1
|
Yu J, Wang S, Gao L, Qiao G, Lin MF, Wei C, Chen J, Li S. Recent advances in flexible multifunctional electrochromic devices. NANOSCALE 2025; 17:6919-6937. [PMID: 39655385 DOI: 10.1039/d4nr04074k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Electrochromism refers to the phenomenon in which certain materials undergo a redox reaction under an applied voltage or current, resulting in reversible changes in their optical properties and color appearance. Electrochromic devices (ECDs) show great potential in smart windows, anti-glare rear-view mirrors and displays due to the advantages of low energy consumption and simple control mechanisms. However, traditional ECDs are unfavorable for wearable and deformable optoelectronics due to the structural rigidity and limited functions. Thus, flexible ECDs integrating visual information with other advanced technologies can realize multifunctionality and further expand their application fields. This review first introduces the structure and recent development of flexible ECDs, followed by comprehensively summarizing the recent development of flexible multifunctional ECDs, including energy harvesting, energy storage, multicolor displays, and smart windows. Finally, the challenges, development trends and future prospects in flexible multifunctional ECDs are proposed and discussed. We hope that this review can guide and accelerate the development of flexible multifunctional ECDs in the new era of smart optoelectronics.
Collapse
Affiliation(s)
- Jiamin Yu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | - Shanjie Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | - Lin Gao
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, P. R. China
| | - Guoqi Qiao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | - Meng-Fang Lin
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Cong Wei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| | - Jingwei Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Shaohui Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China.
| |
Collapse
|
2
|
Lang T, Yang L, Yang S, Sheng N, Zhang Y, Song X, Guo Y, Fang S, Mu J, Baughman RH. Emerging innovations in electrically powered artificial muscle fibers. Natl Sci Rev 2024; 11:nwae232. [PMID: 39301076 PMCID: PMC11409873 DOI: 10.1093/nsr/nwae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/30/2024] [Accepted: 07/03/2024] [Indexed: 09/22/2024] Open
Abstract
This review systematically explores the inherent structural advantages of fiber over conventional film or bulk forms for artificial muscles, emphasizing their enhanced mechanical properties and actuation, scalability, and design flexibility. Distinctive merits of electrically powered artificial muscle fiber actuation mechanisms, including electrothermal, electrochemical and dielectric actuation, are highlighted, particularly for their operational efficiency, precise control capabilities, miniaturizability and seamless integration with electronic components. A comprehensive overview of significant research driving performance enhancements in artificial muscle fibers through materials and structural innovations is provided, alongside a discussion of the diverse design methodologies that have emerged in this field. A detailed comparative assessment evaluates the performance metrics, advantages and manufacturing complexities of each actuation mechanism, underscoring their suitability for various applications. Concluding with a strategic outlook, the review identifies key challenges and proposes targeted research directions to advance and refine artificial muscle fiber technologies.
Collapse
Affiliation(s)
- Tianhong Lang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Lixue Yang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Shiju Yang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Nan Sheng
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Yiyao Zhang
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Xiaofei Song
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Yang Guo
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jiuke Mu
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
3
|
Mazel A, Khan A, Diring S, Odobel F, Bellet D, Rougier A. Electrochromic, Surface-Anchored Metal-Organic Frameworks for Stabilized Silver Nanowire Flexible Transparent Electrodes. J Phys Chem Lett 2024; 15:9441-9448. [PMID: 39248592 DOI: 10.1021/acs.jpclett.4c02094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Despite excellent optical and electrical properties, the brittleness of indium tin oxide (ITO), used as a transparent electrode, prevents the realization of stable flexible devices. If silver nanowire (AgNW) networks represent a promising alternative, their lack of thermal and electrochemical stability still prevents their fast development in numerous applications. Herein, we report a novel strategy consisting of the deposition of an electrochromic and protective layer of oriented hybrid materials, also known as surface-anchored metal-organic frameworks (SurMOFs). Furthermore, the dual role played by the SurMOF is achieved using a room-temperature and low-cost method for the efficient use of bare AgNWs. A step forward was achieved by demonstrating electrochemical and mechanical stability for flexible electrochromic SurMOF@AgNW/PET thin films, switching reversibly from orange (+0.2 V) to blue (-0.8 V) in 8.4 s and 10.4 s, respectively, with a color efficiency of 158 cm2/C after being bent 300 times.
