1
|
Hosaka AJ, Sanetomo R, Hosaka K. A de novo genome assembly of Solanum bulbocastanum Dun., a Mexican diploid species reproductively isolated from the A-genome species, including cultivated potatoes. G3 (BETHESDA, MD.) 2024; 14:jkae080. [PMID: 38608140 DOI: 10.1093/g3journal/jkae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Potato and its wild relatives are distributed mainly in the Mexican highlands and central Andes of South America. The South American A-genome species, including cultivated potatoes, are reproductively isolated from Mexican diploid species. Whole-genome sequencing has disclosed genome structure and similarity, mostly in cultivated potatoes and their closely related species. In this study, we generated a chromosome-scale assembly of the genome of a Mexican diploid species, Solanum bulbocastanum Dun., using PacBio long-read sequencing, optical mapping, and Hi-C scaffolding technologies. The final sequence assembly consisted of 737.9 Mb, among which 647.0 Mb were anchored to the 12 chromosomes. Compared with chromosome-scale assemblies of S. lycopersicum (tomato), S. etuberosum (non-tuber-bearing species with E-genome), S. verrucosum, S. chacoense, S. multidissectum, and S. phureja (all four are A-genome species), the S. bulbocastnum genome was the shortest. It contained fewer transposable elements (56.2%) than A-genome species. A cluster analysis was performed based on pairwise ratios of syntenic regions among the seven chromosome-scale assemblies, showing that the A-genome species were first clustered as a distinct group. Then, this group was clustered with S. bulbocastanum. Sequence similarity in 1,624 single-copy orthologous gene groups among 36 Solanum species and clones separated S. bulbocastanum as a specific group, including other Mexican diploid species, from the A-genome species. Therefore, the S. bulbocastanum genome differs in genome structure and gene sequences from the A-genome species. These findings provide important insights into understanding and utilizing the genetic diversity of S. bulbocastanum and the other Mexican diploid species in potato breeding.
Collapse
Affiliation(s)
- Awie J Hosaka
- Nihon BioData Corporation, Takatsu, Kawasaki, Kanagawa 213-0012, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan
| | - Rena Sanetomo
- Potato Germplasm Enhancement Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Kazuyoshi Hosaka
- Potato Germplasm Enhancement Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
2
|
Valencia-Ortiz M, Marzougui A, Zhang C, Bali S, Odubiyi S, Sathuvalli V, Bosque-Pérez NA, Pumphrey MO, Sankaran S. Biogenic VOCs Emission Profiles Associated with Plant-Pest Interaction for Phenotyping Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:4870. [PMID: 35808366 PMCID: PMC9269240 DOI: 10.3390/s22134870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Pest attacks on plants can substantially change plants' volatile organic compounds (VOCs) emission profiles. Comparison of VOC emission profiles between non-infected/non-infested and infected/infested plants, as well as resistant and susceptible plant cultivars, may provide cues for a deeper understanding of plant-pest interactions and associated resistance. Furthermore, the identification of biomarkers-specific biogenic VOCs-associated with the resistance can serve as a non-destructive and rapid tool for phenotyping applications. This research aims to compare the VOCs emission profiles under diverse conditions to identify constitutive (also referred to as green VOCs) and induced (resulting from biotic/abiotic stress) VOCs released in potatoes and wheat. In the first study, wild potato Solanum bulbocastanum (accession# 22; SB22) was inoculated with Meloidogyne chitwoodi race 1 (Mc1), and Mc1 pathotype Roza (SB22 is resistant to Mc1 and susceptible to pathotype Roza), and VOCs emission profiles were collected using gas chromatography-flame ionization detection (GC-FID) at different time points. Similarly, in the second study, the VOCs emission profiles of resistant ('Hollis') and susceptible ('Alturas') wheat cultivars infested with Hessian fly insects were evaluated using the GC-FID system. In both studies, in addition to variable plant responses (susceptibility to pests), control treatments (non-inoculated or non-infested) were used to compare the VOCs emission profiles resulting from differences in stress conditions. The common VOC peaks (constitutive VOCs) between control and infected/infested samples, and unique VOC peaks (induced VOCs) presented only in infected/infested samples were analyzed. In the potato-nematode study, the highest unique peak was found two days after inoculation (DAI) for SB22 inoculated with Mc1 (resistance response). The most common VOC peaks in SB22 inoculated with both Mc1 and Roza were found at 5 and 10 DAI. In the wheat-insect study, only the Hollis showed unique VOC peaks. Interestingly, both cultivars released the same common VOCs between control and infected samples, with only a difference in VOC average peak intensity at 22.4 min retention time where the average intensity was 4.3 times higher in the infested samples of Hollis than infested samples of Alturas. These studies demonstrate the potential of plant VOCs to serve as a rapid phenotyping tool to assess resistance levels in different crops.
