1
|
Ibrahem MA, Waris M, Miah MR, Shabani F, Canimkurbey B, Unal E, Delikanli S, Demir HV. Orientation-Dependent Photoconductivity of Quasi-2D Nanocrystal Self-Assemblies: Face-Down, Edge-Up Versus Randomly Oriented Quantum Wells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401423. [PMID: 38770984 DOI: 10.1002/smll.202401423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Here, strongly orientation-dependent lateral photoconductivity of a CdSe monolayer colloidal quantum wells (CQWs) possessing short-chain ligands is reported. A controlled liquid-air self-assembly technique is utilized to deliberately engineer the alignments of CQWs into either face-down (FO) or edge-up (EO) orientation on the substrate as opposed to randomly oriented (RO) CQWs prepared by spin-coating. Adapting planar configuration metal-semiconductor-metal (MSM) photodetectors, it is found that lateral conductivity spans ≈2 orders of magnitude depending on the orientation of CQWs in the film in the case of utilizing short ligands. The long native ligands of oleic acid (OA) are exchanged with short-chain ligands of 2-ethylhexane-1-thiol (EHT) to reduce the inter-platelet distance, which significantly improved the photoresponsivity from 4.16, 0.58, and 4.79 mA W-1 to 528.7, 6.17, and 94.2 mA W-1, for the MSM devices prepared with RO, FO, and EO, before and after ligands exchange, respectively. Such CQW orientation control profoundly impacts the photodetector performance also in terms of the detection speed (0.061 s/0.074 s for the FO, 0.048 s/0.060 s for the EO compared to 0.10 s/0.16 s for the RO, for the rise and decay time constants, respectively) and the detectivity (1.7 × 1010, 2.3 × 1011, and 7.5 × 1011 Jones for the FO, EO, and RO devices, respectively) which can be further tailored for the desired optoelectronic device applications. Attributed to charge transportation in colloidal films being proportional to the number of hopping steps, these findings indicate that the solution-processed orientation of CQWs provides the ability to tune the photoconductivity of CQWs with short ligands as another degree of freedom to exploit and engineer their absorptive devices.
Collapse
Affiliation(s)
- Mohammed A Ibrahem
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Laser Science and Technology Branch, Applied Sciences Department, University of Technology, Baghdad, 10066, Iraq
| | - Mohsin Waris
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Md Rumon Miah
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Farzan Shabani
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Betul Canimkurbey
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Serefeddin Health Services Vocational School, Central Research Laboratory, Amasya University, Amasya, 05100, Turkey
| | - Emre Unal
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Savas Delikanli
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
2
|
Ma Z, Guo Z, Gao Y, Wang Y, Du M, Han Y, Xue Z, Yang W, Ma X. Boosting Excited-State Energy Transfer by Anchoring Dipole Orientation in Binary Thermally Activated Delayed Fluorescence/J-Aggregate Assemblies. Chemistry 2024; 30:e202400046. [PMID: 38619364 DOI: 10.1002/chem.202400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
Förster resonance energy transfer (FRET) has been widely applied in fluorescence imaging, sensing and so on, while developing useful strategy of boosting FRET efficiency becomes a key issue that limits the application. Except optimizing spectral properties, promoting orientation factor (κ2) has been well discussed but rarely utilized for boosting FRET. Herein, we constructed binary nano-assembling of two thermally activated delayed fluorescence (TADF) emitters (2CzPN and DMAC-DPS) with J-type aggregate of cyanine dye (C8S4) as doping films by taking advantage of their electrostatic interactions. Time-resolved spectroscopic measurements indicated that 2CzPN/Cy-J films exhibit an order of magnitude higher kFRET than DMAC-DPS/Cy-J films. Further quantitative analysing on kFRET and kDET indicated higher orientation factor (κ2) in 2CzPN/Cy-J films play a key role for achieving fast kFRET, which was subsequently confirmed by anisotropic measurements. Corresponding DFT/TDDFT calculation revealed strong "two-point" electrostatic anchoring in 2CzPN/Cy-J films that is responsible for highly orientated transitions. We provide a new strategy for boosting FRET in nano-assemblies, which might be inspired for designing FRET-based devices of sensing, imaging and information encryption.
