1
|
Drozd M, Bruns AF, Yuldasheva NY, Maqbool A, Viswambharan H, Skromna A, Makava N, Cheng CW, Sukumar P, Eades L, Walker AMN, Griffin KJ, Galloway S, Watt NT, Haywood N, Palin V, Warmke N, Imrie H, Bridge K, Beech DJ, Wheatcroft SB, Kearney MT, Cubbon RM. Endothelial insulin-like growth factor-1 signaling regulates vascular barrier function and atherogenesis. Cardiovasc Res 2025:cvaf055. [PMID: 40171617 DOI: 10.1093/cvr/cvaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/19/2024] [Accepted: 02/15/2025] [Indexed: 04/04/2025] Open
Abstract
AIMS Progressive deposition of cholesterol in the arterial wall characterizes atherosclerosis, which underpins most cases of myocardial infarction and stroke. Insulin-like growth factor-1 (IGF-1) is a hormone that regulates systemic growth and metabolism and possesses anti-atherosclerotic properties. We asked whether endothelial-restricted augmentation of IGF-1 signaling is sufficient to suppress atherogenesis. METHODS AND RESULTS We generated mice with endothelial-restricted over-expression of human wildtype IGF-1R (hIGFREO/ApoE-/-) or a signaling defective K1003R mutant human IGF-1R (mIGFREO/ApoE-/-) and compared them to their respective ApoE-/- littermates. hIGFREO/ApoE-/- had less atherosclerosis, circulating leukocytes, arterial cholesterol uptake, and vascular leakage in multiple organs, whereas mIGFREO/ApoE-/- did not exhibit these phenomena. Overexpressing wildtype IGF-1R in human umbilical vein endothelial cells (HUVEC) altered the localization of tight junction proteins and reduced paracellular leakage across their monolayers, whilst overexpression of K1003R IGF-1R did not have these effects. Moreover, only overexpression of wildtype IGF-1R reduced HUVEC internalization of cholesterol-rich low density lipoprotein particles and increased their association of these particles with clathrin, but not caveolin-1, implicating it in vesicular uptake of lipoproteins. Endothelial overexpression of wildtype versus K1003R IGF-1R also reduced expression of YAP/TAZ target genes and nuclear localization of TAZ, which may be relevant to its impact on vascular barrier and atherogenesis. CONCLUSIONS Endothelial IGF-1 signaling modulates both para- and trans-cellular vascular barrier function. Beyond reducing atherosclerosis, this could have relevance to many diseases associated with abnormal vascular permeability.
Collapse
Affiliation(s)
- Michael Drozd
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Alexander-Francisco Bruns
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Nadira Y Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Azhar Maqbool
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Hema Viswambharan
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Anna Skromna
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Natallia Makava
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Chew W Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Piruthivi Sukumar
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lauren Eades
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Andrew M N Walker
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Kathryn J Griffin
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Stacey Galloway
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Nicole T Watt
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Natalie Haywood
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Victoria Palin
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Nele Warmke
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Helen Imrie
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Katherine Bridge
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Mark T Kearney
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
2
|
Kothandan D, Singh DS, Yerrakula G, D B, N P, Santhana Sophia B V, A R, Ramya Vg S, S K, M J. Advanced Glycation End Products-Induced Alzheimer's Disease and Its Novel Therapeutic Approaches: A Comprehensive Review. Cureus 2024; 16:e61373. [PMID: 38947632 PMCID: PMC11214645 DOI: 10.7759/cureus.61373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Advanced glycation end products (AGEs) accumulate in the brain, leading to neurodegenerative conditions such as Alzheimer's disease (AD). The pathophysiology of AD is influenced by receptors for AGEs and toll-like receptor 4 (TLR4). Protein glycation results in irreversible AGEs through a complicated series of reactions involving the formation of Schiff's base, the Amadori reaction, followed by the Maillard reaction, which causes abnormal brain glucose metabolism, oxidative stress, malfunctioning mitochondria, plaque deposition, and neuronal death. Amyloid plaque and other stimuli activate macrophages, which are crucial immune cells in AD development, triggering the production of inflammatory molecules and contributing to the disease's pathogenesis. The risk of AD is doubled by risk factors for atherosclerosis, dementia, advanced age, and type 2 diabetic mellitus (DM). As individuals age, the prevalence of neurological illnesses such as AD increases due to a decrease in glyoxalase levels and an increase in AGE accumulation. Insulin's role in proteostasis influences hallmarks of AD-like tau phosphorylation and amyloid β peptide clearance, affecting lipid metabolism, inflammation, vasoreactivity, and vascular function. The high-mobility group box 1 (HMGB1) protein, a key initiator and activator of a neuroinflammatory response, has been linked to the development of neurodegenerative diseases such as AD. The TLR4 inhibitor was found to improve memory and learning impairment and decrease Aβ build-up. Therapeutic research into anti-glycation agents, receptor for advanced glycation end products (RAGE) inhibitors, and AGE breakers offers hope for intervention strategies. Dietary and lifestyle modifications can also slow AD progression. Newer therapeutic approaches targeting AGE-related pathways are needed.
Collapse
Affiliation(s)
- Dhivya Kothandan
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Daniel S Singh
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Goutham Yerrakula
- School of Pharmacy, Faculty of Health Sciences, JSS Academy of Higher Education and Research, Vacoas, MUS
| | - Backkiyashree D
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Pratibha N
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | | | - Ramya A
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Sapthami Ramya Vg
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Keshavini S
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| | - Jagadheeshwari M
- Department of Pharmacy Practice, C.L. Baid Metha College of Pharmacy, Chennai, IND
| |
Collapse
|
3
|
Fazio S, Mercurio V, Fazio V, Ruvolo A, Affuso F. Insulin Resistance/Hyperinsulinemia, Neglected Risk Factor for the Development and Worsening of Heart Failure with Preserved Ejection Fraction. Biomedicines 2024; 12:806. [PMID: 38672161 PMCID: PMC11047865 DOI: 10.3390/biomedicines12040806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Heart failure (HF) has become a subject of continuous interest since it was declared a new pandemic in 1997 because of the exponential increase in hospitalizations for HF in the latest years. HF is the final state to which all heart diseases of different etiologies lead if not adequately treated. It is highly prevalent worldwide, with a progressive increase with age, reaching a prevalence of 10% in subjects over the age of 65 years. During the last two decades, it was possible to see that the prevalence of heart failure with preserved ejection fraction (HFpEF) was increasing while that of heart failure with reduced ejection fraction (HFrEF) was decreasing. HFpEF is typically characterized by concentric remodeling of the left ventricle (LV) with impaired diastolic function and increased filling pressures. Over the years, also the prevalence of insulin resistance (IR)/hyperinsulinemia (Hyperins) in the general adult population has progressively increased, primarily due to lifestyle changes, particularly in developed and developing countries, with a range that globally ranges between 15.5% and 46.5%. Notably, over 50% of patients with HF also have IR/Hyperins, and the percentage is even higher in those with HFpEF. In the scientific literature, it has been well highlighted that the increased circulating levels of insulin, associated with conditions of insulin resistance, are responsible for progressive cardiovascular alterations over the years that could stimulate the development and/or the worsening of HFpEF. The aim of this manuscript was to review the scientific literature that supports a pathophysiologic connection between IR/Hyperins and HFpEF to stimulate the scientific community toward the identification of hyperinsulinemia associated with insulin resistance as an independent cardiovascular risk factor in the development and worsening of HF, believing that its adequate screening in the general population and an appropriate treatment could reduce the prevalence of HFpEF and improve its progression.