Collapse
Affiliation(s)
- Milton Valencia-Ortiz
- Department of Biological System Engineering, Washington State University, Pullman, WA 99164, USA; (M.V.-O.); (A.M.); (C.Z.)
| | - Afef Marzougui
- Department of Biological System Engineering, Washington State University, Pullman, WA 99164, USA; (M.V.-O.); (A.M.); (C.Z.)
| | - Chongyuan Zhang
- Department of Biological System Engineering, Washington State University, Pullman, WA 99164, USA; (M.V.-O.); (A.M.); (C.Z.)
| | - Sapinder Bali
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA;
| | - Steven Odubiyi
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; (S.O.); (N.A.B.-P.)
| | - Vidyasagar Sathuvalli
- Department of Crop and Soil Science, Hermiston Agricultural Research & Extension Center, Oregon State University, Hermiston, OR 97838, USA;
| | - Nilsa A. Bosque-Pérez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; (S.O.); (N.A.B.-P.)
| | - Michael O. Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA;
| | - Sindhuja Sankaran
- Department of Biological System Engineering, Washington State University, Pullman, WA 99164, USA; (M.V.-O.); (A.M.); (C.Z.)
| |
Collapse
|
3
|
Bali S, Brown C, Majtahedi H, Yilma S, Ingham RE, Cimrhakl L, Quick R, Sathuvalli V. Genomic markers linked to Meloidogyne chitwoodi resistance introgressed from Solanum bulbocastanum to cultivated potato and their utility in marker-assisted selection. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:12. [PMID: 37309410 PMCID: PMC10248663 DOI: 10.1007/s11032-022-01285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Meloidogyne chitwoodi is a major threat to potato production in the Pacific Northwest region of the United States. Infected tubers are rendered unmarketable; hence, growers' profitability is adversely affected. Breeding for nematode resistance is a long-term process and phenotyping the segregating populations for nematode resistance is the most time-consuming and laborious part of the process. Using DNA-based markers closely linked to the nematode resistance trait for marker-assisted selection (MAS) could enhance breeding efficiency and accuracy. In the present study, a pool of phenotyped progenies segregating for nematode resistance and susceptibility were fingerprinted using a 21 K single-nucleotide polymorphism (SNP) array. Eight candidate SNPs located on potato Chromosome 11, segregating with the nematode resistance trait, were identified and used as landmarks for discovery of other marker types such as simple sequence repeat (SSR) and insertion-deletion (INDEL) markers. Subsequently, a total of eight SNPs, 30 SSRs, and four INDELS located on scaffold 11 of Solanum bulbocastanum were used to design primers; markers were validated in a panel of resistant and susceptible clones. Two SNPs (SB_MC1Chr11-PotVar0066518 and SB_MC1Chr11-PotVar0064140), five SSRs (SB_MC1Chr11-SSR04, SB_MC1Chr11-SSR08, SB_MC1Chr11-SSR10, SB_MC1Chr11-SSR13, and SB_MC1Chr11-SSR20), and one INDEL (SB_MC1Chr11-INDEL4) markers showed polymorphism between the resistant and susceptible clones in the test panel and in other segregating progenies. These markers are robust, highly reproducible, and easy to use for MAS of nematode-resistant potato clones to enhance the breeding program. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01285-w.