Collapse
Affiliation(s)
- Zhuoming Ma
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Yixuan Gao
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Yaxin Wang
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Min Du
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| | - Yandong Han
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| | - Zheng Xue
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University, 300072, Tianjin, P. R. China
| |
Collapse
|
3
|
Tai YC, Tzeng WY, Lin JD, Kuo YH, Chen FXR, Tu RJ, Huang MY, Pai SS, Chang NW, Tseng SY, Chen C, Lin CL, Yabushita A, Cheng SJ, Luo CW. Directly Unveiling the Energy Transfer Dynamics between Alq 3 Molecules and Si by Ultrafast Optical Pump-Probe Spectroscopy. NANO LETTERS 2023; 23:10490-10497. [PMID: 37909686 DOI: 10.1021/acs.nanolett.3c03251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The energy transfer (ET) between organic molecules and semiconductors is a crucial mechanism for enhancing the performance of semiconductor-based optoelectronic devices, but it remains undiscovered. Here, ultrafast optical pump-probe spectroscopy was utilized to directly reveal the ET between organic Alq3 molecules and Si semiconductors. Ultrathin SiO2 dielectric layers with a thickness of 3.2-10.8 nm were inserted between Alq3 and Si to prevent charge transfer. By means of the ET from Alq3 to Si, the SiO2 thickness-dependent relaxation dynamics of photoexcited carriers in Si have been unambiguously observed on the transient reflectivity change (ΔR/R) spectra, especially for the relaxation process on a time scale of 200-350 ps. In addition, these findings also agree with the results of our calculation in a model of long-range dipole-dipole interactions, which provides critical information for developing future optoelectronic devices.
Collapse
Affiliation(s)
- Yu-Chan Tai
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Yen Tzeng
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Electronic Engineering, National Formosa University, Yunlin 632, Taiwan
| | - Jhen-Dong Lin
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Hou Kuo
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Fu-Xiang Rikudo Chen
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ruei-Jhe Tu
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ming-Yang Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Shyh-Shii Pai
- FAB 12B, Taiwan Semiconductor Manufacturing Company, Ltd., Hsinchu 300, Taiwan
| | - Nick Weihan Chang
- FAB 12B, Taiwan Semiconductor Manufacturing Company, Ltd., Hsinchu 300, Taiwan
| | - Sheng-Yang Tseng
- FAB 12B, Taiwan Semiconductor Manufacturing Company, Ltd., Hsinchu 300, Taiwan
| | - Chi Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Liang Lin
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Atsushi Yabushita
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Shun-Jen Cheng
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chih-Wei Luo
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Institute of Physics and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials (TCECM), National Science and Technology Council, Taipei 115, Taiwan
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Shabani F, Martinez PLH, Shermet N, Korkut H, Sarpkaya I, Dehghanpour Baruj H, Delikanli S, Isik F, Durmusoglu EG, Demir HV. Gradient Type-II CdSe/CdSeTe/CdTe Core/Crown/Crown Heteronanoplatelets with Asymmetric Shape and Disproportional Excitonic Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205729. [PMID: 36650974 DOI: 10.1002/smll.202205729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Characterized by their strong 1D confinement and long-lifetime red-shifted emission spectra, colloidal nanoplatelets (NPLs) with type-II electronic structure provide an exciting ground to design complex heterostructures with remarkable properties. This work demonstrates the synthesis and optical characterization of CdSe/CdSeTe/CdTe core/crown/crown NPLs having a step-wise gradient electronic structure and disproportional wavefunction distribution, in which the excitonic properties of the electron and hole can be finely tuned through adjusting the geometry of the intermediate crown. The first crown with staggered configuration gives rise to a series of direct and indirect transition channels that activation/deactivation of each channel is possible through wavefunction engineering. Moreover, these NPLs allow for switching between active channels with temperature, where lattice contraction directly affects the electron-hole (e-h) overlap. Dominated by the indirect transition channels over direct transitions, the lifetime of the NPLs starts to increase at 9 K, indicative of low dark-bright exciton splitting energy. The charge transfer states from the two type-II interfaces promote a large number of indirect transitions, which effectively increase the absorption of low-energy photons critical for nonlinear properties. As a result, these NPLs demonstrate exceptionally high two-photon absorption cross-sections with the highest value of 12.9 × 106 GM and superlinear behavior.
