1
|
Hawkins NA, DeKeyser JM, Kearney JA, George AL. Novel mouse model of alternating hemiplegia of childhood exhibits prominent motor and seizure phenotypes. Neurobiol Dis 2024; 203:106751. [PMID: 39603281 PMCID: PMC11808630 DOI: 10.1016/j.nbd.2024.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024] Open
Abstract
Pathogenic variants in ATP1A3 encoding the neuronal Na/K-ATPase cause a spectrum of neurodevelopmental disorders including alternating hemiplegia of childhood (AHC). Three recurrent ATP1A3 variants are associated with approximately half of known AHC cases and mouse models of two of these variants (p.D801N, p.E815K) replicated key features of the human disorder, which include paroxysmal hemiplegia, dystonia and seizures. Epilepsy occurs in 40-50 % of individuals affected with AHC, but detailed investigations of seizure phenotypes were limited in the previously reported mouse models. Using gene editing, we generated a novel AHC mouse expressing the third most recurrent ATP1A3 variant (p.G947R) to model neurological phenotypes of the disorder. Heterozygous Atp1a3-G947R (Atp1a3G947R) mice on a pure C57BL/6J background were born at a significantly lower frequency than wildtype (WT) littermates, but in vitro fertilization or outcrossing to a different strain (C3HeB/FeJ) generated offspring at near-Mendelian genotype ratios, suggesting a defect in reproductive fitness rather than embryonic lethality. Heterozygous mutant mice were noticeably smaller and exhibited premature lethality, hyperactivity, anxiety-like behaviors, severe motor dysfunction including low grip strength, impaired coordination with abnormal gait and balance, reduced REM sleep, and cooling-induced hemiplegia and dystonia. We also observed a prominent seizure phenotype with lower thresholds to chemically (flurothyl, kainic acid) and electrically induced seizures, post-handling seizures, sudden death following seizures, and abnormal EEG activity. Together, our findings support face validity of a novel AHC mouse model with quantifiable traits including co-morbid epilepsy that will be useful as an in vivo platform for investigating pathophysiology and testing new therapeutic strategies for this rare neurodevelopmental disorder.
Collapse
Affiliation(s)
- Nicole A Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jean-Marc DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer A Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Portal B, Vasile F, Zapata J, Lejards C, Ait Tayeb AEK, Colle R, Verstuyft C, Corruble E, Rouach N, Guiard BP. Astroglial Connexins Inactivation Increases Relapse of Depressive-like Phenotype after Antidepressant Withdrawal. Int J Mol Sci 2022; 23:13227. [PMID: 36362016 PMCID: PMC9656718 DOI: 10.3390/ijms232113227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 09/11/2023] Open
Abstract
Studies suggest that astrocytic connexins (Cx) have an important role in the regulation of high brain functions through their ability to establish fine-tuned communication with neurons within the tripartite synapse. In light of these properties, growing evidence suggests a role of Cx in psychiatric disorders such as major depression but also in the therapeutic activity of antidepressant drugs. However, the real impact of Cx on treatment response and the underlying neurobiological mechanisms remain yet to be clarified. On this ground, the present study was designed to evaluate the functional activity of Cx in a mouse model of depression based on chronic corticosterone exposure and to determine to which extent their pharmacological inactivation influences the antidepressant-like activity of venlafaxine (VENLA). On the one hand, our results indicate that depressed mice have impaired Cx-based gap-junction and hemichannel activities. On the other hand, while VENLA exerts robust antidepressant-like activity in depressed mice; this effect is abolished by the pharmacological inhibition of Cx with carbenoxolone (CBX). Interestingly, the combination of VENLA and CBX is also associated with a higher rate of relapse after treatment withdrawal. To our knowledge, this study is one of the first to develop a model of relapse, and our results reveal that Cx-mediated dynamic neuroglial interactions play a critical role in the efficacy of monoaminergic antidepressant drugs, thus providing new targets for the treatment of depression.