Collapse
Affiliation(s)
- Sapinder Bali
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston-97838, OR USA
- Department of Plant Pathology, Washington State University, Pullman-99164, WA USA
| | - Charles Brown
- Temperate Tree Fruit and Vegetable Research Unit, USDA-Agricultural Research Service, Prosser-99350, WA USA
| | - Hassan Majtahedi
- Temperate Tree Fruit and Vegetable Research Unit, USDA-Agricultural Research Service, Prosser-99350, WA USA
| | - Solomon Yilma
- Department of Crop and Soil Sciences, Oregon State University, Corvallis-97331, OR USA
| | - Russell E. Ingham
- Department of Botany and Plant Pathology, Oregon State University, Corvallis-97333, OR USA
| | - Launa Cimrhakl
- Temperate Tree Fruit and Vegetable Research Unit, USDA-Agricultural Research Service, Prosser-99350, WA USA
| | - Rich Quick
- Temperate Tree Fruit and Vegetable Research Unit, USDA-Agricultural Research Service, Prosser-99350, WA USA
| | - Vidyasagar Sathuvalli
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston-97838, OR USA
| |
Collapse
|
4
|
Handayani T, Gilani SA, Watanabe KN. Climatic changes and potatoes: How can we cope with the abiotic stresses? BREEDING SCIENCE 2019; 69:545-563. [PMID: 31988619 PMCID: PMC6977456 DOI: 10.1270/jsbbs.19070] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/10/2019] [Indexed: 05/06/2023]
Abstract
Climate change triggers increases in temperature, drought, and/or salinity that threaten potato production, because they necessitate specific amounts and quality of water, meanwhile lower temperatures generally support stable crop yields. Various cultivation techniques have been developed to reduce the negative effects of drought, heat and/or salinity stresses on potato. Developing innovative varieties with relevant tolerance to abiotic stress is absolutely necessary to guarantee competitive production under sub-optimal environments. Commercial varieties are sensitive to abiotic stresses, and substantial changes to their higher tolerance levels are not easily achieved because their genetic base is narrow. Nonetheless, there are several other possibilities for genetic enhancement using landraces and wild relatives. The complexity of polysomic genetics and heterozygosity in potato hamper the phenotype evaluation over abiotic stresses and consequent conventional introgression of tolerance traits, which are more challenging than previous successes shown over diseases and insects resistances. Today, potatoes face more challenges with severe abiotic stresses. Potato wild relatives can be explored further using innovative genomic, transcriptomic, proteomic, and metabolomic approaches. At the field level, appropriate cultivation techniques must be applied along with precision farming technology and tolerant varieties developed from various breeding techniques, in order to realize high yield under multiple stresses.
Collapse
Affiliation(s)
- Tri Handayani
- Graduate School of Life & Environmental Sciences, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572,
Japan
- Indonesian Vegetable Research Institute,
Jl. Tangkuban Perahu 517, Lembang, West Bandung, West Java, 40391,
Indonesia
| | - Syed Abdullah Gilani
- Department of Biological Sciences and Chemistry, University of Nizwa,
P. O. Box 33, PC 616, Birkat Al Mouz, Nizwa,
Sultanate of Oman
| | - Kazuo N. Watanabe
- Tsukuba-Plant Innovation Research Center, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
5
|
Davies LJ, Brown CR, Elling AA. Calcium is involved in the R Mc1 (blb)-mediated hypersensitive response against Meloidogyne chitwoodi in potato. PLANT CELL REPORTS 2015; 34:167-77. [PMID: 25315813 DOI: 10.1007/s00299-014-1697-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 05/08/2023]
Abstract
Functional characterization of the Columbia root-knot nematode resistance gene R Mc1 ( blb ) in potato revealed the R gene-mediated resistance is dependent on a hypersensitive response and involves calcium. The resistance (R) gene R Mc1(blb) confers resistance against the plant-parasitic nematode, Meloidogyne chitwoodi. Avirulent and virulent nematodes were used to functionally characterize the R Mc1(blb)-mediated resistance mechanism in potato (Solanum tuberosum). Histological observations indicated a hypersensitive response (HR) occurred during avirulent nematode infection. This was confirmed by quantifying reactive oxygen species activity in response to avirulent and virulent M. chitwoodi. To gain an insight into the signal transduction pathways mediating the R Mc1(blb)-induced HR, chemical inhibitors were utilized. Inhibiting Ca(2+) channels caused a significant reduction in electrolyte leakage, an indicator of cell death. Labeling with a Ca(2+)-sensitive dye revealed high Ca(2+) levels in the root cells surrounding avirulent nematodes. Furthermore, the calcium-dependent protein kinase (CDPK), StCDPK4 had a higher transcript level in R Mc1(blb) potato roots infected with avirulent nematodes in comparison to roots infected with virulent M. chitwoodi. The results of this study indicate Ca(2+) plays a role in the R Mc1(blb)-mediated resistance against M. chitwoodi in potato.
