1
|
Nguyen HD. Exposure to mixed chemicals elevated triiodothyronine (T3) and follicle-stimulating hormone (FSH) levels: epidemiology and in silico toxicogenomic involvement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88803-88823. [PMID: 37442928 DOI: 10.1007/s11356-023-28704-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
There is a dearth of evidence on the effects of a mixture of numerous different types of chemicals on hormone functions. We hypothesized that exposure to mixed chemicals may alter hormone levels. Thus, this study was to identify an association between the mixed chemicals (25 chemicals) and hormone levels (thyroxine (T4) and triiodothyronine (T3), thyroid-stimulating hormone (TSH), and follicle-stimulating hormone (FSH)) among 5687 Korean adults using four different statistical approaches. Furthermore, we elucidate the effects of the key chemicals on thyroid disease and infertility based on the findings from epidemiology data. The positive associations between mixed chemicals and T3 and between mixed chemicals and FSH were observed across different methods after adjusting for all possible confounders. In the weighted quantile sum regression models, there were positive associations between mixed chemicals and T3 (β = 4.43, 95%CI: 2.81-5.88) and ln-transformed FSH (lnFSH) (β = 0.15, 95%CI: 0.10-0.20). In the quantile g-computation models, positive associations were found between mixed chemicals and T3 (β=2.15, 95%CI: 0.17-4.14) and lnFSH (β=0.15, 95%CI: 0.07-0.22). In the Bayesian kernel machine regression models, culminative effects of mixed chemicals showed positive associations with T3 and lnFSH; mercury (group posterior inclusion probabilities (PIPs) = 0.557 and conditional PPI = 0.556) and lead (group PIP group = 0.815 and conditional PPI = 0.951) were the most important chemicals for T3 and FSH, respectively. The results obtained were partially robust when subjected to in silico toxicogenomic data. We identified several molecular mechanisms that were implicated in Hg-induced thyroid disease, including the selenium micronutrient network, oxidative stress response, IL-17 signaling pathway, poorly differentiated thyroid carcinoma, and primary hyperthyroidism. The molecular processes implicated in Pb-induced infertility were "response to nutrient levels," "gonad development," "male infertility," "female infertility," and "intrinsic pathway for apoptosis," with a particular focus on FSH. The present study investigated the threshold levels of the studied chemicals and their potential impact on the disruption of T3 and FSH hormones. Future research is warranted to determine the effects of mixed chemicals on various hormones because there have been few studies on the disruption of hormones caused by such mixed chemicals.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea.
| |
Collapse
|
2
|
In Vivo Imaging of Thyroid Cancer with 99mTc-TR1401 and 99mTc-TR1402: A Comparison Study in Dogs. J Clin Med 2021; 10:jcm10091878. [PMID: 33926024 PMCID: PMC8123688 DOI: 10.3390/jcm10091878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/27/2023] Open
Abstract
Differentiated thyroid cancer (DTC) cells may lose NIS expression and iodine uptake, but usually express TSH receptors (TSHR). Therefore, the aim of our study was to compare two radiolabeled superagonist TSH analogues for DTC imaging. These analogues (namely TR1401 and TR1402) have a higher TSHR binding affinity than recombinant human TSH (Thyrogen®). Radiolabeling was performed with technetium-99m using an indirect method via HYNIC conjugation and was followed by in vitro quality controls and binding assay on TSHR-positive cell lines (ML-1). An in vitro binding assay was also performed and compared with radiolabeled human recombinant TSH. In vivo imaging was performed in four dogs with spontaneous follicular thyroid carcinoma with solid poorly differentiated areas with 99mTc-TR1401 SPECT/CT, 99mTc-TR1402 SPECT/CT, and [18F]FDG PET/CT on different days within 2 weeks. TR1401 and TR1402 were labeled with high specific activity (8.3 ± 1.2 MBq/µg) and retention of their biological activity and structural integrity. Both agonists were able to efficiently bind TSHR receptors expressed by cell lines with dissociation constants (Kd) of 2.7 nM for 99mTc-TR1401 and 0.5 nM for 99mTc-TR1402 compared with 99mTc-Thyrogen (Kd = 8.4 nM). In tumor-targeting experiments, a focal uptake was observed in dogs with spontaneous intraglandular thyroid carcinoma, in which TSHR expression was confirmed by immunohistochemistry. 99mTc-TR1402 provided higher T/B than 99mTc-TR1401 and [18F]FDG (12.9 ± 1.3, 10.2 ± 0.7, and 3.8 ± 0.6, respectively; all p < 0.001). Given these results, 99mTc-TR1402 appears to be a useful tool for in vivo imaging of thyroid cancer.
