1
|
Yu J, Tan LM, Kawakami T, Wang P, Fu LM, Wang-Otomo ZY, Zhang JP. Cooperative Photoprotection by Multicompositional Carotenoids in the LH1 Antenna from a Mutant Strain of Rhodobacter sphaeroides. J Phys Chem B 2018; 122:8028-8036. [DOI: 10.1021/acs.jpcb.8b06080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jie Yu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Li-Ming Tan
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | | | - Peng Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Li-Min Fu
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | | | - Jian-Ping Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
2
|
Sipka G, Maróti P. Photoprotection in intact cells of photosynthetic bacteria: quenching of bacteriochlorophyll fluorescence by carotenoid triplets. PHOTOSYNTHESIS RESEARCH 2018; 136:17-30. [PMID: 29064080 DOI: 10.1007/s11120-017-0434-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Upon high light excitation in photosynthetic bacteria, various triplet states of pigments can accumulate leading to harmful effects. Here, the generation and lifetime of flash-induced carotenoid triplets (3Car) have been studied by observation of the quenching of bacteriochlorophyll (BChl) fluorescence in different strains of photosynthetic bacteria including Rvx. gelatinosus (anaerobic and semianaerobic), Rsp. rubrum, Thio. roseopersicina, Rba. sphaeroides 2.4.1 and carotenoid- and cytochrome-deficient mutants Rba. sphaeroides Ga, R-26, and cycA, respectively. The following results were obtained: (1) 3Car quenching is observed during and not exclusively after the photochemical rise of the fluorescence yield of BChl indicating that the charge separation in the reaction center (RC) and the carotenoid triplet formation are not consecutive but parallel processes. (2) The photoprotective function of 3Car is not limited to the RC only and can be described by a model in which the carotenoids are distributed in the lake of the BChl pigments. (3) The observed lifetime of 3Car in intact cells is the weighted average of the lifetimes of the carotenoids with various numbers of conjugated double bonds in the bacterial strain. (4) The lifetime of 3Car measured in the light is significantly shorter (1-2 μs) than that measured in the dark (2-10 μs). The difference reveals the importance of the dynamics of 3Car before relaxation. The results will be discussed not only in terms of energy levels of the 3Car but also in terms of the kinetics of transitions among different sublevels in the excited triplet state of the carotenoid.
Collapse
Affiliation(s)
- Gábor Sipka
- Department of Medical Physics, University of Szeged, Rerrich Béla tér 1, Szeged, 6720, Hungary
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Péter Maróti
- Department of Medical Physics, University of Szeged, Rerrich Béla tér 1, Szeged, 6720, Hungary.
| |
Collapse
|
3
|
Yu J, Fu LM, Yu LJ, Shi Y, Wang P, Wang-Otomo ZY, Zhang JP. Carotenoid Singlet Fission Reactions in Bacterial Light Harvesting Complexes As Revealed by Triplet Excitation Profiles. J Am Chem Soc 2017; 139:15984-15993. [DOI: 10.1021/jacs.7b09809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jie Yu
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Li-Min Fu
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Long-Jiang Yu
- Faculty
of Science, Ibaraki University, Mito 310-8512, Japan
- Department
of Biology, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Ying Shi
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Peng Wang
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | | | - Jian-Ping Zhang
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
4
|
Magdaong NM, LaFountain AM, Hacking K, Niedzwiedzki DM, Gibson GN, Cogdell RJ, Frank HA. Spectral heterogeneity and carotenoid-to-bacteriochlorophyll energy transfer in LH2 light-harvesting complexes from Allochromatium vinosum. PHOTOSYNTHESIS RESEARCH 2016; 127:171-187. [PMID: 26048106 DOI: 10.1007/s11120-015-0165-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
Photosynthetic organisms produce a vast array of spectral forms of antenna pigment-protein complexes to harvest solar energy and also to adapt to growth under the variable environmental conditions of light intensity, temperature, and nutrient availability. This behavior is exemplified by Allochromatium (Alc.) vinosum, a photosynthetic purple sulfur bacterium that produces different types of LH2 light-harvesting complexes in response to variations in growth conditions. In the present work, three different spectral forms of LH2 from Alc. vinosum, B800-820, B800-840, and B800-850, were isolated, purified, and examined using steady-state absorption and fluorescence spectroscopy, and ultrafast time-resolved absorption spectroscopy. The pigment composition of the LH2 complexes was analyzed by high-performance liquid chromatography, and all were found to contain five carotenoids: lycopene, anhydrorhodovibrin, spirilloxanthin, rhodopin, and rhodovibrin. Spectral reconstructions of the absorption and fluorescence excitation spectra based on the pigment composition revealed significantly more spectral heterogeneity in these systems compared to LH2 complexes isolated from other species of purple bacteria. The data also revealed the individual carotenoid-to-bacteriochlorophyll energy transfer efficiencies which were correlated with the kinetic data from the ultrafast transient absorption spectroscopic experiments. This series of LH2 complexes allows a systematic exploration of the factors that determine the spectral properties of the bound pigments and control the rate and efficiency of carotenoid-to-bacteriochlorophyll energy transfer.