Collapse
Affiliation(s)
- Laura J Davies
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | | | | |
Collapse
|
6
|
Iorizzo M, Gao L, Mann H, Traini A, Chiusano ML, Kilian A, Aversano R, Carputo D, Bradeen JM. A DArT marker-based linkage map for wild potato Solanum bulbocastanum facilitates structural comparisons between Solanum A and B genomes. BMC Genet 2014; 15:123. [PMID: 25403706 PMCID: PMC4240817 DOI: 10.1186/s12863-014-0123-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/29/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Wild potato Solanum bulbocastanum is a rich source of genetic resistance against a variety of pathogens. It belongs to a taxonomic group of wild potato species sexually isolated from cultivated potato. Consistent with genetic isolation, previous studies suggested that the genome of S. bulbocastanum (B genome) is structurally distinct from that of cultivated potato (A genome). However, the genome architecture of the species remains largely uncharacterized. The current study employed Diversity Arrays Technology (DArT) to generate a linkage map for S. bulbocastanum and compare its genome architecture with those of potato and tomato. RESULTS Two S. bulbocastanum parental linkage maps comprising 458 and 138 DArT markers were constructed. The integrated map comprises 401 non-redundant markers distributed across 12 linkage groups for a total length of 645 cM. Sequencing and alignment of DArT clones to reference physical maps from tomato and cultivated potato allowed direct comparison of marker orders between species. A total of nine genomic segments informative in comparative genomic studies were identified. Seven genome rearrangements correspond to previously-reported structural changes that have occurred since the speciation of tomato and potato. We also identified two S. bulbocastanum genomic regions that differ from cultivated potato, suggesting possible chromosome divergence between Solanum A and B genomes. CONCLUSIONS The linkage map developed here is the first medium density map of S. bulbocastanum and will assist mapping of agronomical genes and QTLs. The structural comparison with potato and tomato physical maps is the first genome wide comparison between Solanum A and B genomes and establishes a foundation for further investigation of B genome-specific structural chromosome rearrangements.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, WI, 53706, USA.
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall/1991 Upper Buford Circle, St. Paul, MN, 55108, USA.
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| | - Liangliang Gao
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall/1991 Upper Buford Circle, St. Paul, MN, 55108, USA.
| | - Harpartap Mann
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall/1991 Upper Buford Circle, St. Paul, MN, 55108, USA.
| | - Alessandra Traini
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, London, United Kingdom.
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| | - Andrzej Kilian
- Diversity Arrays Technology, Pty. Ltd., University of Canberra, Kirinari Street, Bruce, ACT 2617, Canberra, Australia.
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| | - James M Bradeen
- Department of Plant Pathology, University of Minnesota, 495 Borlaug Hall/1991 Upper Buford Circle, St. Paul, MN, 55108, USA.
