the stealth delivery of NMs and avoidance of the scavenging capability of this class of receptors. Due to their role in facilitating immune responses, scavenger receptor-mediated inflammation is also of concern following NM delivery. The research highlighted in this brief review intends to summarize our current understanding regarding the consequences of NM-scavenger receptor interactions.
Collapse
Affiliation(s)
- Jonathan H Shannahan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Wei Bai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| |
Collapse
|
45
|
Holland NA, Becak DP, Shannahan JH, Brown JM, Carratt SA, Winkle L, Pinkerton KE, Wang CM, Munusamy P, Baer DR, Sumner SJ, Fennell TR, Lust RM, Wingard CJ. Cardiac Ischemia Reperfusion Injury Following Instillation of 20 nm Citrate-capped Nanosilver. ACTA ACUST UNITED AC 2015; 6. [PMID: 26966636 DOI: 10.4172/2157-7439.s6-006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Silver nanoparticles (AgNP) have garnered much interest due to their antimicrobial properties, becoming one of the most utilized nano-scale materials. However, any potential evocable cardiovascular injury associated with exposure has not been reported to date. We have previously demonstrated expansion of myocardial infarction after intratracheal (IT) instillation of carbon-based nanomaterials. We hypothesized pulmonary exposure to Ag core AgNP induces a measureable increase in circulating cytokines, expansion of cardiac ischemia-reperfusion (I/R) injury and is associated with depressed coronary constrictor and relaxation responses. Secondarily, we addressed the potential contribution of silver ion release on AgNP toxicity. METHODS Male Sprague-Dawley rats were exposed to 200 μl of 1 mg/ml of 20 nm citrate-capped Ag core AgNP, 0.01, 0.1, 1 mg/ml Silver Acetate (AgAc), or a citrate vehicle by intratracheal (IT) instillation. One and 7 days following IT instillation the lungs were evaluated for inflammation and the presence of silver; serum was analyzed for concentrations of selected cytokines; cardiac I/R injury and coronary artery reactivity were assessed. RESULTS AgNP instillation resulted in modest pulmonary inflammation with detection of silver in lung tissue and alveolar macrophages, elevation of serum cytokines: G-CSF, MIP-1α, IL-1β, IL-2, IL-6, IL-13, IL-10, IL-18, IL-17α, TNFα, and RANTES, expansion of I/R injury and depression of the coronary vessel reactivity at 1 day post IT compared to vehicle treated rats. Silver within lung tissue was persistent at 7 days post IT instillation and was associated with an elevation in cytokines: IL-2, IL-13, and TNFα and expansion of I/R injury. AgAc resulted in a concentration dependent infarct expansion and depressed vascular reactivity without marked pulmonary inflammation or serum cytokine response. CONCLUSIONS Based on these data, IT instillation of AgNP increases circulating levels of several key cytokines, which may contribute to persistent expansion of I/R injury possibly through an impaired vascular responsiveness.
Collapse
Affiliation(s)
- N A Holland
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - D P Becak
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Jonathan H Shannahan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, USA
| | - J M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, USA
| | - S A Carratt
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | - Lsv Winkle
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | - K E Pinkerton
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, Davis, California, USA
| | - C M Wang
- Pacific Northwest National Laboratory, EMSL, Richland, USA
| | - P Munusamy
- Pacific Northwest National Laboratory, EMSL, Richland, USA
| | - Don R Baer
- Pacific Northwest National Laboratory, EMSL, Richland, USA
| | - S J Sumner
- RTI International, Discovery Sciences, Research Triangle Park, USA
| | - T R Fennell
- RTI International, Discovery Sciences, Research Triangle Park, USA
| | - R M Lust
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - C J Wingard
- Department of Physiology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
46
|
Ede JD, Ortega VA, Boyle D, Beingessner RL, Hemraz UD, Fenniri H, Stafford JL, Goss GG. Rosette Nanotubes Alter IgE-Mediated Degranulation in the Rat Basophilic Leukemia (RBL)-2H3 Cell Line. Toxicol Sci 2015. [PMID: 26224082 DOI: 10.1093/toxsci/kfv166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In this study, the effects of rosette nanotube (RNT) exposure on immune cell viability and function were investigated in vitro using the rat basophilic leukemia (RBL)-2H3 cell line. RBL-2H3 viability was decreased in a dose- and time-dependent manner after lysine-functionalized RNT (K-RNT) exposure. In addition, K-RNTs had a significant effect on RBL-2H3 degranulation. When K-RNT exposure was concurrent with IgE sensitization, 50 and 100 mg l(-1) K-RNTs elicited a heightened degranulatory response compared with IgE alone. Exposure to 50 and 100 mg l(-1) K-RNTs also caused degranulation in RBL-2H3 cells not sensitized with IgE (0 ng ml(-1) IgE). Furthermore, in cells preexposed to K-RNTs for 2 h and subsequently washed, sensitized, and stimulated with IgE, a potentiated degranulatory response was observed. Using confocal laser scanning microscopy and a fluorescein isothiocyanate (FITC)-functionalized RNT construct (termed FITC(1)/TBL(19)-RNT), we demonstrated a strong and direct affiliation between RNTs and RBL-2H3 cell membranes. We also demonstrated cellular internalization of RNTs after 2 h of exposure. Together, these data demonstrate that RNTs may affiliate with the cellular membrane of RBL-2H3 cells and can be internalized. These interactions can affect viability and alter the ability of these cells to elicit IgE-FcεR mediated degranulation.