Collapse
Affiliation(s)
- Nikki M Magdaong
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT, 06269-3060, USA
| | - Amy M LaFountain
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT, 06269-3060, USA
| | - Kirsty Hacking
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK
| | - Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - George N Gibson
- Department of Physics, University of Connecticut, 2152 Hillside Road, Storrs, CT, 06269-3046, USA
| | - Richard J Cogdell
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, Scotland, UK
| | - Harry A Frank
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT, 06269-3060, USA.
| |
Collapse
|
5
|
You ZQ, Hsu CP. Ab inito study on triplet excitation energy transfer in photosynthetic light-harvesting complexes. J Phys Chem A 2011; 115:4092-100. [PMID: 21410281 DOI: 10.1021/jp200200x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have studied the triplet energy transfer (TET) for photosynthetic light-harvesting complexes, the bacterial light-harvesting complex II (LH2) of Rhodospirillum molischianum and Rhodopseudomonas acidophila, and the peridinin-chlorophyll a protein (PCP) from Amphidinium carterae. The electronic coupling factor was calculated with the recently developed fragment spin difference scheme (You and Hsu, J. Chem. Phys. 2010, 133, 074105), which is a general computational scheme that yields the overall coupling under the Hamiltonian employed. The TET rates were estimated based on the couplings obtained. For all light-harvesting complexes studied, there exist nanosecond triplet energy transfer from the chlorophylls to the carotenoids. This result supports a direct triplet quenching mechanism for the photoprotection function of carotenoids. The TET rates are similar for a broad range of carotenoid triplet state energy, which implies a general and robust TET quenching role for carotenoids in photosynthesis. This result is also consistent with the weak dependence of TET kinetics on the type or the number of π conjugation lengths in the carotenoids and their analogues reported in the literature. We have also explored the possibility of forming triplet excitons in these complexes. In B850 of LH2 or the peridinin cluster in PCP, it is unlikely to have triplet exciton since the energy differences of any two neighboring molecules are likely to be much larger than their TET couplings. Our results provide theoretical limits to the possible photophysics in the light-harvesting complexes.
Collapse
Affiliation(s)
- Zhi-Qiang You
- Taiwan International Graduate Program, Academia Sinica, 128 Section 2 Academia Road, Nankang, Taipei 11529, Taiwan
| | | |
Collapse
|
6
|
Niedzwiedzki DM, Kobayashi M, Blankenship RE. Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum. PHOTOSYNTHESIS RESEARCH 2011; 107:177-186. [PMID: 21229315 DOI: 10.1007/s11120-011-9620-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 12/31/2010] [Indexed: 05/30/2023]
Abstract
Light-harvesting complex 2 from the anoxygenic phototrophic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption, fluorescence and flash photolysis spectroscopy. Steady-state absorption and fluorescence measurements show that carotenoids play a negligible role as supportive energy donors and transfer excitation to bacteriochlorophyll-a with low energy transfer efficiency of ~30%. HPLC analysis determined that the dominant carotenoids in the complex are rhodopin and spirilloxanthin. Carotenoid excited triplet state formation upon direct (carotenoid) or indirect (bacteriochlorophyll-a Q(x) band) excitation shows that carotenoid triplets are mostly localized on spirilloxanthin. In addition, no triplet excitation transfer between carotenoids was observed. Such specific carotenoid composition and spectroscopic results strongly suggest that this organism optimized carotenoid composition in the light-harvesting complex 2 in order to maximize photoprotective capabilities of carotenoids but subsequently drastically suppressed their supporting role in light-harvesting process.