- Stakman-Borlaug Center for Sustainable Plant Health, 495 Borlaug Hall/1991 Upper Buford Circle, St. Paul, MN 55108, USA.
| |
Collapse
|
7
|
Liu S, Xia G. The place of asymmetric somatic hybridization in wheat breeding. PLANT CELL REPORTS 2014; 33:595-603. [PMID: 24370665 DOI: 10.1007/s00299-013-1552-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/04/2013] [Accepted: 12/10/2013] [Indexed: 05/08/2023]
Abstract
Since its first development some 40 years ago, the application of the somatic hybridization technique has generated a body of hybrid plant material involving a wide combination of parental species. Until the late 1990s, the technique was ineffective in wheat, as regeneration from protoplasts was proving difficult to achieve. Since this time, however, a successful somatic hybridization protocol for wheat has been established and used to generate a substantial number of both symmetric and asymmetric somatic hybrids and derived materials, especially involving the parental combination bread wheat and tall wheatgrass (Thinopyrum ponticum). This review describes the current state of the art for somatic hybridization in wheat and focuses on its potential application for wheat improvement.
Collapse
Affiliation(s)
- Shuwei Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan, 250100, China
| | | |
Collapse
|
8
|
Quirin EA, Mann H, Meyer RS, Traini A, Chiusano ML, Litt A, Bradeen JM. Evolutionary meta-analysis of solanaceous resistance gene and solanum resistance gene analog sequences and a practical framework for cross-species comparisons. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:603-612. [PMID: 22352721 DOI: 10.1094/mpmi-12-11-0318-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cross-species comparative genomics approaches have been employed to map and clone many important disease resistance (R) genes from Solanum species-especially wild relatives of potato and tomato. These efforts will increase with the recent release of potato genome sequence and the impending release of tomato genome sequence. Most R genes belong to the prominent nucleotide binding site-leucine rich repeat (NBS-LRR) class and conserved NBS-LRR protein motifs enable survey of the R gene space of a plant genome by generation of resistance gene analogs (RGA), polymerase chain reaction fragments derived from R genes. We generated a collection of 97 RGA from the disease-resistant wild potato S. bulbocastanum, complementing smaller collections from other Solanum species. To further comparative genomics approaches, we combined all known Solanum RGA and cloned solanaceous NBS-LRR gene sequences, nearly 800 sequences in total, into a single meta-analysis. We defined R gene diversity bins that reflect both evolutionary relationships and DNA cross-hybridization results. The resulting framework is amendable and expandable, providing the research community with a common vocabulary for present and future study of R gene lineages. Through a series of sequence and hybridization experiments, we demonstrate that all tested R gene lineages are of ancient origin, are shared between Solanum species, and can be successfully accessed via comparative genomics approaches.
Collapse
Affiliation(s)
- Edmund A Quirin
- University of Minnesota, Department of Plant Pathology, 495 Borlaug Hall/1991 Upper Buford Circle, St. Paul, MN 55108,USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Milner SE, Brunton NP, Jones PW, O'Brien NM, Collins SG, Maguire AR. Bioactivities of glycoalkaloids and their aglycones from Solanum species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:3454-3484. [PMID: 21401040 DOI: 10.1021/jf200439q] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Potatoes, tomatoes, and aubergines are all species of the Solanum genus and contain a vast array of secondary metabolites including calystegine alkaloids, phenolic compounds, lectins, and glycoalkaloids. Glycoalkaloids have been the subject of many literature papers, occur widely in the human diet, and are known to induce toxicity. Therefore, from a food safety perspective further information is required regarding their analysis, toxicity, and bioavailability. This is especially important in crop cultivars derived from wild species to prevent glycoalkaloid-induced toxicity. A comprehensive review of the bioactivity of glycoalkaloids and their aglycones of the Solanum species, particularly focused on comparison of their bioactivities including their anticancer, anticholesterol, antimicrobial, anti-inflammatory, antinociceptive, and antipyretic effects, toxicity, and synergism of action of the principal Solanum glycoalkaloids, correlated to differences of their individual molecular structures is presented.