Collapse
|
3
|
Donadio-Andréi S, Chikh K, Heuclin C, Kuczewski E, Charrié A, Gauchez AS, Ronin C. Variability among TSH Measurements Can Be Reduced by Combining a Glycoengineered Calibrator to Epitope-Defined Immunoassays. Eur Thyroid J 2017; 6:3-11. [PMID: 28611942 PMCID: PMC5465719 DOI: 10.1159/000449463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/30/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Measuring protein markers with variable glycosylation, such as thyroid-stimulating hormone (TSH), with high accuracy is not an easy task. Despite highly sensitive third-generation tests, discrepancies among TSH assays still remain unsolved and are the focus of important standardization efforts. Earlier work from our group showed that a lack of similarity in epitope expression between standards and samples may account for discordant hormone measurements. In this study, we aimed at producing a glycoengineered TSH with serum-type glycosylation and compared its immunological behavior to that of the international standards. STUDY DESIGN Recombinant glycoengineered TSH (rgTSH) was produced in glycoengineered Chinese hamster ovary cells to express a highly sialylated TSH and tested in newly designed assays. Two groups of assays targeting defined epitopes were constructed and TSH levels were estimated in a panel of 84 clinical samples (2.1-22.4 mIU/l) based on the use of the current 3rd IS 81/565, the 1st IRP 94/674 and rgTSH calibrations. RESULTS Calibration based on rgTSH was found to significantly reduce the percentage difference means of assays compared to the pituitary standard. We also found that a switch from a mIU/l (3rd IS 81/565) to ng/l (rgTSH) basis can be established within the normal as well as in the mid to upper normal range of TSH levels. Of interest, TSH assays targeting the main immunogenic region displayed variable TSH values, indicating that, in this region, epitopes should be defined for assays to deliver similar values. CONCLUSIONS A glycoengineered TSH with serum-type glycosylation proved to be a new calibrator efficient in harmonizing TSH values.
Collapse
Affiliation(s)
| | - Karim Chikh
- CARMEN-INSERM U1060, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, France
- CARMEN-INSERM U1060, Université Claude Bernard Lyon 1, Faculté de Médecine et de Maïeutique Lyon Sud - Charles Mérieux, Oullins, France
- Société Française de Médecine Nucléaire, Groupe de Biologie Spécialisée, Centre Antoine Béclère, Paris, France
| | - Christine Heuclin
- Laboratoire du Service de Médecine Nucléaire, BioSIMS Technologies, Seine Biopolis II, Rouen, France
| | - Elisabetta Kuczewski
- CARMEN-INSERM U1060, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, France
| | - Anne Charrié
- CARMEN-INSERM U1060, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, France
- CARMEN-INSERM U1060, Université Claude Bernard Lyon 1, Faculté de Médecine et de Maïeutique Lyon Sud - Charles Mérieux, Oullins, France
- Société Française de Médecine Nucléaire, Groupe de Biologie Spécialisée, Centre Antoine Béclère, Paris, France
| | - Anne-Sophie Gauchez
- Société Française de Médecine Nucléaire, Groupe de Biologie Spécialisée, Centre Antoine Béclère, Paris, France
- Laboratoire du Service de Médecine Nucléaire, Centre Hospitalier de Chambéry, Chambéry, Grenoble, France
- Pôle de Biologie, Centre Hospitalier et Universitaire de Grenoble, Grenoble, France
- Pôle de Biologie, Centre Hospitalier et Universitaire de Grenoble, UMR-S INSERM 1037, Grenoble, France
| | - Catherine Ronin
- Siamed'Xpress, Hôtel Technologique Morandat, Gardanne, France
- *Prof. Catherine Ronin, Siamed'Xpress, Hôtel Technologique Morandat, 1480 rue d'Arménie, FR−13120 Gardanne (France), E-Mail
| |
Collapse
|
4
|