Collapse
|
7
|
Kim H, Li H, Maresca JA, Bryant DA, Savikhin S. Triplet exciton formation as a novel photoprotection mechanism in chlorosomes of Chlorobium tepidum. Biophys J 2007; 93:192-201. [PMID: 17434948 PMCID: PMC1914439 DOI: 10.1529/biophysj.106.103556] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chlorosomes comprise thousands of bacteriochlorophylls (BChl c, d, or e) in a closely packed structure surrounded by a lipid-protein envelope and additionally contain considerable amounts of carotenoids, quinones, and BChl a. It has been suggested that carotenoids in chlorosomes provide photoprotection by rapidly quenching triplet excited states of BChl via a triplet-triplet energy transfer mechanism that prevents energy transfer to oxygen and the formation of harmful singlet oxygen. In this work we studied triplet energy transfer kinetics and photodegradation of chlorosomes isolated from wild-type Chlorobium tepidum and from genetically modified species with different types of carotenoids and from a carotenoid-free mutant. Supporting a photoprotective function of carotenoids, carotenoid-free chlorosomes photodegrade approximately 3 times faster than wild-type chlorosomes. However, a significant fraction of the BChls forms a long-lived, triplet-like state that does not interact with carotenoids or with oxygen. We propose that these states are triplet excitons that form due to triplet-triplet interaction between the closely packed BChls. Numerical exciton simulations predict that the energy of these triplet excitons may fall below that of singlet oxygen and triplet carotenoids; this would prevent energy transfer from triplet BChl. Thus, the formation of triplet excitons in chlorosomes serves as an alternative photoprotection mechanism.
Collapse
Affiliation(s)
- Hanyoup Kim
- Department of Physics, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | |
Collapse
|
8
|
Pendon ZD, der Hoef I, Lugtenburg J, Frank HA. Triplet state spectra and dynamics of geometric isomers of carotenoids. PHOTOSYNTHESIS RESEARCH 2006; 88:51-61. [PMID: 16450049 DOI: 10.1007/s11120-005-9026-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 10/19/2005] [Indexed: 05/06/2023]
Abstract
The observation of preferential binding of cis-carotenoids in purple bacterial photosynthetic reaction centers versus trans-isomers in antenna pigment protein complexes has led to the hypothesis that the natural selection of stereoisomers has physiological significance. In order to test this hypothesis, we have undertaken a systematic series of investigations comparing the optical spectroscopic properties and excited state dynamics of cis and trans isomers of carotenoids. The present work compares the triplet state spectra, lifetimes, and energy transfer rates of all-trans-spheroidene and 13,14-locked-cis-spheroidene, the latter of which is incapable of isomerizing to the all-trans configuration, and therefore provides a unique opportunity to examine the triplet state properties of a structurally stable cis molecule. The data reveal only small differences in spectra, decay dynamics, and transfer times and suggest there is little intrinsic advantage in either triplet energy transfer or triplet state decay arising from the inherently different isomeric forms of cis compared to trans carotenoids.
Collapse
Affiliation(s)
- Zeus D Pendon
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060, USA
| | | | | | | |
Collapse
|
9
|
Toropygina OA, Makhneva ZK, Moskalenko AA. Reconstitution of Okenone into Light Harvesting Complexes from Allochromatium minutissimum. BIOCHEMISTRY (MOSCOW) 2005; 70:1231-7. [PMID: 16336182 DOI: 10.1007/s10541-005-0252-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Okenone was reconstituted into light harvesting (LH) complexes of the purple photosynthetic bacterium Allochromatium minutissimum possessing the spirilloxanthin pathway for carotenoid biosynthesis. Suppression of this pathway by diphenylamine, an inhibitor of carotenogenesis, yielded nearly carotenoidless complexes preserving their native spectral properties. Using a previously developed technique, okenone was readily reconstituted into LH1 complex (>90%) whereas its reconstitution into LH2 complex was of low efficacy (10-20%). The absorption band of the reconstituted okenone was shifted to shorter wavelength compared with its position in vivo. This is typical for other reconstituted carotenoids. The reconstitution of okenone was confirmed by Li-DS electrophoresis (in contrast to free okenone the reconstituted okenone migrated with complexes), circular dichroism spectra (reconstituted okenone exhibited optical activity), and fluorescence excitation spectrum (energy transfer from okenone to bacteriochlorophyll was at the control level).