Collapse
Affiliation(s)
- Serafino Fazio
- Department of Internal Medicine, School of Medicine, Federico II University, Via Sergio Pansini 5, 80135 Naples, Italy
| | - Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, Via Sergio Pasini 5, 80135 Naples, Italy;
| | - Valeria Fazio
- UOC Medicina Interna, Azienda Ospedaliera di Caserta, 81100 Caserta, Italy;
| | - Antonio Ruvolo
- UOC Cardiologia AORN dei colli PO CTO, Viale Colli Aminei 21, 80100 Naples, Italy;
| | - Flora Affuso
- Independent Researcher, Viale Raffaello 74, 80129 Naples, Italy;
| |
Collapse
|
4
|
Engin A. Endothelial Dysfunction in Obesity and Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:489-538. [PMID: 39287863 DOI: 10.1007/978-3-031-63657-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Parallel to the increasing prevalence of obesity in the world, the mortality from cardiovascular disease has also increased. Low-grade chronic inflammation in obesity disrupts vascular homeostasis, and the dysregulation of adipocyte-derived endocrine and paracrine effects contributes to endothelial dysfunction. Besides the adipose tissue inflammation, decreased nitric oxide (NO)-bioavailability, insulin resistance (IR), and oxidized low-density lipoproteins (oxLDLs) are the main factors contributing to endothelial dysfunction in obesity and the development of cardiorenal metabolic syndrome. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in the profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Higher stiffness parameter β, increased oxidative stress, upregulation of pro-inflammatory cytokines, and nicotinamide adenine dinucleotide phosphate (NADP) oxidase in PVAT turn the macrophages into pro-atherogenic phenotypes by oxLDL-induced adipocyte-derived exosome-macrophage crosstalk and contribute to the endothelial dysfunction. In clinical practice, carotid ultrasound, higher leptin levels correlate with irisin over-secretion by human visceral and subcutaneous adipose tissues, and remnant cholesterol (RC) levels predict atherosclerotic disease in obesity. As a novel therapeutic strategy for cardiovascular protection, liraglutide improves vascular dysfunction by modulating a cyclic adenosine monophosphate (cAMP)-independent protein kinase A (PKA)-AMP-activated protein kinase (AMPK) pathway in PVAT in obese individuals. Because the renin-angiotensin-aldosterone system (RAAS) activity, hyperinsulinemia, and the resultant IR play key roles in the progression of cardiovascular disease in obesity, RAAS-targeted therapies contribute to improving endothelial dysfunction. By contrast, arginase reciprocally inhibits NO formation and promotes oxidative stress. Thus, targeting arginase activity as a key mediator in endothelial dysfunction has therapeutic potential in obesity-related vascular comorbidities. Obesity-related endothelial dysfunction plays a pivotal role in the progression of type 2 diabetes (T2D). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (thiazolidinedione), is a popular drug for treating diabetes; however, it leads to increased cardiovascular risk. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin (EMPA) significantly improves endothelial dysfunction and mortality occurring through redox-dependent mechanisms. Although endothelial dysfunction and oxidative stress are alleviated by either metformin or EMPA, currently used drugs to treat obesity-related diabetes neither possess the same anti-inflammatory potential nor simultaneously target endothelial cell dysfunction and obesity equally. While therapeutic interventions with glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide or bariatric surgery reverse regenerative cell exhaustion, support vascular repair mechanisms, and improve cardiometabolic risk in individuals with T2D and obesity, the GLP-1 analog exendin-4 attenuates endothelial endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
5
|
Mallu ACT, Sivagurunathan S, Paul D, Aggarwal H, Nathan AA, Manikandan A, Ravi MM, Boppana R, Jagavelu K, Santra MK, Dixit M. Feeding enhances fibronectin adherence of quiescent lymphocytes through non-canonical insulin signalling. Immunology 2023; 170:60-82. [PMID: 37185810 DOI: 10.1111/imm.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Nutritional availability during fasting and refeeding affects the temporal redistribution of lymphoid and myeloid immune cells among the circulating and tissue-resident pools. Conversely, nutritional imbalance and impaired glucose metabolism are associated with chronic inflammation, aberrant immunity and anomalous leukocyte trafficking. Despite being exposed to periodic alterations in blood insulin levels upon fasting and feeding, studies exploring the physiological effects of these hormonal changes on quiescent immune cell function and trafficking are scanty. Here, we report that oral glucose load in mice and healthy men enhances the adherence of circulating peripheral blood mononuclear cells (PBMCs) and lymphocytes to fibronectin. Adherence to fibronectin is also observed upon regular intake of breakfast following overnight fasting in healthy subjects. This glucose load-induced phenomenon is abrogated in streptozotocin-injected mice that lack insulin. Intra-vital microscopy in mice demonstrated that oral glucose feeding enhances the homing of PBMCs to injured blood vessels in vivo. Furthermore, employing flow cytometry, Western blotting and adhesion assays for PBMCs and Jurkat-T cells, we elucidate that insulin enhances fibronectin adherence of quiescent lymphocytes through non-canonical signalling involving insulin-like growth factor-1 receptor (IGF-1R) autophosphorylation, phospholipase C gamma-1 (PLCγ-1) Tyr783 phosphorylation and inside-out activation of β-integrins respectively. Our findings uncover the physiological relevance of post-prandial insulin spikes in regulating the adherence and trafficking of circulating quiescent T-cells through fibronectin-integrin interaction.
Collapse
Affiliation(s)
- Abhiram Charan Tej Mallu
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sivapriya Sivagurunathan
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Debasish Paul
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Hobby Aggarwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Abel Arul Nathan
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Amrutha Manikandan
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Mahalakshmi M Ravi
- Institute Hospital, Indian Institute of Technology Madras, Chennai, India
| | - Ramanamurthy Boppana
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | | | - Manas Kumar Santra
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Madhulika Dixit
- Centre of Excellence (CoE) in Molecular Medicine, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
6
|
Schiavone V, Romasco T, Di Pietrantonio N, Garzoli S, Palmerini C, Di Tomo P, Pipino C, Mandatori D, Fioravanti R, Butturini E, Sabatino M, Baldassarre MPA, Ragno R, Pandolfi A, Di Pietro N. Essential Oils from Mediterranean Plants Inhibit In Vitro Monocyte Adhesion to Endothelial Cells from Umbilical Cords of Females with Gestational Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24087225. [PMID: 37108387 PMCID: PMC10138528 DOI: 10.3390/ijms24087225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Essential oils (EOs) are mixtures of volatile compounds belonging to several chemical classes derived from aromatic plants using different distillation techniques. Recent studies suggest that the consumption of Mediterranean plants, such as anise and laurel, contributes to improving the lipid and glycemic profile of patients with diabetes mellitus (DM). Hence, the aim of the present study was to investigate the potential anti-inflammatory effect of anise and laurel EOs (AEO and LEO) on endothelial cells isolated from the umbilical cord vein of females with gestational diabetes mellitus (GDM-HUVEC), which is a suitable in vitro model to reproduce the pro-inflammatory phenotype of a diabetic endothelium. For this purpose, the Gas Chromatographic/Mass Spectrometric (GC-MS) chemical profiles of AEO and LEO were first analyzed. Thus, GDM-HUVEC and related controls (C-HUVEC) were pre-treated for 24 h with AEO and LEO at 0.025% v/v, a concentration chosen among others (cell viability by MTT assay), and then stimulated with TNF-α (1 ng/mL). From the GC-MS analysis, trans-anethole (88.5%) and 1,8-cineole (53.9%) resulted as the major components of AEO and LEO, respectively. The results in C- and GDM-HUVEC showed that the treatment with both EOs significantly reduced: (i) the adhesion of the U937 monocyte to HUVEC; (ii) vascular adhesion molecule-1 (VCAM-1) protein and gene expression; (iii) Nuclear Factor-kappa B (NF-κB) p65 nuclear translocation. Taken together, these data suggest the anti-inflammatory efficacy of AEO and LEO in our in vitro model and lay the groundwork for further preclinical and clinical studies to study their potential use as supplements to mitigate vascular endothelial dysfunction associated with DM.