Collapse
Affiliation(s)
- Sinead Eileen Milner
- Department of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | | | | | | | | | | |
Collapse
|
10
|
Preliminary assessment of COSII gene diversity in lulo and a relative species: initial identification of genes potentially associated with domestication. Gene 2010; 458:27-36. [PMID: 20302924 DOI: 10.1016/j.gene.2010.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 03/08/2010] [Accepted: 03/11/2010] [Indexed: 11/21/2022]
Abstract
Among the Solanum genus, Solanum quitoense Lam. (lulo) is a promising species of Neotropical Solanaceae to become a premium crop in international markets. Wild relatives of S. quitoense are a source of desirable characteristics to be exploited for genetic improvement. To enhance the understanding of and access to the genetic diversity in landrace and wild relatives of lulo, we estimated the relative sequence diversity among them and their wild relative Solanum hirtum. With the use of COSII markers, we established that diversity of cultivated lulo (S. quitoense) is significantly lower than that of its wild relative S. hirtum. In the same way, we found that diversity of lulo is similar to that previously reported for tomato, while the diversity of S. hirtum is comparable to that of other wild relatives of cultivated plants. Our results suggest that high variability of some genes associated to abiotic stress response and pathogen resistance has been favored in wild and cultivated lulo plants.
Collapse
|
11
|
Przetakiewicz J, Nadolska-Orczyk A, Kuć D, Orczyk W. Tetraploid somatic hybrids of potato (Solanum tuberosum L.) obtained from diploid breeding lines. Cell Mol Biol Lett 2006; 12:253-67. [PMID: 17180309 PMCID: PMC6275578 DOI: 10.2478/s11658-006-0068-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 10/19/2006] [Indexed: 11/25/2022] Open
Abstract
Intraspecific somatic hybrids between 16 different diploid breeding lines of Solanum tuberosum L. were produced by PEG-induced fusion. Manually selected heterokaryons were cultured in a Millicells-CM using a post-fusion protoplast mixture. Plants were regenerated from calli derived from heterokaryons obtained from 10 out of 38 combinations of diploid lines. Of the tested putative somatic hybrids, 14.2% were diploid, 72.8% were tetraploid and 13% pentaploid. The DNA amplification pattern obtained with RAPD or semi-random primers confirmed that 6 fusion combinations were hybrids. In most cases, the morphological traits were intermediate to those of the diploid fusion partners. About 23.0% of the tested somatic hybrids showed variation in their morphology. Of the tested somatic hybrids, 78.0% flowered and 86.0% tuberized. The cytoplasm of 9 diploid lines and 6 somatic hybrid combinations was analysed. Two of the diploid lines had W/S chloroplasts and α or ε mitochondria; the remainder contained T chloroplasts and β mitochondria. All the analysed somatic hybrids carried T chloroplasts and β mitochondria.
Collapse
Affiliation(s)
- Jarosław Przetakiewicz
- Plant Transformation and Cell Engineering Department, Plant Breeding and Acclimatization Institute, Radzików, 05-870 Błonie, Poland
| | - Anna Nadolska-Orczyk
- Plant Transformation and Cell Engineering Department, Plant Breeding and Acclimatization Institute, Radzików, 05-870 Błonie, Poland
| | - Dominik Kuć
- Plant Transformation and Cell Engineering Department, Plant Breeding and Acclimatization Institute, Radzików, 05-870 Błonie, Poland
| | - Wacław Orczyk
- Plant Transformation and Cell Engineering Department, Plant Breeding and Acclimatization Institute, Radzików, 05-870 Błonie, Poland
| |
Collapse
|
12
|
Chen Q, Sun S, Ye Q, McCuine S, Huff E, Zhang HB. Construction of two BAC libraries from the wild Mexican diploid potato, Solanum pinnatisectum, and the identification of clones near the late blight and Colorado potato beetle resistance loci. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:1002-1009. [PMID: 15067385 DOI: 10.1007/s00122-003-1513-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2003] [Accepted: 09/25/2003] [Indexed: 05/24/2023]
Abstract