Collapse
Affiliation(s)
- James D Ede
- *Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9;
| | - Van A Ortega
- *Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - David Boyle
- *Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Rachel L Beingessner
- National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, Canada, T6G 2M9; and
| | - Usha D Hemraz
- National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, Canada, T6G 2M9; and
| | - Hicham Fenniri
- Department of Chemical Engineering, 313 Snell Engineering Center, 360 Huntington Avenue, Northeastern University, Boston, Maryland 02115
| | - James L Stafford
- *Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Greg G Goss
- *Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9; National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, Canada, T6G 2M9; and
| |
Collapse
|
47
|
Aldossari AA, Shannahan JH, Podila R, Brown JM. Influence of physicochemical properties of silver nanoparticles on mast cell activation and degranulation. Toxicol In Vitro 2015; 29:195-203. [PMID: 25458489 PMCID: PMC4294974 DOI: 10.1016/j.tiv.2014.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 01/08/2023]
Abstract
Silver nanoparticles (AgNPs) are increasingly being incorporated into products for their antimicrobial properties. This has resulted in increased human exposures and the possibility of adverse health effects. Mast cells orchestrate allergic immune responses through degranulation and release of pre-formed mediators. Little data exists on understanding interactions of AgNPs with mast cells and the properties that influence activation and degranulation. Using bone marrow-derived mast cells and AgNPs of varying physicochemical properties we tested the hypothesis that AgNP physicochemical properties influence mast cell degranulation and osteopontin production. AgNPs evaluated included spherical 20 nm and 110 nm suspended in either polyvinylpyrrolidone (PVP) or citrate, Ag plates suspended in PVP of diameters between 40–60 nm or 100–130 nm, and Ag nanowires suspended in PVP with thicknesses <100 nm and length up to 2 μm. Mast cell responses were found to be dependent on the physicochemical properties of the AgNP. Further, we determined a role for scavenger receptor B1 in AgNP-induced mast cell responses. Mast cell degranulation was not dependent on AgNP dissolution but was prevented by tyrosine kinase inhibitor pretreatment. This study suggests that exposure to AgNPs may elicit adverse mast cell responses that could contribute to the initiation or exacerbation of allergic disease.