Collapse
Affiliation(s)
- Valeria Schiavone
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Tea Romasco
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Nadia Di Pietrantonio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefania Garzoli
- Department of Pharmaceutical Chemistry and Technology, Sapienza University of Rome, 00185 Roma, Italy
| | - Carola Palmerini
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Pamela Di Tomo
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Caterina Pipino
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Rossella Fioravanti
- Department of Pharmaceutical Chemistry and Technology, Sapienza University of Rome, 00185 Roma, Italy
| | - Elena Butturini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37129 Verona, Italy
| | - Manuela Sabatino
- Rome Center for Molecular Design-RCMD, Department of Pharmaceutical Chemistry and Technology, Sapienza University of Rome, 00185 Roma, Italy
| | - Maria Pompea Antonia Baldassarre
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy
| | - Rino Ragno
- Rome Center for Molecular Design-RCMD, Department of Pharmaceutical Chemistry and Technology, Sapienza University of Rome, 00185 Roma, Italy
| | - Assunta Pandolfi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
7
|
Macrophages, Low-Grade Inflammation, Insulin Resistance and Hyperinsulinemia: A Mutual Ambiguous Relationship in the Development of Metabolic Diseases. J Clin Med 2022; 11:jcm11154358. [PMID: 35955975 PMCID: PMC9369133 DOI: 10.3390/jcm11154358] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic derangement with poor glycemic control accompanying overweight and obesity is associated with chronic low-grade inflammation and hyperinsulinemia. Macrophages, which present a very heterogeneous population of cells, play a key role in the maintenance of normal tissue homeostasis, but functional alterations in the resident macrophage pool as well as newly recruited monocyte-derived macrophages are important drivers in the development of low-grade inflammation. While metabolic dysfunction, insulin resistance and tissue damage may trigger or advance pro-inflammatory responses in macrophages, the inflammation itself contributes to the development of insulin resistance and the resulting hyperinsulinemia. Macrophages express insulin receptors whose downstream signaling networks share a number of knots with the signaling pathways of pattern recognition and cytokine receptors, which shape macrophage polarity. The shared knots allow insulin to enhance or attenuate both pro-inflammatory and anti-inflammatory macrophage responses. This supposedly physiological function may be impaired by hyperinsulinemia or insulin resistance in macrophages. This review discusses the mutual ambiguous relationship of low-grade inflammation, insulin resistance, hyperinsulinemia and the insulin-dependent modulation of macrophage activity with a focus on adipose tissue and liver.
Collapse
|
8
|
Landreth S, Teague AM, Jensen ME, Gulati S, Tryggestad JB. Impact of maternal diabetes exposure on soluble adhesion molecules in the offspring. Nutr Metab Cardiovasc Dis 2022; 32:1253-1258. [PMID: 35256229 PMCID: PMC9018574 DOI: 10.1016/j.numecd.2022.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIMS Soluble adhesion molecules are associated with cardiovascular disease and increased in individuals with diabetes. This study assesses the impact of diabetes exposure in utero on the abundance of circulating adhesion molecules in cord serum and soluble adhesion molecules released from human umbilical vein endothelial cells (HUVEC) exposed to high glucose concentrations. METHODS AND RESULTS Women with and without diabetes were recruited. DM was diagnosed based on the American Diabetes Association criteria. Primary cultures of HUVEC were cultured in 5 mM and 25 mM glucose with 25 mM mannitol osmotic control. The soluble adhesion molecules, intracellular adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM) and E-selectin were measured by ELISA in the cord blood serum and conditioned HUVEC media. The mothers with DM were older with higher BMI (p = 0.027 and 0.008, respectively). In a fully adjusted model, VCAM was significantly increased in the cord serum of infants born to mothers with diabetes (p = 0.046), but ICAM and E-selectin were not different. ICAM was also significantly correlated with maternal HbA1c (r2 = 0.16, p = 0.004) and cord serum non-esterified fatty acids (r2 = 0.08, p = 0.013). From the HUVEC media, the abundance of adhesion molecules was not different based on DM or high glucose exposure; however, VCAM abundance in the HUVEC supernatant was significantly correlated with ICAM (r2 = 0.27, p = 0.010) and cord serum c-peptide (R2 = 0.19, p = 0.043). CONCLUSIONS Alterations in soluble adhesion molecule abundance in infants exposed to the diabetic milieu of pregnancy may reflect early alterations in vascular function predicting future cardiovascular disease.
Collapse
Affiliation(s)
- Samantha Landreth
- Department of Pediatrics, Section of Diabetes/Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - April M Teague
- Department of Pediatrics, Section of Diabetes/Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mary E Jensen
- Department of Pediatrics, Section of Diabetes/Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shelly Gulati
- Department of Pediatrics, Section of Diabetes/Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jeanie B Tryggestad
- Department of Pediatrics, Section of Diabetes/Endocrinology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
9
|
Dehydroepiandrosterone (DHEA) Improves the Metabolic and Haemostatic Disturbances in Rats with Male Hypogonadism. Sci Pharm 2022. [DOI: 10.3390/scipharm90010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Objectives: The current work was designed to study the effect of dehydroepiandrosterone (DHEA) on glucose homeostasis, liver functions and hemostatic disturbances in a rat model of bilateral orchidectomy (ORCH). Methods: 32 male rats (n = 8) were randomly assigned into 4 groups; (i) control (sham operated) group; were normal rats in which all surgical procedures were done without ORCH, (ii) Control + DHEA group: as control group but rats were treated with DHEA for 12 weeks, (iii) orchiectomized (ORCH) group: rats had bilateral orchidectomy and (iv) ORCH + DHEA group: orchiectomized rats treated with DHEA for 12 weeks. Four weeks after ORCH, DHEA treatment began and lasted for twelve weeks. By the end of the experiment, the parameters of glucose homeostasis, lipid profile, liver enzymes, bleeding and clotting times (B.T. and C.T.), prothrombin time (P.T.), activated partial thromboplastin time (aPTT), platelet count and aggregation, von-Willebrand factor (vWF), fibrinogen, plasminogen activator inhibitor (PAI-1), fibrin degradation products (FDP), intercellular adhesion molecule (ICAM-1), vascular cell adhesion molecule (VCAM-1), endothelin-1 were measured. Results: ORCH caused significant deteriorations in the parameters of glucose homeostasis, lipid profile, and liver functions (p < 0.05). In addition, lower androgenicity-induced by ORCH caused a significant rise in PAI-1, fibrinogen, FDPs, ET-1 (p < 0.01) with significant shortening of bleeding and clotting times. DHEA replacement therapy significantly decreased glucose, insulin, PAI-1, fibrinogen, ICAM-1, and VCAM-1 when compared to ORCH rats. Conclusion: DHEA ameliorated the metabolic, hepatic, hypercoagulable, and hypofibrinolysis disturbances induced by ORCH.
Collapse
|
10
|
Singh M, Thakur M, Mishra M, Yadav M, Vibhuti R, Menon AM, Nagda G, Dwivedi VP, Dakal TC, Yadav V. Gene regulation of intracellular adhesion molecule-1 (ICAM-1): A molecule with multiple functions. Immunol Lett 2021; 240:123-136. [PMID: 34715236 DOI: 10.1016/j.imlet.2021.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023]
Abstract
Intracellular adhesion molecule 1 (ICAM-1) is one of the most extensively studied inducible cell adhesion molecules which is responsible for several immune functions like T cell activation, extravasation, inflammation, etc. The molecule is constitutively expressed over the cell surface and is regulated up / down in response to inflammatory mediators like cellular stress, proinflammatory cytokines, viral infection. These stimuli modulate the expression of ICAM-1 primarily through regulating the ICAM-1 gene transcription. On account of the presence of various binding sites for NF-κB, AP-1, SP-1, and many other transcription factors, the architecture of the ICAM-1 promoter become complex. Transcription factors in union with other transcription factors, coactivators, and suppressors promote their assembly in a stereospecific manner on ICAM-1 promoter which mediates ICAM-1 regulation in response to different stimuli. Along with transcriptional regulation, epigenetic modifications also play a pivotal role in controlling ICAM-1 expression on different cell types. In this review, we summarize the regulation of ICAM-1 expression both at the transcriptional as well as post-transcriptional level with an emphasis on transcription factors and signaling pathways involved.