Collapse
Affiliation(s)
- Benjamin Portal
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Flora Vasile
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, 75005 Paris, France
| | - Jonathan Zapata
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, 75005 Paris, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Abd El Kader Ait Tayeb
- CESP, MOODS Team, INSERM, Faculté de Médecine, University of Paris-Saclay, 94275 Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, 94275 Le Kremlin Bicêtre, France
| | - Romain Colle
- CESP, MOODS Team, INSERM, Faculté de Médecine, University of Paris-Saclay, 94275 Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, 94275 Le Kremlin Bicêtre, France
| | - Céline Verstuyft
- CESP, MOODS Team, INSERM, Faculté de Médecine, University of Paris-Saclay, 94275 Le Kremlin Bicêtre, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, 94275 Le Kremlin Bicêtre, France
| | - Emmanuelle Corruble
- CESP, MOODS Team, INSERM, Faculté de Médecine, University of Paris-Saclay, 94275 Le Kremlin Bicêtre, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, 94275 Le Kremlin Bicêtre, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, 75005 Paris, France
| | - Bruno P. Guiard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31062 Toulouse, France
| |
Collapse
|
3
|
Calpe-López C, Martínez-Caballero MA, García-Pardo MP, Aguilar MA. Resilience to the effects of social stress on vulnerability to developing drug addiction. World J Psychiatry 2022; 12:24-58. [PMID: 35111578 PMCID: PMC8783163 DOI: 10.5498/wjp.v12.i1.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/01/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
We review the still scarce but growing literature on resilience to the effects of social stress on the rewarding properties of drugs of abuse. We define the concept of resilience and how it is applied to the field of drug addiction research. We also describe the internal and external protective factors associated with resilience, such as individual behavioral traits and social support. We then explain the physiological response to stress and how it is modulated by resilience factors. In the subsequent section, we describe the animal models commonly used in the study of resilience to social stress, and we focus on the effects of chronic social defeat (SD), a kind of stress induced by repeated experience of defeat in an agonistic encounter, on different animal behaviors (depression- and anxiety-like behavior, cognitive impairment and addiction-like symptoms). We then summarize the current knowledge on the neurobiological substrates of resilience derived from studies of resilience to the effects of chronic SD stress on depression- and anxiety-related behaviors in rodents. Finally, we focus on the limited studies carried out to explore resilience to the effects of SD stress on the rewarding properties of drugs of abuse, describing the current state of knowledge and suggesting future research directions.
Collapse
Affiliation(s)
| | | | - Maria P García-Pardo
- Faculty of Social and Human Sciences, University of Zaragoza, Teruel 44003, Spain
| | - Maria A Aguilar
- Department of Psychobiology, University of Valencia, Valencia 46010, Spain
| |
Collapse
|
4
|
Biney RP, Benneh CK, Adongo DW, Ameyaw EO, Woode E. Evidence of an antidepressant-like effect of xylopic acid mediated by serotonergic mechanisms. Psychopharmacology (Berl) 2021; 238:2105-2120. [PMID: 33837810 DOI: 10.1007/s00213-021-05835-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Depression causes significant debilitating symptoms and economic burden. Current management is challenged by slow onset of action and modest efficacies of antidepressants; thus, the search for newer antidepressants remains relevant. We evaluated the antidepressant effects of a kaurene diterpene, xylopic acid (XA), in zebrafish and mouse models. METHODS The chronic unpredictable stress (CUS) protocol in zebrafish and the tail suspension test (TST), forced swim test (FST), lipopolysaccharide-induced depression-like behaviour test (LID) and repeated open space swimming test (OSST) in mice were used. We further examined the impact of depleting monoamines on XA's antidepressant effects. The contribution of glutamatergic and nitrergic pathways on the antidepressant effect of XA in mice and XA's effects on 5-HT receptors and monoamine oxidase (MAO) enzymes were also evaluated. Finally, XA's influence on neuroprotection was evaluated by measuring BDNF and oxidative stress enzymes in whole brain. XA doses (1-10 μM) in zebrafish and (10, 30, 100 mg kg-1) in mice exerted potent antidepressant-like potential in FST, TST, LID and showed fast-onset antidepressant-like property in the OSST. RESULTS The antidepressant-like properties in mice were reversed by blocking synthesis/release of serotonin but not noradrenaline using p-chlorophenylalanine and α-methyl-p-tyrosine, respectively. This antidepressant-like effect was potentiated by D-cycloserine and Nω-Nitro-L-arginine methyl ester (L-NAME) but not by D-serine and L-arginine. XA also evoked partial agonist-like effects on 5-hydroxytrptamine receptors on the rat fundus but it did not have MAO inhibition effect. It also increased BDNF, glutathione and antioxidant enzymes. CONCLUSION Therefore, xylopic acid possesses antidepressant-like effects largely mediated by serotonergic and neuroprotective mechanisms.