Collapse
Affiliation(s)
- O A Toropygina
- Institute of Basic Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | | | | |
Collapse
|
10
|
Verdegem PJ, Monnee MC, Lugtenburg J. Simple and efficient preparation of [10,20-13C2]- and [10-CH3,13-13C2]-10-methylretinal: introduction of substituents at the 2-position of 2,3-unsaturated nitriles. J Org Chem 2001; 66:1269-82. [PMID: 11312957 DOI: 10.1021/jo0009595] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we present the synthesis of [10,20-13C2]-10-methylretinal and [10-CH3,13-13C2]-10-methylretinal, two doubly 13C-labeled chemically modified retinals that have been recently used to study the structural and functional details behind the photocascade of bovine rhodopsin (Verdegem et al. Biochemistry 1999, 38, 11316; de Lange et al. Biochemistry 1998, 37, 1411). To obtain both doubly 13C-labeled compounds, we developed a novel synthetic method to directly and regiospecifically introduce a methyl substituent on the 2-position of 3-methyl-5-(2',6',6'-trimethyl-1'-cyclohexen-1'-yl)-2,4-pentadienenitrile. Encouraged by these results, we investigated the scope of this novel reaction by developing a general method for the introduction of a variety of substituents to the 2-position of 3-methyl-2,3-unsaturated nitriles, paving the way for simple and efficient synthesis of a wide variety of 10-, 14-, and 10,14-substituted chemically modified retinals, and other biologically important compounds.
Collapse
Affiliation(s)
- P J Verdegem
- Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratoria, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
11
|
Desamero RZB, Chynwat V, van der Hoef I, Jansen FJ, Lugtenburg J, Gosztola D, Wasielewski MR, Cua A, Bocian DF, Frank HA. Mechanism of Energy Transfer from Carotenoids to Bacteriochlorophyll: Light-Harvesting by Carotenoids Having Different Extents of π-Electron Conjugation Incorporated into the B850 Antenna Complex from the Carotenoidless Bacterium Rhodobacter sphaeroides R-26.1. J Phys Chem B 1998. [DOI: 10.1021/jp980911j] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruel Z. B. Desamero
- Department of Chemistry, 215 Glenbrook Road, University of Connecticut, Storrs, Connecticut 06269-4060, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands, Chemistry Division, Argonne National Laboratories, Argonne, Illinois 60439, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, and Department of Chemistry, University of California, Riverside, California 92521
| | - Veeradej Chynwat
- Department of Chemistry, 215 Glenbrook Road, University of Connecticut, Storrs, Connecticut 06269-4060, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands, Chemistry Division, Argonne National Laboratories, Argonne, Illinois 60439, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, and Department of Chemistry, University of California, Riverside, California 92521
| | - Ineke van der Hoef
- Department of Chemistry, 215 Glenbrook Road, University of Connecticut, Storrs, Connecticut 06269-4060, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands, Chemistry Division, Argonne National Laboratories, Argonne, Illinois 60439, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, and Department of Chemistry, University of California, Riverside, California 92521
| | - Frans Jos Jansen
- Department of Chemistry, 215 Glenbrook Road, University of Connecticut, Storrs, Connecticut 06269-4060, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands, Chemistry Division, Argonne National Laboratories, Argonne, Illinois 60439, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, and Department of Chemistry, University of California, Riverside, California 92521
| | - Johan Lugtenburg
- Department of Chemistry, 215 Glenbrook Road, University of Connecticut, Storrs, Connecticut 06269-4060, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands, Chemistry Division, Argonne National Laboratories, Argonne, Illinois 60439, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, and Department of Chemistry, University of California, Riverside, California 92521
| | - David Gosztola
- Department of Chemistry, 215 Glenbrook Road, University of Connecticut, Storrs, Connecticut 06269-4060, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands, Chemistry Division, Argonne National Laboratories, Argonne, Illinois 60439, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, and Department of Chemistry, University of California, Riverside, California 92521
| | - Michael R. Wasielewski
- Department of Chemistry, 215 Glenbrook Road, University of Connecticut, Storrs, Connecticut 06269-4060, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands, Chemistry Division, Argonne National Laboratories, Argonne, Illinois 60439, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, and Department of Chemistry, University of California, Riverside, California 92521
| | - Agnes Cua
- Department of Chemistry, 215 Glenbrook Road, University of Connecticut, Storrs, Connecticut 06269-4060, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands, Chemistry Division, Argonne National Laboratories, Argonne, Illinois 60439, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, and Department of Chemistry, University of California, Riverside, California 92521
| | - David F. Bocian