Collapse
Affiliation(s)
- Mona Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067 India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Manish Mishra
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Manisha Yadav
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Rajkamal Vibhuti
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Athira M Menon
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Girima Nagda
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan-313001 India
| | - Ved Prakash Dwivedi
- International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi-110067 India
| | - Tikam Chand Dakal
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| |
Collapse
|
11
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Hyperuricemia-induced endothelial insulin resistance: the nitric oxide connection. Pflugers Arch 2021; 474:83-98. [PMID: 34313822 DOI: 10.1007/s00424-021-02606-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/12/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022]
Abstract
Hyperuricemia, defined as elevated serum concentrations of uric acid (UA) above 416 µmol L-1, is related to the development of cardiometabolic disorders, probably via induction of endothelial dysfunction. Hyperuricemia causes endothelial dysfunction via induction of cell apoptosis, oxidative stress, and inflammation; however, it's interfering with insulin signaling and decreased endothelial nitric oxide (NO) availability, resulting in the development of endothelial insulin resistance, which seems to be a major underlying mechanism for hyperuricemia-induced endothelial dysfunction. Here, we elaborate on how hyperuricemia induces endothelial insulin resistance through the disruption of insulin-stimulated endothelial NO synthesis. High UA concentrations decrease insulin-induced NO synthesis within the endothelial cells by interfering with insulin signaling at either the receptor or post-receptor levels (i.e., proximal and distal steps). At the proximal post-receptor level, UA impairs the function of the insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) in the insulin signaling pathway. At the distal level, high UA concentrations impair endothelial NO synthase (eNOS)-NO system by decreasing eNOS expression and activity as well as by direct inactivation of NO. Clinically, UA-induced endothelial insulin resistance is translated into impaired endothelial function, impaired NO-dependent vasodilation, and the development of systemic insulin resistance. UA-lowering drugs may improve endothelial function in subjects with hyperuricemia.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA.,Graduate Program in Biology, City University of New York Graduate Center, New York, NY, 10016, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, P.O. Box: 19395-4763, VelenjakTehran, Iran.
| |
Collapse
|
12
|
Troncoso MF, Ortiz-Quintero J, Garrido-Moreno V, Sanhueza-Olivares F, Guerrero-Moncayo A, Chiong M, Castro PF, García L, Gabrielli L, Corbalán R, Garrido-Olivares L, Lavandero S. VCAM-1 as a predictor biomarker in cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166170. [PMID: 34000374 DOI: 10.1016/j.bbadis.2021.166170] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
The vascular cellular adhesion molecule-1 (VCAM-1) is a protein that canonically participates in the adhesion and transmigration of leukocytes to the interstitium during inflammation. VCAM-1 expression, together with soluble VCAM-1 (sVCAM-1) induced by the shedding of VCAM-1 by metalloproteinases, have been proposed as biomarkers in immunological diseases, cancer, autoimmune myocarditis, and as predictors of mortality and morbidity in patients with chronic heart failure (HF), endothelial injury in patients with coronary artery disease, and arrhythmias. This revision aims to discuss the role of sVCAM-1 as a biomarker to predict the occurrence, development, and preservation of cardiovascular disease.
Collapse
Affiliation(s)
- Mayarling Francisca Troncoso
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jafet Ortiz-Quintero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Bioanalysis & Immunology, Faculty of Sciences, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Valeria Garrido-Moreno
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernanda Sanhueza-Olivares
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandra Guerrero-Moncayo
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo F Castro
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena García
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luigi Gabrielli
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ramón Corbalán
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Garrido-Olivares
- Division of Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Xu J, Kitada M, Ogura Y, Koya D. Relationship Between Autophagy and Metabolic Syndrome Characteristics in the Pathogenesis of Atherosclerosis. Front Cell Dev Biol 2021; 9:641852. [PMID: 33937238 PMCID: PMC8083902 DOI: 10.3389/fcell.2021.641852] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is the main cause of mortality in metabolic-related diseases, including cardiovascular disease and type 2 diabetes (T2DM). Atherosclerosis is characterized by lipid accumulation and increased inflammatory cytokines in the vascular wall, endothelial cell and vascular smooth muscle cell dysfunction and foam cell formation initiated by monocytes/macrophages. The characteristics of metabolic syndrome (MetS), including obesity, glucose intolerance, dyslipidemia and hypertension, may activate multiple mechanisms, such as insulin resistance, oxidative stress and inflammatory pathways, thereby contributing to increased risks of developing atherosclerosis and T2DM. Autophagy is a lysosomal degradation process that plays an important role in maintaining cellular metabolic homeostasis. Increasing evidence indicates that impaired autophagy induced by MetS is related to oxidative stress, inflammation, and foam cell formation, further promoting atherosclerosis. Basal and mild adaptive autophagy protect against the progression of atherosclerotic plaques, while excessive autophagy activation leads to cell death, plaque instability or even plaque rupture. Therefore, autophagic homeostasis is essential for the development and outcome of atherosclerosis. Here, we discuss the potential role of autophagy and metabolic syndrome in the pathophysiologic mechanisms of atherosclerosis and potential therapeutic drugs that target these molecular mechanisms.
Collapse
Affiliation(s)
- Jing Xu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
14
|
Hyperinsulinemia promotes endothelial inflammation via increased expression and release of Angiopoietin-2. Atherosclerosis 2020; 307:1-10. [DOI: 10.1016/j.atherosclerosis.2020.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 06/09/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
|
15
|
Madonna R, Pieragostino D, Rossi C, Confalone P, Cicalini I, Minnucci I, Zucchelli M, Del Boccio P, De Caterina R. Simulated hyperglycemia impairs insulin signaling in endothelial cells through a hyperosmolar mechanism. Vascul Pharmacol 2020; 130:106678. [DOI: 10.1016/j.vph.2020.106678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/18/2020] [Accepted: 03/25/2020] [Indexed: 12/24/2022]
|
16
|
Madonna R, Pieragostino D, Cufaro MC, Doria V, Del Boccio P, Deidda M, Pierdomenico SD, Dessalvi CC, De Caterina R, Mercuro G. Ponatinib Induces Vascular Toxicity through the Notch-1 Signaling Pathway. J Clin Med 2020; 9:jcm9030820. [PMID: 32197359 PMCID: PMC7141219 DOI: 10.3390/jcm9030820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 02/08/2023] Open
Abstract
Ponatinib, a third-generation tyrosine kinase inhibitor (TKI), is the only approved TKI that is effective against T315I mutations in patients with chronic myeloid leukemia (CML). Specific activation of Notch signaling in CML cells by ponatinib can be considered as the “on-target effect” on the tumor and represents a therapeutic approach for CML. Nevertheless, ponatinib-induced vascular toxicity remains a serious concern, with underlying mechanisms being poorly understood. We aimed to determine the mechanisms of ponatinib-induced vascular toxicity, defining associated signaling pathways and identifying potential rescue strategies. We exposed human umbilical endothelial cells (HUVECs) to ponatinib or vehicle in the presence or absence of the neutralizing factor anti-Notch-1 antibody for exposure times of 0–72 h. Label-free proteomics and network analysis showed that protein cargo of HUVECs treated with ponatinib triggered apoptosis and inhibited vasculature development. We validated the proteomic data showing the inhibition of matrigel tube formation, an up-regulation of cleaved caspase-3 and a downregulation of phosphorylated AKT and phosphorylated eNOS. We delineated the signaling of ponatinib-induced vascular toxicity, demonstrating that ponatinib inhibits endothelial survival, reduces angiogenesis and induces endothelial senescence and apoptosis via the Notch-1 pathway. Ponatinib induced endothelial toxicity in vitro. Hyperactivation of Notch-1 in the vessels can lead to abnormal vascular development and vascular dysfunction. By hyperactivating Notch-1 in the vessels, ponatinib exerts an “on-target off tumor effect”, which leads to deleterious effects and may explain the drug’s vasculotoxicity. Selective blockade of Notch-1 prevented ponatinib-induced vascular toxicity.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Institute of Cardiology, University of Pisa, 56124 Pisa, Italy;
- Department of Internal Medicine, Cardiology Division, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Damiana Pieragostino
- Department of Medical, Oral and Biotechnological Sciences, University ‘‘G. D’Annunzio’’ of Chieti-Pescara, 66100 Chieti, Italy;
- Analytical Biochemistry and Proteomics Laboratory, Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Maria Concetta Cufaro
- Analytical Biochemistry and Proteomics Laboratory, Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
- Department of Pharmacy, University ‘‘G. d’Annunzio’’ of Chieti-Pescara, 66100 Chieti, Italy
| | - Vanessa Doria
- Institute of Cardiology, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (S.D.P.)