Collapse
Affiliation(s)
- Farzan Shabani
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Pedro Ludwig Hernandez Martinez
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology, Nanyang Technological University, Singapore, 639798, Singapore
| | - Nina Shermet
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Hilal Korkut
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Ibrahim Sarpkaya
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Hamed Dehghanpour Baruj
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Savas Delikanli
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology, Nanyang Technological University, Singapore, 639798, Singapore
| | - Furkan Isik
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Emek Goksu Durmusoglu
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hilmi Volkan Demir
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
5
|
Diroll BT, Guzelturk B, Po H, Dabard C, Fu N, Makke L, Lhuillier E, Ithurria S. 2D II-VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chem Rev 2023; 123:3543-3624. [PMID: 36724544 DOI: 10.1021/acs.chemrev.2c00436] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The field of colloidal synthesis of semiconductors emerged 40 years ago and has reached a certain level of maturity thanks to the use of nanocrystals as phosphors in commercial displays. In particular, II-VI semiconductors based on cadmium, zinc, or mercury chalcogenides can now be synthesized with tailored shapes, composition by alloying, and even as nanocrystal heterostructures. Fifteen years ago, II-VI semiconductor nanoplatelets injected new ideas into this field. Indeed, despite the emergence of other promising semiconductors such as halide perovskites or 2D transition metal dichalcogenides, colloidal II-VI semiconductor nanoplatelets remain among the narrowest room-temperature emitters that can be synthesized over a wide spectral range, and they exhibit good material stability over time. Such nanoplatelets are scientifically and technologically interesting because they exhibit optical features and production advantages at the intersection of those expected from colloidal quantum dots and epitaxial quantum wells. In organic solvents, gram-scale syntheses can produce nanoparticles with the same thicknesses and optical properties without inhomogeneous broadening. In such nanoplatelets, quantum confinement is limited to one dimension, defined at the atomic scale, which allows them to be treated as quantum wells. In this review, we discuss the synthetic developments, spectroscopic properties, and applications of such nanoplatelets. Covering growth mechanisms, we explain how a thorough understanding of nanoplatelet growth has enabled the development of nanoplatelets and heterostructured nanoplatelets with multiple emission colors, spatially localized excitations, narrow emission, and high quantum yields over a wide spectral range. Moreover, nanoplatelets, with their large lateral extension and their thin short axis and low dielectric surroundings, can support one or several electron-hole pairs with large exciton binding energies. Thus, we also discuss how the relaxation processes and lifetime of the carriers and excitons are modified in nanoplatelets compared to both spherical quantum dots and epitaxial quantum wells. Finally, we explore how nanoplatelets, with their strong and narrow emission, can be considered as ideal candidates for pure-color light emitting diodes (LEDs), strong gain media for lasers, or for use in luminescent light concentrators.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Burak Guzelturk
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Hong Po
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Corentin Dabard
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Ningyuan Fu
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Lina Makke
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
6
|
Shabani F, Dehghanpour Baruj H, Yurdakul I, Delikanli S, Gheshlaghi N, Isik F, Liu B, Altintas Y, Canımkurbey B, Demir HV. Deep-Red-Emitting Colloidal Quantum Well Light-Emitting Diodes Enabled through a Complex Design of Core/Crown/Double Shell Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106115. [PMID: 34894078 DOI: 10.1002/smll.202106115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/13/2021] [Indexed: 06/14/2023]
Abstract
Extending the emission peak wavelength of quasi-2D colloidal quantum wells has been an important quest to fully exploit the potential of these materials, which has not been possible due to the complications arising from the partial dissolution and recrystallization during growth to date. Here, the synthetic pathway of (CdSe/CdS)@(1-4 CdS/CdZnS) (core/crown)@(colloidal atomic layer deposition shell/hot injection shell) hetero-nanoplatelets (NPLs) using multiple techniques, which together enable highly efficient emission beyond 700 nm in the deep-red region, is proposed and demonstrated. Given the challenges of using conventional hot injection procedure, a method that allows to obtain sufficiently thick and passivated NPLs as the seeds is developed. Consequently, through the final hot injection shell coating, thick NPLs with superior optical properties including a high photoluminescence quantum yield of 88% are achieved. These NPLs emitting at 701 nm exhibit a full-width-at-half-maximum of 26 nm, enabled by the successfully maintained quasi-2D shape and minimum defects of the resulting heterostructure. The deep-red light-emitting diode (LED) device fabricated with these NPLs has shown to yield a high external quantum efficiency of 6.8% at 701 nm, which is on par with other types of LEDs in this spectral range.
Collapse
Affiliation(s)
- Farzan Shabani
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Hamed Dehghanpour Baruj
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Iklim Yurdakul
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Savas Delikanli
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Negar Gheshlaghi
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Furkan Isik
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Baiquan Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yemliha Altintas
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Department of Materials Science and Nanotechnology, Abdullah Gül University, Kayseri, TR-38080, Turkey
| | - Betül Canımkurbey
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Central Research Laboratory, Amasya University, Amasya, 05100, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|