Szkudlinski MW. New Frontier in Glycoprotein Hormones and Their Receptors Structure-Function. Front Endocrinol (Lausanne) 2015; 6:155. [PMID: 26539160 PMCID: PMC4609891 DOI: 10.3389/fendo.2015.00155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/18/2015] [Indexed: 01/27/2023] Open
Abstract
Last two decades of structure-function studies performed in numerous laboratories provided substantial progress in understanding basic science, physiological, pathophysiological, pharmacological, and comparative aspects of glycoprotein hormones (GPHs) and their cognate receptors. Multiple concepts and models developed based on experimental data in the past stood the test of time and have been, at least in part, confirmed and/or remained compatible with the new structures resolved at the atomic level. Major advances in understanding of the ligand-receptor relationships are heralding the dawn of a new era for GPHs and their receptors, although many basic questions still remain unanswered. This article examines retrospectively several basic science aspects of GPH super-agonists and related "biosuperiors" in a broader context of the advances in the ligand-receptor structure-function relationships and new mechanistic models generated based on the structure elucidation. Due to selective focus of my comments and perspectives in certain parts, the reader is directed to the most relevant publications and reviews in the field for more comprehensive analyses.
Collapse
Affiliation(s)
- Mariusz W. Szkudlinski
- Trophogen Inc., Rockville, MD, USA
- *Correspondence: Mariusz W. Szkudlinski, Trophogen Inc., 9714 Medical Center Drive, Rockville, MD, USA,
| |
Collapse
|
5
|
Galli F, Manni I, Piaggio G, Balogh L, Weintraub BD, Szkudlinski MW, Fremont V, Dierckx RA, Signore A. (99m)Tc-labeled-rhTSH analogue (TR1401) for imaging poorly differentiated metastatic thyroid cancer. Thyroid 2014; 24:1297-308. [PMID: 24801227 PMCID: PMC4106381 DOI: 10.1089/thy.2013.0429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Differentiated thyroid carcinomas originating from thyroid follicular cells are frequent tumors of the thyroid with relatively good prognosis due to improved surgical techniques and follow-up procedures. Poorly differentiated thyroid cancers, which lose iodine uptake ability, in most cases still express thyrotropin (TSH) receptors (TSHR). Therefore, the aim of this study was to radiolabel a superagonist recombinant human TSH (rhTSH) analogue for imaging poorly differentiated thyroid cancer. METHODS The TSHR superagonist, TR1401, was labeled with (99m)Tc using an indirect method via succinimidyl-6-hydrazinonicotinate hydrochloride conjugation. In vitro quality controls included SDS-PAGE, cysteine challenge, and cell-binding assay on TSHR positive cell lines (JP09 and ML-1). In vivo studies included tumor targeting experiments in athymic nude CD-1 mice xenografted with several different TSHR positive cells (JP09, K1, and ML-1) and TSHR negative cells (JP02) as control. RESULTS The superagonist rhTSH analogue TR1401 was labeled with high labeling efficiency (>95%) and high specific activity (9250 MBq/mg). The labeled molecule retained its biologic activity and structural integrity. In tumor targeting experiments, a focal uptake of radiolabeled TR1401 was observed in TSHR positive cells but not in TSHR negative cells. The same observation was made in a dog with spontaneous intraglandular thyroid cancer. CONCLUSIONS We were able to radiolabel the rhTSH superagonist analogue TR1401 with (99m)Tc efficiently with retention of in vitro and in vivo binding capacity to TSHR. The relative role of such novel radiopharmaceutical versus (131)I scanning of thyroid cancer will require future histopathologic and clinical studies, but it may open new perspectives for presurgical staging of thyroid cancer, and diagnosis of radioiodine negative local relapses and/or distant metastases.