| | - Piero Del Boccio
- Analytical Biochemistry and Proteomics Laboratory, Center for Advanced Studies and Technology (CAST), University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
- Department of Pharmacy, University ‘‘G. d’Annunzio’’ of Chieti-Pescara, 66100 Chieti, Italy
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (M.D.); (C.C.D.)
| | - Sante Donato Pierdomenico
- Institute of Cardiology, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (S.D.P.)
| | - Christian Cadeddu Dessalvi
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (M.D.); (C.C.D.)
| | - Raffaele De Caterina
- Institute of Cardiology, University of Pisa, 56124 Pisa, Italy;
- Correspondence: (R.D.C.); (G.M.)
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Cagliari, Italy; (M.D.); (C.C.D.)
- Correspondence: (R.D.C.); (G.M.)
| |
Collapse
|
17
|
Madonna R, Angelucci S, Di Giuseppe F, Doria V, Giricz Z, Görbe A, Ferdinandy P, De Caterina R. Proteomic analysis of the secretome of adipose tissue-derived murine mesenchymal cells overexpressing telomerase and myocardin. J Mol Cell Cardiol 2019; 131:171-186. [PMID: 31055035 DOI: 10.1016/j.yjmcc.2019.04.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/06/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022]
Abstract
RATIONALE Understanding mechanisms of the therapeutic effects of stem/progenitor cells, among which adipose tissue-derived mesenchymal stromal cells (AT-MSCs), has important implications for clinical use. Since the majority of such cells die within days or weeks after transplantation and do not persist in the transplanted organ or tissue, their effects appear to be largely mediated by paracrine signaling pathways, and are enhanced by overexpression of the antisenescent protein telomerase reverse transcriptase (TERT), and the anti-apoptotic transcription factor myocardin (MYOCD). AIM By a proteomic approach combining two-dimensional gel electrophoresis (2DE) with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF/TOF) mass spectrometry, we aimed at analyzing how soluble and vesicular secretomes of aged murine AT-MSCs and their angiogenic function are modulated by the overexpression of TERT and MYOCD. METHODS We cultured murine mock-transduced AT-MSCs and "rejuvenated" AT-MSCs overexpressing TERT and MYOCD (rTMAT-MSCs) harvested from 1-year-old male C57BL/6 mice. We established proteomes from 3 mock-transduced AT-MSCs and rTMAT-MSCs cultures in serum-free conditions, as well as their corresponding conditioned medium (CM) and exosome-enriched fractions (Exo+). RESULTS AND CONCLUSIONS Proteomic analysis revealed a 2-fold increase of matrix metalloproteinase-2 (MMP-2) and its inhibitor metalloproteinase inhibitor 2 (TIMP2) in the CM - but not in the Exo + - of rTMAT-MSCs as compared to mock-transduced AT-MSCs. At the functional level, rTMAT-MSCs-CM, and - to a lesser extent - its Exo + fraction, increased tube formation of human vein endothelial cells (HUVECs), which could be blocked by anti-MMP2 and enhanced by anti-TIMP2 antibodies, respectively. Altogether, our results identify MMP2 and its inhibitor TIMP2 as novel candidates by which rTMAT-MSCs can support angiogenesis. Our strategy also illustrates the usefulness of comparative targeted proteomic approach to decipher molecular pathways underlying rTMAT-MSCs properties.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy; Department of Internal Medicine, Cardiology, The University of Texas Health Science Center at Houston, Houston, Texas, United States; Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy.
| | - Stefania Angelucci
- Department of Medical, Oral & Biotechnological Sciences, Dentistry and Biotechnology, and Aging Research Center and Translational Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Fabrizio Di Giuseppe
- Department of Medical, Oral & Biotechnological Sciences, Dentistry and Biotechnology, and Aging Research Center and Translational Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Stem TeCh Group, Via L Polacchi 13, Chieti, Italy
| | - Vanessa Doria
- Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy; Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Raffaele De Caterina
- Center of Aging Sciences and Translational Medicine - CESI-Met and Institute of Cardiology, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy; Institute of Cardiology, University of Pisa, Pisa, Italy; Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
18
|
Shen C, Yang C, Xu S, Zhao H. Comparison of osteogenic differentiation capacity in mesenchymal stem cells derived from human amniotic membrane (AM), umbilical cord (UC), chorionic membrane (CM), and decidua (DC). Cell Biosci 2019; 9:17. [PMID: 30792848 PMCID: PMC6371545 DOI: 10.1186/s13578-019-0281-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/04/2019] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been extensively explored as a promising therapeutic agent in the field of bone tissue engineering due to their osteogenic differentiation ability. In this study, the osteogenic differential ability and the effect of fibronectin and laminin on the osteogenic differentiation in four types of MSCs derived from placental tissue are compared to determine the ideal source for bone reconstruction tissue engineering. RESULTS The present study examines the osteogenic differentiation levels of four types of MSCs using alizarin red staining and quantifies the calcium levels and alkaline phosphatase (ALP) activity. In addition, this study examines the osteoblast differentiation protein markers osterix, collagen I, osteopontin, and osteocalcin using a Western blot assay. qPCR and EdU labeling assays were employed to identify the kinetics of osteogenic differentiation. Calcium deposit levels, ALP activity, and osteopontin and osteocalcin concentrations were determined to confirm the role of Extracellular matrix (ECM) components role on the osteogenic differentiation of MSCs. The data demonstrated that MSCs isolated from different layers of placenta had different potentials to differentiate into osteogenic cells. Importantly, AM-MSCs and UC-MSCs differentiated into the osteoblast stage more efficiently and quickly than CM-MSCs and DC-MSCs, which was associated with a decrease in their proliferation ability. Among the different types of MSCs, AM-MSCs and UC-MSCs had a higher osteogenic differentiation potential induced by fibronectin due to enhanced phosphorylation during the Akt and ERK pathways. CONCLUSIONS Taken together, these results indicate that AM-MSCs and UC-MSCs possess a higher osteogenic potential, and fibronectin can robustly enhance the osteogenic potential of the Akt and ERK pathways.