Collapse
Affiliation(s)
- Antoine Mazel
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 87 Av. du Dr. Schweitzer, F-33600 Pessac, France
| | - Ambreen Khan
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 87 Av. du Dr. Schweitzer, F-33600 Pessac, France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-33800 Grenoble, France
| | - Stéphane Diring
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Fabrice Odobel
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Daniel Bellet
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LMGP, F-33800 Grenoble, France
| | - Aline Rougier
- Univ. Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 87 Av. du Dr. Schweitzer, F-33600 Pessac, France
| |
Collapse
|
4
|
Yang L, Zhang Y, Cai W, Tan J, Hansen H, Wang H, Chen Y, Zhu M, Mu J. Electrochemically-driven actuators: from materials to mechanisms and from performance to applications. Chem Soc Rev 2024; 53:5956-6010. [PMID: 38721851 DOI: 10.1039/d3cs00906h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Soft actuators, pivotal for converting external energy into mechanical motion, have become increasingly vital in a wide range of applications, from the subtle engineering of soft robotics to the demanding environments of aerospace exploration. Among these, electrochemically-driven actuators (EC actuators), are particularly distinguished by their operation through ion diffusion or intercalation-induced volume changes. These actuators feature notable advantages, including precise deformation control under electrical stimuli, freedom from Carnot efficiency limitations, and the ability to maintain their actuated state with minimal energy use, akin to the latching state in skeletal muscles. This review extensively examines EC actuators, emphasizing their classification based on diverse material types, driving mechanisms, actuator configurations, and potential applications. It aims to illuminate the complicated driving mechanisms of different categories, uncover their underlying connections, and reveal the interdependencies among materials, mechanisms, and performances. We conduct an in-depth analysis of both conventional and emerging EC actuator materials, casting a forward-looking lens on their trajectories and pinpointing areas ready for innovation and performance enhancement strategies. We also navigate through the challenges and opportunities within the field, including optimizing current materials, exploring new materials, and scaling up production processes. Overall, this review aims to provide a scientifically robust narrative that captures the current state of EC actuators and sets a trajectory for future innovation in this rapidly advancing field.
Collapse
Affiliation(s)
- Lixue Yang
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Yiyao Zhang
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Wenting Cai
- School of Chemistry, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, China
| | - Junlong Tan
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Heather Hansen
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
- Shanghai Dianji University, 201306, Shanghai, China
| | - Yan Chen
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Jiuke Mu
- School of Mechanical Engineering, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, 135 Yaguan Road, Tianjin 300350, China.
| |
Collapse
|
5
|
Ling Y, Li L, Liu J, Li K, Hou C, Zhang Q, Li Y, Wang H. Air-Working Electrochromic Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305914. [PMID: 37899672 DOI: 10.1002/adma.202305914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/26/2023] [Indexed: 10/31/2023]
Abstract
Artificial muscles are indispensable components for next-generation robotics to mimic the sophisticated movements of living systems and provide higher output energies when compared with real muscles. However, artificial muscles actuated by electrochemical ion injection have problems with single actuation properties and difficulties in stable operation in air. Here, air-working electrochromic artificial muscles (EAMs) with both color-changing and actuation functions are reported, which are constructed based on vanadium pentoxide nanowires and carbon tube yarn. Each EAM can generate a contractile stroke of ≈12% during stable operation in the air with multiple color changes (yellow-green-gray) under ±4 V actuation voltages. The reflectance contrast is as high as 51%, demonstrating the excellent versatility of the EAMs. In addition, a torroidal EAM arrangement with fast response and high resilience is constructed. The EAM's contractile stroke can be displayed through visual color changes, which provides new ideas for future artificial muscle applications in soft robots and artificial limbs.
Collapse
Affiliation(s)
- Yong Ling
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Linpeng Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Junhao Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glass Manufacturing Technology Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glass Manufacturing Technology Ministry of Education, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
6
|
Xue E, Liu L, Wu W, Wang B. Soft Fiber/Textile Actuators: From Design Strategies to Diverse Applications. ACS NANO 2024; 18:89-118. [PMID: 38146868 DOI: 10.1021/acsnano.3c09307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Fiber/textile-based actuators have garnered considerable attention due to their distinctive attributes, encompassing higher degrees of freedom, intriguing deformations, and enhanced adaptability to complex structures. Recent studies highlight the development of advanced fibers and textiles, expanding the application scope of fiber/textile-based actuators across diverse emerging fields. Unlike sheet-like soft actuators, fibers/textiles with intricate structures exhibit versatile movements, such as contraction, coiling, bending, and folding, achieved through adjustable strain and stroke. In this review article, we provide a timely and comprehensive overview of fiber/textile actuators, including structures, fabrication methods, actuation principles, and applications. After discussing the hierarchical structure and deformation of the fiber/textile actuator, we discuss various spinning strategies, detailing the merits and drawbacks of each. Next, we present the actuation principles of fiber/fabric actuators, along with common external stimuli. In addition, we provide a summary of the emerging applications of fiber/textile actuators. Concluding with an assessment of existing challenges and future opportunities, this review aims to provide a valuable perspective on the enticing realm of fiber/textile-based actuators.