Collapse
Affiliation(s)
- Abdullah A. Aldossari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Jonathan H. Shannahan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Ramakrishna Podila
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, 29634, USA
- Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, South Carolina, 29625, USA
| | - Jared M. Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| |
Collapse
|
48
|
Rabolli V, Badissi AA, Devosse R, Uwambayinema F, Yakoub Y, Palmai-Pallag M, Lebrun A, De Gussem V, Couillin I, Ryffel B, Marbaix E, Lison D, Huaux F. The alarmin IL-1α is a master cytokine in acute lung inflammation induced by silica micro- and nanoparticles. Part Fibre Toxicol 2014; 11:69. [PMID: 25497724 PMCID: PMC4279463 DOI: 10.1186/s12989-014-0069-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/21/2014] [Indexed: 02/03/2023] Open
Abstract
Background Inflammasome-activated IL-1β plays a major role in lung neutrophilic inflammation induced by inhaled silica. However, the exact mechanisms that contribute to the initial production of precursor IL-1β (pro-IL-1β) are still unclear. Here, we assessed the implication of alarmins (IL-1α, IL-33 and HMGB1) in the lung response to silica particles and found that IL-1α is a master cytokine that regulates IL-1β expression. Methods Pro- and mature IL-1β as well as alarmins were assessed by ELISA, Western Blot or qRT-PCR in macrophage cultures and in mouse lung following nano- and micrometric silica exposure. Implication of these immune mediators in the establishment of lung inflammatory responses to silica was investigated in knock-out mice or after antibody blockade by evaluating pulmonary neutrophil counts, CXCR2 expression and degree of histological injury. Results We found that the early release of IL-1α and IL-33, but not HMGB1 in alveolar space preceded the lung expression of pro-IL-1β and neutrophilic inflammation in silica-treated mice. In vitro, the production of pro-IL-1β by alveolar macrophages was significantly induced by recombinant IL-1α but not by IL-33. Neutralization or deletion of IL-1α reduced IL-1β production and neutrophil accumulation after silica in mice. Finally, IL-1α released by J774 macrophages after in vitro exposure to a range of micro- and nanoparticles of silica was correlated with the degree of lung inflammation induced in vivo by these particles. Conclusions We demonstrated that in response to silica exposure, IL-1α is rapidly released from pre-existing stocks in alveolar macrophages and promotes subsequent lung inflammation through the stimulation of IL-1β production. Moreover, we demonstrated that in vitro IL-1α release from macrophages can be used to predict the acute inflammogenic activity of silica micro- and nanoparticles. Electronic supplementary material The online version of this article (doi:10.1186/s12989-014-0069-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Virginie Rabolli
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.
| | - Anissa Alami Badissi
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.
| | - Raynal Devosse
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.
| | - Francine Uwambayinema
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.
| | - Yousof Yakoub
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.
| | - Mihaly Palmai-Pallag
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.
| | - Astrid Lebrun
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.
| | - Valentin De Gussem
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.
| | - Isabelle Couillin
- University of Orléans, CNRS, UMR7355, INEM, Transgenose Institute, Orléans, France.
| | - Bernard Ryffel
- University of Orléans, CNRS, UMR7355, INEM, Transgenose Institute, Orléans, France.
| | - Etienne Marbaix
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium.
| | - Dominique Lison
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium.
| | - François Huaux
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium. .,Louvain centre for Toxicology and Applied Pharmacology (LTAP), Université catholique de Louvain (UCL), Avenue Mounier 52, B1.52.12, 1200, Brussels, Belgium.
| |
Collapse
|
49
|
Rydman EM, Ilves M, Koivisto AJ, Kinaret PAS, Fortino V, Savinko TS, Lehto MT, Pulkkinen V, Vippola M, Hämeri KJ, Matikainen S, Wolff H, Savolainen KM, Greco D, Alenius H. Inhalation of rod-like carbon nanotubes causes unconventional allergic airway inflammation. Part Fibre Toxicol 2014; 11:48. [PMID: 25318534 PMCID: PMC4215016 DOI: 10.1186/s12989-014-0048-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/27/2014] [Indexed: 12/28/2022] Open
Abstract
Background Carbon nanotubes (CNT) represent a great promise for technological and industrial development but serious concerns on their health effects have also emerged. Rod-shaped CNT are, in fact, able to induce asbestos-like pathogenicity in mice including granuloma formation in abdominal cavity and sub-pleural fibrosis. Exposure to CNT, especially in the occupational context, happens mainly by inhalation. However, little is known about the possible effects of CNT on pulmonary allergic diseases, such as asthma. Methods We exposed mice by inhalation to two types of multi-walled CNT, rigid rod-like and flexible tangled CNT, for four hours a day once or on four consecutive days. Early events were monitored immediately and 24 hours after the single inhalation exposure and the four day exposure mimicked an occupational work week. Mast cell deficient mice were used to evaluate the role of mast cells in the occurring inflammation. Results Here we show that even a short-term inhalation of the rod-like CNT induces novel innate immunity-mediated allergic-like airway inflammation in healthy mice. Marked eosinophilia was accompanied by mucus hypersecretion, AHR and the expression of Th2-type cytokines. Exploration of the early events by transcriptomics analysis reveals that a single 4-h exposure to rod-shaped CNT, but not to tangled CNT, causes a radical up-regulation of genes involved in innate immunity and cytokine/chemokine pathways. Mast cells were found to partially regulate the inflammation caused by rod-like CNT, but also alveaolar macrophages play an important role in the early stages. Conclusions These observations emphasize the diverse abilities of CNT to impact the immune system, and they should be taken into account for hazard assessment. Electronic supplementary material The online version of this article (doi:10.1186/s12989-014-0048-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elina M Rydman
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki, Finland.