Collapse
Affiliation(s)
- Chongyang Shen
- Basic Medicine School, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Chuan Yang
- Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Shijun Xu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Hai Zhao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
19
|
Fiorentino TV, Sesti F, Succurro E, Pedace E, Andreozzi F, Sciacqua A, Hribal ML, Perticone F, Sesti G. Higher serum levels of uric acid are associated with a reduced insulin clearance in non-diabetic individuals. Acta Diabetol 2018; 55:835-842. [PMID: 29774469 DOI: 10.1007/s00592-018-1153-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/01/2018] [Indexed: 11/25/2022]
Abstract
AIMS Decreased insulin clearance has been reported to be associated with insulin resistance-related disorders and incident type 2 diabetes. The aim of this study was to evaluate whether higher levels of uric acid (UA), a known risk factor of type 2 diabetes, are associated with a reduced insulin clearance. METHODS 440 non-diabetic individuals were stratified in tertiles according to serum UA levels. Insulin clearance and skeletal muscle insulin sensitivity were assessed by euglycemic hyperinsulinemic clamp. Hepatic insulin resistance was estimated by the liver IR index. RESULTS Subjects with higher levels of UA displayed an unfavorable metabolic phenotype with a worse lipid profile, increased levels of 2-h post-load glucose levels, fasting, and 2-h post-load insulin levels, hsCRP, liver IR index, and lower levels of eGFR and skeletal muscle insulin sensitivity, in comparison to individuals with lower UA levels. Moreover, subjects with higher UA concentrations exhibited decreased levels of insulin clearance even after adjustment for age, gender, BMI, eGFR, and skeletal muscle insulin sensitivity. In a multivariate regression analysis model including several confounding factors, UA concentration was an independent predictor of insulin clearance (β = - 0.145; P = 0.03). However, when liver IR index was included in the model, the independent association between UA levels and insulin clearance was not retained. Accordingly, in a mediation analysis, liver IR index was a mediator of the negative effects of UA levels on insulin clearance (t = - 2.55, P = 0.01). CONCLUSIONS Higher serum levels of UA may affect insulin clearance by impairing hepatic insulin sensitivity.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Elena Succurro
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Elisabetta Pedace
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| |
Collapse
|
20
|
Madonna R, Salerni S, Schiavone D, Glatz J, Geng YJ, Caterin R. Omega-3 fatty acids attenuate constitutive and insulin-induced CD36 expression through a suppression of PPARα/γ activity in microvascular endothelial cells. Thromb Haemost 2017; 106:500-10. [DOI: 10.1160/th10-09-0574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 06/02/2011] [Indexed: 12/31/2022]
Abstract
SummaryMicrovascular dysfunction occurs in insulin resistance and/or hyperinsulinaemia. Enhanced uptake of free fatty acids (FFA) and oxidised low-density lipoproteins (oxLDL) may lead to oxidative stress and microvascular dysfunction interacting with CD36, a PPARα/γ-regulated scavenger receptor and long-chain FFA transporter. We investigated CD36 expression and CD36-mediated oxLDL uptake before and after insulin treatment in human dermal microvascular endothelial cells (HMVECs), ± different types of fatty acids (FA), including palmitic, oleic, linoleic, arachidonic, eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids. Insulin (10−8 and 10−7 M) time-dependently increased DiI-oxLDL uptake and CD36 surface expression (by 30 ± 13%, p<0.05 vs. untreated control after 24 hours incubation), as assessed by ELISA and flow cytometry, an effect that was potentiated by the PI3-kinase inhibitor wortmannin and reverted by the ERK1/2 inhibitor PD98059 and the PPARα/γ antagonist GW9662. A ≥24 hour exposure to 50 μM DHA or EPA, but not other FA, blunted both the constitutive (by 23 ± 3% and 29 ± 2%, respectively, p<0.05 for both) and insulin-induced CD36 expressions (by 45 ± 27 % and 12 ± 3 %, respectively, p<0.05 for both), along with insulin-induced uptake of DiI-oxLDL and the downregulation of phosphorylated endothelial nitric oxide synthase (P-eNOS). At gel shift assays, DHA reverted insulin-induced basal and oxLDL-stimulated transactivation of PPRE and DNA binding of PPARα/γ and NF-κB. In conclusion, omega-3 fatty acids blunt the increased CD36 expression and activity promoted by high concentrations of insulin. Such mechanisms may be the basis for the use of omega-3 fatty acids in diabetic microvasculopathy.
Collapse
|
21
|
Silva L, Subiabre M, Araos J, Sáez T, Salsoso R, Pardo F, Leiva A, San Martín R, Toledo F, Sobrevia L. Insulin/adenosine axis linked signalling. Mol Aspects Med 2017; 55:45-61. [DOI: 10.1016/j.mam.2016.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022]
|
22
|
Erythrocyte Alterations and Increased Cardiovascular Risk in Chronic Renal Failure. Nephrourol Mon 2017. [DOI: 10.5812/numonthly.45866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Abstract
Chronic inflammatory state in obesity causes dysregulation of the endocrine and paracrine actions of adipocyte-derived factors, which disrupt vascular homeostasis and contribute to endothelial vasodilator dysfunction and subsequent hypertension. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Adipose tissue inflammation, nitric oxide (NO)-bioavailability, insulin resistance and oxidized low-density lipoprotein (oxLDL) are main participating factors in endothelial dysfunction of obesity. In this chapter, disruption of inter-endothelial junctions between endothelial cells, significant increase in the production of reactive oxygen species (ROS), inflammation mediators, which are originated from inflamed endothelial cells, the balance between NO synthesis and ROS , insulin signaling and NO production, and decrease in L-arginine/endogenous asymmetric dimethyl-L-arginine (ADMA) ratio are discussed in connection with endothelial dysfunction in obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
24
|
Gumuslu E, Cine N, Ertan Gökbayrak M, Mutlu O, Komsuoglu Celikyurt I, Ulak G. Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice. Med Sci Monit 2016; 22:2664-9. [PMID: 27465247 PMCID: PMC4975365 DOI: 10.12659/msm.897401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Glucagon-like peptide-1 (GLP-1), a potent and selective agonist for the GLP-1 receptor, ameliorates the symptoms of diabetes through stimulation of insulin secretion. Exenatide is a potent and selective agonist for the GLP-1 receptor. Cell adhesion molecules are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain. Material/Methods The present study demonstrated the effects of exenatide treatment (0.1 μg/kg, subcutaneously, twice daily for 2 weeks) on the gene expression levels of cell adhesion molecules, neural cell adhesion molecule (NCAM), intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) in the brain tissue of diabetic BALB/c male mice by real-time quantitative polymerase chain reaction (PCR). Diabetes was induced by streptozotocin/nicotinamide (STZ-NA) injection to male mice. Results The results of this study revealed that hippocampal gene expression of NCAM, ICAM, and VCAM were found to be up-regulated in STZ-NA-induced diabetic mice compared to those of controls. A significant decrease in the gene expression levels of NCAM, ICAM, and VCAM were determined after 2 weeks of exenatide administration. Conclusions Cell adhesion molecules may be involved in the molecular mechanism of diabetes. Exenatide has a strong beneficial action in managing diabetes induced by STZ/NA by altering gene expression of NCAM, ICAM, and VCAM.
Collapse
Affiliation(s)
- Esen Gumuslu
- Department of Genetics, Kocaeli University, Medical Faculty, Kocaeli, Turkey
| | - Naci Cine
- Department of Genetics, Kocaeli University, Medical Faculty, Kocaeli, Turkey
| | | | - Oguz Mutlu
- Department of Pharmacology, Kocaeli University, Medical Faculty, Kocaeli, Turkey
| | | | - Guner Ulak
- Department of Pharmacology, Kocaeli University, Medical Faculty, Kocaeli, Turkey
| |
Collapse
|
25
|
Evaluation of Serum Level of Interleukin-6 in Patients With Crimean-Congo Hemorrhagic Fever in Zahedan, Iran, From 2012 to 2015. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2016. [DOI: 10.5812/archcid.28029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Madonna R, Massaro M, Pandolfi A, Consoli A, De Caterina R. The Prominent Role of P38 Mitogen-Activated Protein Kinase in Insulin-Mediated Enhancement of VCAM-1 Expression in Endothelial Cells. Int J Immunopathol Pharmacol 2016; 20:539-55. [PMID: 17880767 DOI: 10.1177/039463200702000312] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Insulin levels are a marker for cardiovascular events, but the link between hyperinsulinemia and atherosclerosis is poorly understood. We previously showed that insulin increases monocyte-endothelial interactions and the endothelial expression of the pro-atherogenic vascular cell adhesion molecule-1 (VCAM-1). The aim of this study is to examine molecular mechanisms involved in the effect of insulin on VCAM-1 expression. Human umbilical vein endothelial cells (HUVEC) were incubated with insulin (0–24 h) ± inhibitors of signaling pathways potentially involved. At pathophysiological concentrations (10−9-10−7 M), insulin selectively induced VCAM-1 expression. The p38mitogen activated protein(MAP) kinase inhibitors SB203580 and SB202190, and partially the c-Jun NH2-terminal kinase (JNK) inhibitor SP600127, decreased insulin effect on VCAM-1. Gene silencing by small interfering RNA significantly reduced the expression of p38MAP kinase, and this was accompanied by suppression of insulin-stimulated VCAM-1 expression. Treatment with insulin also led to the activation of NF-κB and induction of IκB-α phosphorylation, thus accounting for NF-κB translocation into the nucleus. Co-treatment of HUVEC with insulin and SB202190 strongly reverted the stimulatory effect of insulin on NF-κB activation, thus establishing a link between NF-κB activation and p38MAPkinase-mediated induction of VCAM-1 by insulin. In conclusion, pathophysiological insulin concentrations increase VCAM-1 expression and activate NF-κB. This mostly occurs through stimulation of p38MAP kinase.