To facilitate isolation and characterization of disease and insect resistance genes important to potato, two bacterial artificial chromosome (BAC) libraries were constructed from genomic DNA of the Mexican wild diploid species, Solanum pinnatisectum, which carries high levels of resistance to the most important potato pathogen and pest, the late blight and the Colorado potato beetle (CPB). One of the libraries was constructed from the DNA, partially digested with BamHI, and it consists of 40328 clones with an average insert size of 125 kb. The other library was constructed from the DNA partially digested with EcoRI, and it consists of 17280 clones with an average insert size of 135 kb. The two libraries, together, represent approximately six equivalents of the wild potato haploid genome. Both libraries were evaluated for contamination with organellar DNA sequences and were shown to have a very low percentage (0.65-0.91%) of clones derived from the chloroplast genome. High-density filters, prepared from the two libraries, were screened with ten restriction fragment length polymorphism (RFLP) markers linked to the resistance genes for late blight, CPB, Verticillium wilt and potato cyst nematodes, and the gene Sr1 for the self-incompatibility S-locus. Thirty nine positive clones were identified and at least two positive BAC clones were detected for each RFLP marker. Four markers that are linked to the late blight resistance gene Rpi1 hybridized to 14 BAC clones. Fifteen BAC clones were shown to harbor the PPO (polyphenol oxidase) locus for the CPB resistance by three RFLP probes. Two RFLP markers detected five BAC clones that were linked to the Sr1 gene for self-incompatibility. These results agree with the library's predicted extent of coverage of the potato genome, and indicated that the libraries are useful resources for the molecular isolation of disease and insect resistance genes, as well as other economically important genes in the wild potato species. The development of the two potato BAC libraries provides a starting point, and landmarks for BAC contig construction and chromosome walking towards the map-based cloning of agronomically important target genes in the species.
Collapse
Affiliation(s)
- Q Chen
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, PO Box 3000, Lethbridge, Alberta T1J 4B1, Canada.
| | | | | | | | | | | |
Collapse
|
13
|
Helgeson JP, Haberlach GT. Somatic Hybrids of Solanum Tuberosum and Related Species. PLANT BIOTECHNOLOGY AND IN VITRO BIOLOGY IN THE 21ST CENTURY 1999. [DOI: 10.1007/978-94-011-4661-6_35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
van der Beek JG, Poleij LM, Zijlstra C, Janssen R, Janssen GJ. Variation in Virulence Within Meloidogyne chitwoodi, M. fallax, and M. hapla on Solanum spp. PHYTOPATHOLOGY 1998; 88:658-665. [PMID: 18944937 DOI: 10.1094/phyto.1998.88.7.658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT The virulence of Meloidogyne hapla, M. chitwoodi, and M. fallax was studied on genotypes of Solanum spp. in a greenhouse. Juveniles of 11 M. hapla race A isolates, 3 M. hapla race B isolates, and 5 mono-female lines of a M. hapla race A isolate were inoculated on S. chacoense, S. hougasii, and S. sparsipilum. Juveniles of eight M. chitwoodi isolates, five M. fallax isolates, and six mono-female lines of a M. chitwoodi isolate were inoculated on S. bulbocastanum, S. chacoense, S. hougasii, S. stoloniferum, and S. tuberosum. Virulence was expressed as nematode reproduction 8 weeks after inoculation. Nematode reproduction was estimated by the number of egg masses and, in one experiment, by the number of hatched second-stage juveniles per inoculated juvenile. Considerable variation in virulence and resistance was observed among M. hapla isolates and plant genotypes, respectively. The M. hapla isolate-plant species interaction was highly significant. The response to M. chitwoodi ranged from susceptible (S. tuberosum and S. chacoense) to highly resistant (S. bulbocastanum and S. hougasii). S. tuberosum was susceptible to M. fallax, whereas all four wild species were resistant. In contrast to M. hapla, no significant isolate-plant genotype interaction was obtained for M. chitwoodi or M. fallax, indicating no or little intraspecific variation in virulence. M. chitwoodi juveniles in species mixtures with M. fallax isolates appeared to be able to break the resistance of S. bulbocastanum and S. hougasii. Significant differences among mono-female lines of M. hapla and M. chitwoodi were observed, indicating heterogeneity of pathogenicity within meiotic parthenogenic Meloidogyne populations.