Collapse
Affiliation(s)
- Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, Rome, Italy
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Isabella Manni
- Molecular Oncogenesis Laboratory, Experimental Oncology Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Piaggio
- Molecular Oncogenesis Laboratory, Experimental Oncology Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Lajos Balogh
- National “Frederic Joliot Curie” Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | | | | | | | - Rudi A.J.O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, Rome, Italy
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Dietrich JW, Landgrafe G, Fotiadou EH. TSH and Thyrotropic Agonists: Key Actors in Thyroid Homeostasis. J Thyroid Res 2012; 2012:351864. [PMID: 23365787 PMCID: PMC3544290 DOI: 10.1155/2012/351864] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/21/2012] [Indexed: 12/11/2022] Open
Abstract
This paper provides the reader with an overview of our current knowledge of hypothalamic-pituitary-thyroid feedback from a cybernetic standpoint. Over the past decades we have gained a plethora of information from biochemical, clinical, and epidemiological investigation, especially on the role of TSH and other thyrotropic agonists as critical components of this complex relationship. Integrating these data into a systems perspective delivers new insights into static and dynamic behaviour of thyroid homeostasis. Explicit usage of this information with mathematical methods promises to deliver a better understanding of thyrotropic feedback control and new options for personalised diagnosis of thyroid dysfunction and targeted therapy, also by permitting a new perspective on the conundrum of the TSH reference range.
Collapse
Affiliation(s)
- Johannes W. Dietrich
- Lab XU44, Medical Hospital I, Bergmannsheil University Hospitals, Ruhr University of Bochum (UK RUB), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, NRW, Germany
| | - Gabi Landgrafe
- Lab XU44, Medical Hospital I, Bergmannsheil University Hospitals, Ruhr University of Bochum (UK RUB), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, NRW, Germany
- Klinik für Allgemein- und Visceralchirurgie, Agaplesion Bethesda Krankenhaus Wuppertal gGmbH, Hainstraße 35, 42109 Wuppertal, NRW, Germany
| | - Elisavet H. Fotiadou
- Lab XU44, Medical Hospital I, Bergmannsheil University Hospitals, Ruhr University of Bochum (UK RUB), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, NRW, Germany
| |
Collapse
|
7
|
Liu C, Li L, Ying F, Xu C, Zang X, Gao Z. A newly identified TSHβ splice variant is involved in the pathology of Hashimoto's thyroiditis. Mol Biol Rep 2012; 39:10019-30. [PMID: 22752807 DOI: 10.1007/s11033-012-1871-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 06/20/2012] [Indexed: 11/26/2022]
Abstract
Thyrotropin (TSH) is a protein that plays a key role in the control of thyroid function. TSH consists of a common α-subunit and a unique β-subunit; the latter is responsible for hormone specificity. A novel splice variant of human TSHβ was identified in 2009. To date, only the tissue distribution of the human TSHβ splice variant mRNA has been studied. Therefore, we aimed to characterize the protein translated from this splice variant. Salting-out, dialysis and concentration of serum proteins were followed by immunoprecipitation to identify the hTSHβ splice variant in serum. Stable CHO cell lines expressing the hTSHβ splice variant and V5-hTSHα were generated. After co-culture, co-immunoprecipitation was used to determine if the hTSHβ splice variant can dimerise with TSHα. We showed for the first time that the hTSHβ splice variant exists in human serum and dimerises with TSHα. To explore the relationship between the TSHβ splice variant and the pathogenesis of autoimmune thyroiditis, we assessed variations in the mRNA expression of the TSHβ splice variant in the peripheral blood leukocytes (PBLs) of Hashimoto's thyroiditis (HT) patients using quantitative RT-PCR. We found that the mRNA expression levels of the TSHβ splice variant were higher in the PBLs of HT patients who were not undergoing prednisone therapy (n = 10, P < 0.0001) and in the PBLs of HT patients with a longer duration of illness (>18 months) who were undergoing prednisone therapy (n = 5, P = 0.023) than in those of the control group. This pattern was reversed in the PBLs of HT patients with a shorter duration of illness (<9 months) who were undergoing prednisone therapy (n = 8, P < 0.0001). Dexamethasone inhibition of the TSHβ splice variant mRNA expression occurred in a dose- and time-dependent manner. These results demonstrated that the TSHβ splice variant may participate in the pathogenesis of HT.