Collapse
Affiliation(s)
- Enbo Xue
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Limei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China
| | - Binghao Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| |
Collapse
|
7
|
Hamidinejad M, Wang H, Sanders KA, De Volder M. Electrochemically Responsive 3D Nanoarchitectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304517. [PMID: 37702306 DOI: 10.1002/adma.202304517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Responsive nanomaterials are being developed to create new unique functionalities such as switchable colors and adhesive properties or other programmable features in response to external stimuli. While many existing examples rely on changes in temperature, humidity, or pH, this study aims to explore an alternative approach relying on simple electric input signals. More specifically, 3D electrochromic architected microstructures are developed using carbon nanotube-Tin (Sn) composites that can be reconfigured by lithiating Sn with low power electric input (≈50 nanowatts). These microstructures have a continuous, regulated, and non-volatile actuation determined by the extent of the electrochemical lithiation process. In addition, this proposed fabrication process relies only on batch lithographic techniques, enabling the parallel production of thousands of 3D microstructures. Structures with a 30-97% change in open-end area upon actuation are demonstrated and the importance of geometric factors in the response and structural integrity of 3D architected microstructures during electrochemical actuation is highlighted.
Collapse
Affiliation(s)
- Mahdi Hamidinejad
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FS, UK
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G1H9, Canada
| | - Heng Wang
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Kate A Sanders
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Michael De Volder
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FS, UK
| |
Collapse
|
8
|
Fan Q, Fan H, Li K, Hou C, Zhang Q, Li Y, Wang H. Stretchable, Electrochemically-Stable Electrochromic Devices Based on Semi-Embedded Ag@Au Nanowire Network. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208234. [PMID: 36866459 DOI: 10.1002/smll.202208234] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Indexed: 06/02/2023]
Abstract
Stretchable electrochromic (EC) devices that can adapt the irregular and dynamic human surfaces show promising applications in wearable display, adaptive camouflage, and visual sensation. However, challenges exist in lacking transparent conductive electrodes with both tensile and electrochemical stability to assemble the complex device structure and endure harsh electrochemical redox reactions. Herein, a wrinkled, semi-embedded Ag@Au nanowire (NW) networks are constructed on elastomer substrates to fabricate stretchable, electrochemically-stable conductive electrodes. The stretchable EC devices are then fabricated by sandwiching a viologen-based gel electrolyte between two conductive electrodes with the semi-embedded Ag@Au NW network. Because the inert Au layer inhibits the oxidation of Ag NWs, the EC device exhibits much more stable color changes between yellow and green than those with pure Ag NW networks. In addition, since the wrinkled semi-embedded structure is deformable and reversibly stretched without serious fractures, the EC devices still maintain excellent color-changing stability under 40% stretching/releasing cycles.
Collapse
Affiliation(s)
- Qingchao Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Hongwei Fan
- Instrumental Analysis & Research Center, Shanghai University, Shanghai, 200444, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
9
|
Li H, Liang H, Li R, Lu Z, Hou C, Zhang Q, Li Y, Li K, Wang H. Ultrafast, Stable Electrochromics Enabled by Hierarchical Assembly of V 2O 5@C Microrod Network. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48037-48044. [PMID: 36245123 DOI: 10.1021/acsami.2c14286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Vanadium pentoxide (V2O5) with multicolor transition is widely studied in the electrochromic (EC) field to enrich color species of transition-metal oxides; yet, it always suffers from slow switching speed caused by poor electron conductivity and slow ion diffusion, poor cycling stability induced by large volume change during the EC reaction process. Herein, hierarchical network assembly of V2O5@C microrods is introduced to develop an ultrafast, stable, multicolor EC film. Using a two-step pyrolysis that involves metal-organic framework templates, porous microrods with a well-preserved one-dimensional structure are prepared through the assembly of V2O5@C nanocrystals at nanoscale, providing more active sites for ionic insertion and accessible pathways for electron transport. After spray-coating the V2O5@C microrods on conductive substrates, interconnected networks composed of V2O5@C microrods at microscale ensures the infiltration of electrolyte and provide ion transport channels. In addition, the nanoscale porous structure and coated carbon layer can accommodate volumetric changes during ion insertion/extraction process, ensuring high electrochemical stability. As a result, EC electrode with V2O5@C microrods network performed rapid switching speed (1.1/1.0 s) and stable cycle ability (96% after 2000 cycles). At last, flexible large-scale devices and multicolor digital displays were assembled to demonstrate potential application in next-generation wearable electronics.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Hao Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto6068502, Japan
| | - Ran Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Ziqiu Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai201620, China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai201620, China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| |
Collapse
|