- Department of Chemistry, 215 Glenbrook Road, University of Connecticut, Storrs, Connecticut 06269-4060, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands, Chemistry Division, Argonne National Laboratories, Argonne, Illinois 60439, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, and Department of Chemistry, University of California, Riverside, California 92521
| | - Harry A. Frank
- Department of Chemistry, 215 Glenbrook Road, University of Connecticut, Storrs, Connecticut 06269-4060, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands, Chemistry Division, Argonne National Laboratories, Argonne, Illinois 60439, Department of Chemistry, Northwestern University, Evanston, Illinois 60208, and Department of Chemistry, University of California, Riverside, California 92521
| |
Collapse
|
12
|
Laible PD, Chynwat V, Thurnauer MC, Schiffer M, Hanson DK, Frank HA. Protein modifications affecting triplet energy transfer in bacterial photosynthetic reaction centers. Biophys J 1998; 74:2623-37. [PMID: 9591686 PMCID: PMC1299602 DOI: 10.1016/s0006-3495(98)77968-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The efficiency of triplet energy transfer from the special pair (P) to the carotenoid (C) in photosynthetic reaction centers (RCs) from a large family of mutant strains has been investigated. The mutants carry substitutions at positions L181 and/or M208 near chlorophyll-based cofactors on the inactive and active sides of the complex, respectively. Light-modulated electron paramagnetic resonance at 10 K, where triplet energy transfer is thermally prohibited, reveals that the mutations do not perturb the electronic distribution of P. At temperatures > or = 70 K, we observe reduced signals from the carotenoid in most of the RCs with L181 substitutions. In particular, triplet transfer efficiency is reduced in all RCs in which a lysine at L181 donates a sixth ligand to the monomeric bacteriochlorophyll B(B). Replacement of the native Tyr at M208 on the active side of the complex with several polar residues increased transfer efficiency. The difference in the efficiencies of transfer in the RCs demonstrates the ability of the protein environment to influence the electronic overlap of the chromophores and thus the thermal barrier for triplet energy transfer.
Collapse
Affiliation(s)
- P D Laible
- Center for Mechanistic Biology and Biotechnology and Chemistry Division, Argonne National Laboratory, Illinois 60439, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Farhoosh R, Chynwat V, Gebhard R, Lugtenburg J, Frank HA. Triplet energy transfer between the primary donor and carotenoids in Rhodobacter sphaeroides R-26.1 reaction centers incorporated with spheroidene analogs having different extents of pi-electron conjugation. Photochem Photobiol 1997; 66:97-104. [PMID: 9230708 DOI: 10.1111/j.1751-1097.1997.tb03144.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Three carotenoids, spheroidene, 3,4-dihydrospheroidene and 3,4,5,6-tetrahydrospheroidene, having 8, 9 and 10 conjugated carbon-carbon double bonds, respectively, were incorporated into Rhodobacter (Rb.) sphaeroides R-26.1 reaction centers. The extents of binding were found to be 95 +/- 5% for spheroidene, 65 +/- 5% for 3,4-dihydrospheroidene and 60 +/- 10% for 3,4,5,6-tetrahydrospheroidene. The dynamics of the triplet states of the primary donor and carotenoid were measured at room temperature by flash absorption spectroscopy. The carotenoid, spheroidene, was observed to quench the primary donor triplet state. The triplet state of spheroidene that was formed subsequently decayed to the ground state with a lifetime of 7.0 +/- 0.5 microseconds. The primary donor triplet lifetime in the Rb. sphaeroides R-26.1 reaction centers lacking carotenoids was 60 +/- 5 microseconds. Quenching of the primary donor triplet state by the carotenoid was not observed in the Rb. sphaeroides R-26.1 reaction centers containing 3,4-dihydrospheroidene nor in the R-26.1 reaction centers containing 3,4,5,6-tetrahydrospheroidene. Triplet-state electron paramagnetic resonance was also carried out on the samples. The experiments revealed carotenoid triple-state signals in the Rb. sphaeroides R-26.1 reaction centers incorporated with spheroidene, indicating that the primary donor triplet is quenched by the carotenoid. No carotenoid signals were observed from Rb. sphaeroides R-26.1 reaction centers incorporating 3,4-dihydrospheroidene nor in reaction centers incorporating 3,4,5,6-tetrahydrospheroidene. Circular dichroism, steady-state absorbance band shifts accompanying the primary photochemistry in the reaction center and singlet energy transfer from the carotenoid to the primary donor confirm that the carotenoids are bound in the reaction centers and interacting with the primary donor. These studies provide a systematic approach to exploring the effects of carotenoid structure and excited-state energy on triplet transfer between the primary donor and carotenoids in reaction centers from photosynthetic bacteria.
Collapse
Affiliation(s)
- R Farhoosh
- Department of Chemistry, Saint Joseph College, West Hartford, CT, USA
| | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- H A Frank
- Department of Chemistry, University of Connecticut, Storrs 06269-3060, USA.
| | | |
Collapse
|