Collapse
Affiliation(s)
- Chunrong Liu
- Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, QiXiangTai Road No22, HePing District, Tianjin 300070, China
| | | | | | | | | | | |
Collapse
|
8
|
Influence of a Reduced CO2 Environment on the Secretion Yield, Potency and N-Glycan Structures of Recombinant Thyrotropin from CHO Cells. Mol Biotechnol 2008; 39:159-66. [DOI: 10.1007/s12033-008-9047-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Sendak RA, Sampath TK, McPherson JM. Newly reported roles of thyroid-stimulating hormone and follicle-stimulating hormone in bone remodelling. INTERNATIONAL ORTHOPAEDICS 2007; 31:753-7. [PMID: 17611756 PMCID: PMC2266660 DOI: 10.1007/s00264-007-0417-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 04/25/2007] [Accepted: 04/27/2007] [Indexed: 01/29/2023]
Abstract
Thyroid-stimulating hormone (TSH) and follicle-stimulating hormone (FSH) have both been recently implicated in bone remodelling. Clinical evidence, as well as data from TSH receptor and thyroid hormone receptor knockout mice, suggest that TSH has a direct effect on skeletal homeostasis, although some data are conflicting. Recently, the exogenous administration of TSH has been shown to positively impact bone in oophrectomised rats. These data, along with their potential implications for the treatment of severe osteoporosis, are discussed.
Collapse
Affiliation(s)
- Rebecca A Sendak
- Genzyme Corporation, One Mountain Road, Framingham, MA, 01701, USA,
| | | | | |
Collapse
|
10
|
Abstract
Recombinant human thyroid-stimulating hormone (rhTSH), used to enhance diagnostic radioiodine whole body scanning and thyroglobulin testing, has dramatically altered the management of patients with thyroid cancer. Withdrawal from thyroid hormone suppression therapy and subsequent hypothyroidism is no longer the only safe and effective method for thyroid cancer surveillance. Currently, rhTSH is only approved for the monitoring of low-risk patients with well-differentiated thyroid cancer and radioactive iodine administration, in selected cases. Additional applications of rhTSH include enhancing the sensitivity of positron emission tomography in thyroid cancer, the management of multinodular goiter, and dynamic testing of thyroid reserve. The diagnostic and therapeutic role of rhTSH in these areas is discussed in this review.