| | - Marit Ilves
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki, Finland.
| | - Antti J Koivisto
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki, Finland.
| | - Pia A S Kinaret
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki, Finland.
| | - Vittorio Fortino
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki, Finland.
| | - Terhi S Savinko
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki, Finland.
| | - Maili T Lehto
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki, Finland.
| | - Ville Pulkkinen
- Pulmonary Division, Department of Medicine, University of Helsinki, Helsinki, Finland.
| | - Minnamari Vippola
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki, Finland. .,Department of Materials Science, Tampere University of Technology, Tampere, Finland.
| | - Kaarle J Hämeri
- Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Sampsa Matikainen
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki, Finland.
| | - Henrik Wolff
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki, Finland.
| | - Kai M Savolainen
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki, Finland.
| | - Dario Greco
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki, Finland.
| | - Harri Alenius
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki, Finland.
| |
Collapse
|
50
|
Taylor AJ, McClure CD, Shipkowski KA, Thompson EA, Hussain S, Garantziotis S, Parsons GN, Bonner JC. Atomic layer deposition coating of carbon nanotubes with aluminum oxide alters pro-fibrogenic cytokine expression by human mononuclear phagocytes in vitro and reduces lung fibrosis in mice in vivo. PLoS One 2014; 9:e106870. [PMID: 25216247 PMCID: PMC4162563 DOI: 10.1371/journal.pone.0106870] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/05/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Multi-walled carbon nanotubes (MWCNTs) pose a possible human health risk for lung disease as a result of inhalation exposure. Mice exposed to MWCNTs develop pulmonary fibrosis. Lung macrophages engulf MWCNTs and produce pro-fibrogenic cytokines including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and osteopontin (OPN). Atomic layer deposition (ALD) is a novel process used to enhance functional properties of MWCNTs, yet the consequence of ALD-modified MWCNTs on macrophage biology and fibrosis is unknown. METHODS The purpose of this study was to determine whether ALD coating with aluminum oxide (Al2O3) would alter the fibrogenic response to MWCNTs and whether cytokine expression in human macrophage/monocytes exposed to MWCNTs in vitro would predict the severity of lung fibrosis in mice. Uncoated (U)-MWCNTs or ALD-coated (A)-MWCNTs were incubated with THP-1 macrophages or human peripheral blood mononuclear cells (PBMC) and cell supernatants assayed for cytokines by ELISA. C57BL6 mice were exposed to a single dose of A- or U-MWCNTs by oropharyngeal aspiration (4 mg/kg) followed by evaluation of histopathology, lung inflammatory cell counts, and cytokine levels at day 1 and 28 post-exposure. RESULTS ALD coating of MWCNTs with Al2O3 enhanced IL-1β secretion by THP-1 and PBMC in vitro, yet reduced protein levels of IL-6, TNF-α, and OPN production by THP-1 cells. Moreover, Al2O3 nanoparticles, but not carbon black NPs, increased IL-1β but decreased OPN and IL-6 in THP-1 and PBMC. Mice exposed to U-MWCNT had increased levels of all four cytokines assayed and developed pulmonary fibrosis by 28 days, whereas ALD-coating significantly reduced fibrosis and cytokine levels at the mRNA or protein level. CONCLUSION These findings indicate that ALD thin film coating of MWCNTs with Al2O3 reduces fibrosis in mice and that in vitro phagocyte expression of IL-6, TNF-α, and OPN, but not IL-1β, predict MWCNT-induced fibrosis in the lungs of mice in vivo.
Collapse
Affiliation(s)
- Alexia J. Taylor
- Environmental and Molecular Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Christina D. McClure
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kelly A. Shipkowski
- Environmental and Molecular Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Elizabeth A. Thompson
- Environmental and Molecular Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Salik Hussain
- Clinical Research Unit, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Stavros Garantziotis
- Clinical Research Unit, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Gregory N. Parsons
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - James C. Bonner
- Environmental and Molecular Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|