Collapse
Affiliation(s)
- R Madonna
- Center of Excellence on Aging, G.d'Annunzio University, Chieti, Italy
| | | | | | | | | |
Collapse
|
27
|
Pott GB, Tsurudome M, Bamfo N, Goalstone ML. ERK2 and Akt are negative regulators of insulin and Tumor Necrosis Factor-α stimulated VCAM-1 expression in rat aorta endothelial cells. JOURNAL OF INFLAMMATION-LONDON 2016; 13:6. [PMID: 26917991 PMCID: PMC4766666 DOI: 10.1186/s12950-016-0115-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/19/2016] [Indexed: 01/19/2023]
Abstract
Background Diabetes is quickly becoming the most widespread disorder in the Western world. Among the most prevalent effects of diabetes is atherosclerosis, which in turn is driven in part by inflammation. Both insulin and Tumor Necrosis Factor-alpha (TNFα) increase the presence of Vascular Cellular Adhesion Molecule-1 (VCAM-1) expression. The aim of this study is to determine the effects of downregulating Extracellular signal-Regulated Kinase-2 (ERK2) and Akt on insulin and TNFa-stimulated VCAM-1 expression. Methods Here we begin to define the relationships between ERK2 and Akt regulation of insulin and TNFα-stimulated VCAM-1 expression in Rat Arterial Endothelial Cells (RAEC) by transfecting RAEC with ERK2 and Akt RNA interference (RNAi) and then treating these cells with insulin (10 nM) or TNFα (10 ng/mL) alone or in combination. Results Western blot analyses, flow cytometry and confocal microscopy were used to determine changes in VCAM-1 expression within the above-stated parameters. Cells transfected with ERK2 or Akt RNAi plasmids increased insulin and TNFα-stimulated VCAM-1 total protein expression significantly (P < 0.05) greater than that seen in mock transfected cells and expressed cell surface VCAM-1 greater than that seen in mock transfected cells as indicated by flow cytometry and confocal microscopy. Nevertheless, the decrease of both kinases did not increase insulin or TNFα-stimulated VCAM-1 expression above that seen when one or the other RNAi was present. Conclusions Taken together, our results demonstrate that ERK2 and Akt may be negative regulators of insulin and TNF-α stimulated VCAM-1 and that their loss or down regulation might upregulate VCAM-1 expression and contribute to vascular disease.
Collapse
Affiliation(s)
- Gregory B Pott
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue. Mail Stop: 8106, Aurora, CO 80045 USA
| | - Mark Tsurudome
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue. Mail Stop: 8106, Aurora, CO 80045 USA
| | - Nadia Bamfo
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue. Mail Stop: 8106, Aurora, CO 80045 USA
| | - Marc L Goalstone
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue. Mail Stop: 8106, Aurora, CO 80045 USA ; Eastern Colorado Health Care System, (Denver VA Medical Center), 1055 Clermont Street. Mail Stop 151, Denver, CO 80220 USA
| |
Collapse
|
28
|
Chen C, Zhang Q, Liu S, Parajuli KR, Qu Y, Mei J, Chen Z, Zhang H, Khismatullin DB, You Z. IL-17 and insulin/IGF1 enhance adhesion of prostate cancer cells to vascular endothelial cells through CD44-VCAM-1 interaction. Prostate 2015; 75:883-95. [PMID: 25683512 PMCID: PMC4405436 DOI: 10.1002/pros.22971] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/06/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Extravasation is a critical step in cancer metastasis, in which adhesion of intravascular cancer cells to the vascular endothelial cells is controlled by cell surface adhesion molecules. The role of interleukin-17 (IL-17), insulin, and insulin-like growth factor 1 (IGF1) in adhesion of prostate cancer cells to the vascular endothelial cells is unknown, which is the subject of the present study. METHODS Human umbilical vein endothelial cells (HUVECs) and human prostate cancer cell lines (PC-3, DU-145, LNCaP, and C4-2B) were analyzed for expression of vascular cell adhesion molecule 1 (VCAM-1), integrins, and cluster of differentiation 44 (CD44) using flow cytometry and Western blot analysis. The effects of IL-17, insulin, and IGF1 on VCAM-1 expression and adhesion of prostate cancer cells to HUVECs were examined. The interaction of VCAM-1 and CD44 was assessed using immunoprecipitation assays. RESULTS Insulin and IGF1 acted with IL-17 to increase VCAM-1 expression in HUVECs. PC-3, DU-145, LNCaP, and C4-2B cells expressed β1 integrin but not α4 integrin. CD44 was expressed by PC-3 and DU-145 cells but not by LNCaP or C4-2B cells. When HUVECs were treated with IL-17, insulin or IGF1, particularly with a combination of IL-17 and insulin (or IGF1), adhesion of PC-3 and DU-145 cells to HUVECs was significantly increased. In contrast, adhesion of LNCaP and C4-2B cells to HUVECs was not affected by treatment of HUVECs with IL-17 and/or insulin/IGF1. CD44 expressed in PC-3 cells physically bound to VCAM-1 expressed in HUVECs. CONCLUSIONS CD44-VCAM-1 interaction mediates the adhesion between prostate cancer cells and HUVECs. IL-17 and insulin/IGF1 enhance adhesion of prostate cancer cells to vascular endothelial cells through increasing VCAM-1 expression in the vascular endothelial cells. These findings suggest that IL-17 may act with insulin/IGF1 to promote prostate cancer metastasis.
Collapse
Affiliation(s)
- Chong Chen
- Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana 70112
| | - Qiuyang Zhang
- Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana 70112
| | - Sen Liu
- Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana 70112
| | - Keshab R. Parajuli
- Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana 70112
| | - Yine Qu
- Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana 70112
- Department of Histology and Embryology, Hebei United University School of Basic Medicine, Tangshan, Hebei Province, China
| | - Jiandong Mei
- Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana 70112
- Department of Thoracic Surgery, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Zhiquan Chen
- Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana 70112
- Department of Cardiothoracic Surgery, the Affiliated Hospital of Hebei United University, Tangshan, Hebei Province, China
| | - Hui Zhang
- Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana 70112
- Department of Gynecology, the Affiliated Hospital of Taishan Medical College, Taian City, Shandong Province, China
| | - Damir B. Khismatullin
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University, New Orleans, Louisiana 70112
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70112
| | - Zongbing You
- Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana 70112
- Department of Orthopaedic Surgery, Tulane University, New Orleans, Louisiana 70112
- Tulane Cancer Center and Louisiana Cancer Research Consortium, Tulane University, New Orleans, Louisiana 70112
- Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, Louisiana 70112
- Tulane Center for Aging, Tulane University, New Orleans, Louisiana 70112
- Corresponding Author: Zongbing You, Department of Structural & Cellular Biology, Tulane University School of Medicine, 1430 Tulane Ave mailbox 8649, New Orleans, LA 70112; Phone: 504-988-0467; FAX: 504-988-1687;
| |
Collapse
|
29
|
Takahashi T, Harris RC. Role of endothelial nitric oxide synthase in diabetic nephropathy: lessons from diabetic eNOS knockout mice. J Diabetes Res 2014; 2014:590541. [PMID: 25371905 PMCID: PMC4211249 DOI: 10.1155/2014/590541] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/08/2014] [Indexed: 12/29/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in many countries. The animal models that recapitulate human DN undoubtedly facilitate our understanding of this disease and promote the development of new diagnostic markers and therapeutic interventions. Based on the clinical evidence showing the association of eNOS dysfunction with advanced DN, we and others have created diabetic mice that lack eNOS expression and shown that eNOS-deficient diabetic mice exhibit advanced nephropathic changes with distinct features of progressive DN, including pronounced albuminuria, nodular glomerulosclerosis, mesangiolysis, and arteriolar hyalinosis. These studies clearly defined a critical role of eNOS in DN and developed a robust animal model of this disease, which enables us to study the pathogenic mechanisms of progressive DN. Further, recent studies with this animal model have explored the novel mechanisms by which eNOS deficiency causes advanced DN and provided many new insights into the pathogenesis of DN. Therefore, here we summarize the findings obtained with this animal model and discuss the roles of eNOS in DN, unresolved issues, and future investigations of this animal model study.