Collapse
Affiliation(s)
- Loukas Gourgiotis
- National Institutes of Health, Clinical Endocrinology Branch, National Institute of Diabetes, Digestive and Kidney Diseases, 10 Center Drive MSC 1771, Building 10, Room 8S235B, Bethesda, Maryland 20892-1771, USA
| | | |
Collapse
|
11
|
de Mendonça F, de Oliveira JE, Bartolini P, Ribela MTCP. Two-step chromatographic purification of recombinant human thyrotrophin and its immunological, biological, physico-chemical and mass spectral characterization. J Chromatogr A 2005; 1062:103-12. [PMID: 15679148 DOI: 10.1016/j.chroma.2004.10.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A purification strategy for rapidly obtaining recombinant human thyrotropin (rhTSH) was designed based on size exclusion and reversed-phase high-performance liquid chromatographic (HPLC) analysis, carried out on hTSH-secreting CHO cell conditioned medium. These analyses permitted the identification of the main contaminants to be eliminated. Considering that hTSH is highly hydrophobic and elutes only with the addition of organic solvents, hydrophobic interaction chromatography was adopted as the first purification step; this resulted in the elimination of, among others, the major contaminant. A second purification step, based on size exclusion chromatography, was then utilized, being effective in the elimination of other previously identified contaminating proteins. Useful purity, as high as 99% at the chemical reagent level, and recoveries (37%) were obtained by adopting this two step strategy, which also provided adequate material for physico-chemical, immunological and biological characterization. This included matrix-assisted laser desorption ionization time-of-flight mass spectral analysis (MALDI-TOF-MS), Western blotting analysis, in vivo biological assay, size-exclusion HPLC (HPSEC) and reversed-phase HPLC (RP-HPLC) analysis, which confirmed the integrity and bioactivity of our rhTSH in comparison with the only two reference preparations available at the milligram level of native (hTSH-NIDDK) and recombinant (Thyrogen) hTSH. Thyrogen and rhTSH-IPEN, when compared to pit-hTSH-NIDDK, presented more than twice as much biological activity and about 7% increased molecular mass by MALDI-TOF-MS analysis, an accurate heterodimer mass determination providing the Mr values of 29,611, 29,839 and 27,829, respectively. The increased molecular mass of the two recombinant preparations was also confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and HPSEC analysis. Comparing the two recombinant preparations, minor though interesting physico-chemical and biological differences were also observed.
Collapse
Affiliation(s)
- Fernanda de Mendonça
- Biotechnology Department, IPEN-CNEN, Cidade Universitária, 05508-900 São Paulo, Brazil
| | | | | | | |
Collapse
|
12
|
Sendak RA, Ganesa C, Lee KL, Harrahy JJ, Théberge R, Morgan CJ, Cole ES, Kohn LD, Mattaliano RJ. The effect of posttranslational modifications on the in vitro activity of recombinant human thyroid-stimulating hormone. Thyroid 2003; 13:1091-101. [PMID: 14751029 DOI: 10.1089/10507250360731488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Posttranslational modification can influence the biologic activity of recombinant proteins. The effects of beta-subunit C-terminal truncation, oligosaccharide heterogeneity, and chemical oxidation on the in vitro activity of recombinant human thyroid-stimulating hormone (rhTSH) were investigated. beta-Subunit C-terminal truncation up to residue 113 did not effect the in vitro activity of the hormone. The relationship between the heterogeneity of oligosaccharide structures on rhTSH and specific activity of the glycoprotein hormone was also examined. Oligosaccharide profiles were generated for preparations of rhTSH containing similar sialic acid levels. A weak correlation was observed between relative levels of monosialylated biantennary, bisialylated biantennary, and trisialylated triantennary oligosaccharide species and in vitro activity of the recombinant hormone (p < 0.05). To examine the effect of chemically induced methionine oxidation on the activity of rhTSH, the hormone was treated with tert-butyl hydroperoxide and then characterized. Using peptide mapping and mass spectrometry, the degree of oxidation of the five methionine residues within rhTSH was measured. Met-71 in the alpha-subunit was the most susceptible to oxidation whereas Met-9 in the beta-subunit was the most resistant. Also, after tert-butyl hydroperoxide treatment, levels of oxidation of Met-32 in the beta-subunit, and Met-29 and Met-47 in the alpha-subunit were less than half of that observed for Met-71. The in vitro activity of rhTSH initially declined with increasing oxidation; however, the loss in activity plateaued at approximately 50% of the control sample activity. In summary, despite the possible effects that posttranslational modifications may have on the bioactivity of a protein, a limited degree of variation in bioactivity was observed for the rhTSH preparations described in this study.