Collapse
Affiliation(s)
- Robert Peter Biney
- Department of Pharmacology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana.
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Charles Kwaku Benneh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Donatus Wewura Adongo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Elvis Ofori Ameyaw
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Eric Woode
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
5
|
|
6
|
Han M, Ban JJ, Bae JS, Shin CY, Lee DH, Chung JH. UV irradiation to mouse skin decreases hippocampal neurogenesis and synaptic protein expression via HPA axis activation. Sci Rep 2017; 7:15574. [PMID: 29138442 PMCID: PMC5686175 DOI: 10.1038/s41598-017-15773-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023] Open
Abstract
The skin senses external environment, including ultraviolet light (UV). Hippocampus is a brain region that is responsible for memory and emotion. However, changes in hippocampus by UV irradiation to the skin have not been studied. In this study, after 2 weeks of UV irradiation to the mouse skin, we examined molecular changes related to cognitive functions in the hippocampus and activation of the hypothalamic-pituitary-adrenal (HPA) axis. UV exposure to the skin decreased doublecortin-positive immature neurons and synaptic proteins, including N-methyl-D-aspartate receptor 2 A and postsynaptic density protein-95, in the hippocampus. Moreover, we observed that UV irradiation to the skin down-regulated brain-derived neurotrophic factor expression and ERK signaling in the hippocampus, which are known to modulate neurogenesis and synaptic plasticity. The cutaneous and central HPA axes were activated by UV, which resulted in significant increases in serum levels of corticosterone. Subsequently, UV irradiation to the skin activated the glucocorticoid-signaling pathway in the hippocampal dentate gyrus. Interestingly, after 6 weeks of UV irradiation, mice showed depression-like behavior in the tail suspension test. Taken together, our data suggest that repeated UV exposure through the skin may negatively affect hippocampal neurogenesis and synaptic plasticity along with HPA axis activation.
Collapse
Affiliation(s)
- Mira Han
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, South Korea.,Institute on Aging, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jae-Jun Ban
- Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, South Korea.,Institute on Aging, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jung-Soo Bae
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, South Korea.,Institute on Aging, Seoul National University, Seoul, 03080, Republic of Korea
| | - Chang-Yup Shin
- Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, South Korea.,Institute on Aging, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jin Ho Chung
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea. .,Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea. .,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, South Korea. .,Institute on Aging, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
7
|
Antidepressant-like effects of saringosterol, a sterol from Sargassum fusiforme by performing in vivo behavioral tests. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1804-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Zhao D, Zheng L, Qi L, Wang S, Guan L, Xia Y, Cai J. Structural Features and Potent Antidepressant Effects of Total Sterols and β-sitosterol Extracted from Sargassum horneri. Mar Drugs 2016; 14:E123. [PMID: 27367705 PMCID: PMC4962013 DOI: 10.3390/md14070123] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/18/2016] [Accepted: 06/21/2016] [Indexed: 01/22/2023] Open
Abstract
The purified total sterols and β-sitosterol extracted from Sargassum horneri were evaluated for their antidepressant-like activity using the forced swim test (FST) and tail suspension test (TST) in mice. Total sterols and β-sitosterol significantly reduced the immobility time in the FST and TST. Total sterols were administered orally for 7 days at doses of 50, 100, and 200 mg/kg, and β-sitosterol was administered intraperitoneally at doses of 10, 20, and 30 mg/kg. β-sitosterol had no effect on locomotor activity in the open field test. In addition, total sterols and β-sitosterol significantly increased NE, 5-HT, and the metabolite 5-HIAA in the mouse brain, suggesting that the antidepressant-like activity may be mediated through these neurotransmitters.
Collapse
Affiliation(s)
- Donghai Zhao
- The Basic Medical College, Jilin Medical University, Jilin 132013, China.
| | - Lianwen Zheng
- The Second Hospital, Jilin University, Changchun 130041, China.
| | - Ling Qi
- The Basic Medical College, Jilin Medical University, Jilin 132013, China.
| | - Shuran Wang
- The Basic Medical College, Jilin Medical University, Jilin 132013, China.
| | - Liping Guan
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yanan Xia
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Jianhui Cai
- The Basic Medical College, Jilin Medical University, Jilin 132013, China.
| |
Collapse
|