Collapse
|
15
|
Masuelli RW, Tanimoto EY, Brown CR, Comai L. Irregular meiosis in a somatic hybrid between S. bulbocastanum and S. tuberosum detected by species-specific PCR markers and cytological analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 91:401-408. [PMID: 24169828 DOI: 10.1007/bf00222966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/1994] [Accepted: 01/17/1995] [Indexed: 06/02/2023]
Abstract
A system of randomly amplified polymorphic DNA (RAPD) markers was developed to facilitate the transfer of S. bulbocastanum (blb) genes into the S. tuberosum (tbr) genome by hybridization and backcrossing. DNA from tbr, blb and the hexaploid hybrid was used as a template for polymerase chain reaction (PCR) amplification. Polymorphic RAPD products, originating from 10-mer primers, specific for blb were cloned and sequenced at their ends to allow the synthesis of 18-mer primers. The 18-mer primers allowed a more reproducible assay than the corresponding RAPDs. Of eight 18-mer primer pairs, four amplified the expected products specific for blb. However, the stringency of the primer annealing conditions needed to be carefully optimized to avoid amplification of the homeologous tbr product, suggesting that the original RAPD polymorphisms were due to single base-pair changes rather than deletions or insertions. Two primers used for amplification of backcross 2 progeny segregated in a 1∶1 (presence:absence) ratio; the other two were unexpectedly absent. The most likely explanation for the loss of these markers is irregular meiosis in the original hexaploid hybrid and subsequent elimination of chromosomes. Cytological analysis of the meiosis in the hybrid demonstrated widespread irregular pairing and the presence of lagging univalents. In addition, the first backcross individual used as the parent for the second backcross had 54 chromosomes instead of the predicted 60. In conclusion, our results demonstrate that PCR technology can be used for the efficient isolation of taxon-specific markers in Solanum. Furthermore, by the use of these markers we detected the loss of chromosomes that was subsequently shown by cytological analysis to be caused by irregular meiosis of the somatic hybrid.
Collapse
Affiliation(s)
- R W Masuelli
- Department of Botany, University of Washington, Box 355325, 98195-5325, Seattle, WA, USA
| | | | | | | |
Collapse
|
16
|
The potential of somatic hybridization in crop breeding. ACTA ACUST UNITED AC 1995. [DOI: 10.1007/978-94-011-0357-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
17
|
McGrath JM, Wielgus SM, Uchytil TF, Kim-Lee H, Haberlach GT, Williams CE, Helgeson JP. Recombination of Solanum brevidens chromosomes in the second backcross generation from a somatic hybrid with S. tuberosum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1994; 88:917-924. [PMID: 24186243 DOI: 10.1007/bf00220797] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/1993] [Accepted: 12/21/1993] [Indexed: 06/02/2023]
Abstract
Solanum brevidens synteny groups were examined with 47 widely-distributed RFLP markers in 17 BC2 progeny from six fertile BC1 plants. The BC1 plants were derived from a single S. brevidens + S. tuberosum somatic hybrid backcrossed with S. tuberosum (potato). Probes which were linked in potato and tomato were also found to be syntenic along each of the 12 S. brevidens chromosomes. More than half of the S. brevidens synteny groups had lost one or more S. brevidens-specific RFLPs in the BC2, suggesting that recombination had occurred. For 8 of the 12 S. brevidens RFLP synteny groups, the frequency of recombinant chromosomes exceeded that of intact parental chromosomes. Using the RFLP data, 161 RAPD markers were tentatively located throughout the S. brevidens genome. Further analyses with 39 of these 161 RAPD markers generally showed that RAPD and RFLP results were comparable, but some inconsistencies were noted with 14 of the 39 RAPD markers. The extent of marker loss and the high frequency of synteny groups which were marked by a single S. brevidens-specific RFLP marker suggest that the S. brevidens chromosomes have some pairing affinity with potato chromosomes. This interaction should facilitate the transfer of novel disease-resistance traits into potato breeding lines. One plant was recovered with the chromosome number of S. tuberosum (2n=48) that carried a single S. brevidens RFLP marker, suggesting transfer of this S. brevidens marker into the genome of S. tuberosum.
Collapse
Affiliation(s)
- J M McGrath
- Department of Plant Pathology, USDA-ARS, Plant Disease Resistance Research Unit, University of Wisconsin, 1630 Linden Drive, 53706-1598, Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
|