Collapse
Affiliation(s)
- Rebecca A Sendak
- Therapeutic Protein Research and Development, Genzyme Corporation, Framingham, Massachusetts 01701, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ribela MTCP, Gout PW, Bartolini P. Synthesis and chromatographic purification of recombinant human pituitary hormones. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 790:285-316. [PMID: 12767339 DOI: 10.1016/s1570-0232(03)00125-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recombinant DNA-derived proteins and, in particular, human pituitary hormones, are increasingly used for research, diagnostic and therapeutic purposes. This trend has demanded new synthetic approaches and improved purification techniques. The type and sequence of the purification steps have to be selected in accordance with the cloning and protein expression strategy, the host organism and cellular localization of the protein of interest, with a view to producing the desired product at a required purity, biological activity and acceptable cost. This review article describes and analyzes the main synthetic and purification strategies that have been used for the production of recombinant human growth hormone, prolactin, thyrotropin, luteinizing hormone and follicle-stimulating hormone, giving special consideration to the few published downstream processes utilized by the biotechnology industry. Practically all types of prokaryotic and eukaryotic organisms utilized for this purpose are also reviewed.
Collapse
Affiliation(s)
- Maria Teresa C P Ribela
- Biotechnology Department, IPEN-CNEN, Travessa R 400, Cidade Universitária, 05508-900, São Paulo, Brazil.
| | | | | |
Collapse
|
14
|
de Oliveira JE, de Mendonça F, Peroni CN, Bartolini P, Ribela MTCP. Determination of Chinese hamster ovary cell-derived recombinant thyrotropin by reversed-phase liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 787:345-55. [PMID: 12650757 DOI: 10.1016/s1570-0232(02)00965-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A reversed-phase high-performance liquid chromatography (RP-HPLC) methodology for the qualitative and quantitative analysis of human thyrotropin (hTSH) in CHO cell conditioned medium and in purified preparations has been set up and validated for accuracy, precision and sensitivity. A recovery test indicated a bias of less than 2% and intra-day and inter-day quantitative determinations presented relative standard deviations (RSD) always <7%, while sensitivity was 0.2 microg (RSD=5.6%). The novel methodology was applied to the study of the best cultivation conditions and was able to detect a significant difference in retention time (t(R)) between pituitary and recombinant hTSH, probably reflecting the influence of the heterogeneity of the carbohydrate moiety on the hydrophobic properties of the molecule.
Collapse
Affiliation(s)
- João Ezequiel de Oliveira
- Biotechnology Department, IPEN-CNEN, Travessa R 400, Cidade Universitária, 05508-900 São Paulo, Brazil
| | | | | | | | | |
Collapse
|
15
|
Szkudlinski MW, Fremont V, Ronin C, Weintraub BD. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol Rev 2002; 82:473-502. [PMID: 11917095 DOI: 10.1152/physrev.00031.2001] [Citation(s) in RCA: 307] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review focuses on recent advances in the structure-function relationships of thyroid-stimulating hormone (TSH) and its receptor. TSH is a member of the glycoprotein hormone family constituting a subset of the cystine-knot growth factor superfamily. TSH is produced by the pituitary thyrotrophs and released to the circulation in a pulsatile manner. It stimulates thyroid functions using specific membrane TSH receptor (TSHR) that belongs to the superfamily of G protein-coupled receptors (GPCRs). New insights into the structure-function relationships of TSH permitted better understanding of the role of specific protein and carbohydrate domains in the synthesis, bioactivity, and clearance of this hormone. Recent progress in studies on TSHR as well as studies on the other GPCRs provided new clues regarding the molecular mechanisms of receptor activation. Such advances are a result of extensive site-directed mutagenesis, peptide and antibody approaches, detailed sequence analyses, and molecular modeling as well as studies on naturally occurring gain- and loss-of-function mutations. This review integrates expanding information on TSH and TSHR structure-function relationships and summarizes current concepts on ligand-dependent and -independent TSHR activation. Special emphasis has been placed on TSH domains involved in receptor recognition, constitutive activity of TSHR, new insights into the evolution of TSH bioactivity, and the development of high-affinity TSH analogs. Such structural, physiological, pathophysiological, evolutionary, and therapeutic implications of TSH-TSHR structure-function studies are frequently discussed in relation to concomitant progress made in studies on gonadotropins and their receptors.
Collapse
Affiliation(s)
- Mariusz W Szkudlinski
- Section of Protein Engineering, Laboratory of Molecular Endocrinology, Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|