Collapse
Affiliation(s)
- Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, S-3223, Medical Center North, Nashville, TN 37232, USA
| | - Raymond C. Harris
- Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, S-3223, Medical Center North, Nashville, TN 37232, USA
| |
Collapse
|
30
|
Sesti G, Andreozzi F, Fiorentino TV, Mannino GC, Sciacqua A, Marini MA, Perticone F. High circulating irisin levels are associated with insulin resistance and vascular atherosclerosis in a cohort of nondiabetic adult subjects. Acta Diabetol 2014; 51:705-13. [PMID: 24619655 DOI: 10.1007/s00592-014-0576-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/20/2014] [Indexed: 12/13/2022]
Abstract
Irisin, a novel myokine, was proposed to be able to regulate glucose homeostasis and obesity in mice. Whether irisin levels are associated with cardio-metabolic variables, insulin sensitivity, and vascular atherosclerosis in humans remain unsettled. To determine the associations between circulating irisin levels, cardio-metabolic variables, insulin sensitivity, and common carotid intima-media thickness (IMT), an indicator of vascular atherosclerosis, a cross-sectional evaluation of circulating irisin levels and cardio-metabolic variables in 192 White adults was conducted. Insulin sensitivity and insulin clearance were assessed by euglycemic-hyperinsulinemic clamp. Common carotid IMT was measured by ultrasound. After adjusting for age and gender, irisin levels were positively correlated with body fat mass (r = 0.12, P < 0.05), fasting (r = 0.17, P < 0.01), 2 h post-load insulin (r = 0.15, P < 0.02) levels, and IMT (r = 0.29, P < 0.0001) and were negatively correlated with insulin-stimulated glucose disposal (r = -0.18, P = 0.007), Matsuda index (r = -0.13, P < 0.04), disposition index (r = -0.278, P < 0.0001), and insulin clearance (r = -0.26, P < 0.0001). After adjusting for age, gender, and BMI, individuals in the highest tertile of irisin levels exhibited higher body fat mass (P < 0.01), fasting (P < 0.05), 2 h post-load (P < 0.01) insulin levels, carotid IMT (P < 0.001), lower insulin-stimulated glucose disposal (P < 0.001), Matsuda index (P < 0.01), disposition index (P < 0.01), and insulin clearance (P < 0.001) as compared with subjects in the lowest tertile of circulating irisin levels. Irisin is inversely associated with insulin sensitivity and positively associated with carotid IMT in humans, suggesting either increased release by adipose/muscle tissue in response to deterioration of insulin sensitivity or a compensatory increase in irisin to overcome an underlying irisin resistance.
Collapse
Affiliation(s)
- G Sesti
- Dipartimento Scienze Mediche e Chirurgiche, Università "Magna-Græcia" di Catanzaro, Viale Europa, 88100, Catanzaro, Italy,
| | | | | | | | | | | | | |
Collapse
|
31
|
Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A, Cañizo-Gómez FJD. Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength? World J Diabetes 2014; 5:444-470. [PMID: 25126392 PMCID: PMC4127581 DOI: 10.4239/wjd.v5.i4.444] [Citation(s) in RCA: 549] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/11/2014] [Accepted: 06/20/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus is a chronic condition that occurs when the body cannot produce enough or effectively use of insulin. Compared with individuals without diabetes, patients with type 2 diabetes mellitus have a considerably higher risk of cardiovascular morbidity and mortality, and are disproportionately affected by cardiovascular disease. Most of this excess risk is it associated with an augmented prevalence of well-known risk factors such as hypertension, dyslipidaemia and obesity in these patients. However the improved cardiovascular disease in type 2 diabetes mellitus patients can not be attributed solely to the higher prevalence of traditional risk factors. Therefore other non-traditional risk factors may be important in people with type 2 diabetes mellitus. Cardiovascular disease is increased in type 2 diabetes mellitus subjects due to a complex combination of various traditional and non-traditional risk factors that have an important role to play in the beginning and the evolution of atherosclerosis over its long natural history from endothelial function to clinical events. Many of these risk factors could be common history for both diabetes mellitus and cardiovascular disease, reinforcing the postulate that both disorders come independently from “common soil”. The objective of this review is to highlight the weight of traditional and non-traditional risk factors for cardiovascular disease in the setting of type 2 diabetes mellitus and discuss their position in the pathogenesis of the excess cardiovascular disease mortality and morbidity in these patients.
Collapse
|
32
|
Jin SY, Kim EK, Ha JM, Lee DH, Kim JS, Kim IY, Song SH, Shin HK, Kim CD, Bae SS. Insulin regulates monocyte trans-endothelial migration through surface expression of macrophage-1 antigen. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1539-48. [PMID: 24915517 DOI: 10.1016/j.bbadis.2014.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 11/16/2022]
Abstract
During the pathogenesis of atherosclerosis, adhesion of monocytes to vascular endothelium and subsequent migration across the endothelium has been recognized as a key process in the chronic inflammatory response in atherosclerosis. As type 2 diabetes is closely associated with the pathogenesis of atherosclerosis, we investigated whether monocyte adhesion and migration were affected by insulin. We found that insulin activated Akt and induced subsequent migration in THP-1. However, glucose and insulin-like growth factor-1, which is a growth factor that is structurally similar to insulin, were not effective. Insulin-dependent migration of THP-1 was blocked by inhibition of PI3K or Akt and by silencing of Akt1. Insulin-dependent migration of bone marrow-derived monocytic cells (BDMCs) was attenuated by inhibition of PI3K and Akt. In addition, BDMCs from Akt1(-/-) mice showed defects in insulin-dependent migration. Stimulation of THP-1 with insulin caused adhesion with human vein endothelial cells (HUVECs) that was blocked by silencing of Akt1. However, stimulation of HUVECs did not cause adhesion with THP-1. Moreover, BDMCs from Akt1(-/-) mice showed defects in insulin-dependent adhesion with HUVECs. Insulin induced surface expression of Mac-1, and neutralization of Mac-1 blocked insulin-induced adhesion of THP-1 as well as BDMCs. Surface expression of Mac-1 was blocked in THP-1 with silenced Akt1, and in BDMCs isolated from mice lacking Akt1. Finally, trans-endothelial migration of THP-1 and BDMCs was blocked by Mac-1-neutralizing antibody, in THP-1 with silenced Akt1 and in BDMCs from Akt1(-/-) mice. These results suggest that insulin stimulates monocyte trans-endothelial migration through Akt-dependent surface expression of Mac-1, which may be part of the atherogenesis in type 2 diabetes.
Collapse
Affiliation(s)
- Seo Yeon Jin
- MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Eun Kyoung Kim
- MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jung Min Ha
- MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Dong Hyung Lee
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jeong Su Kim
- Cardiovascular Disease Center, Pusan National University Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Il Young Kim
- Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Sang Heon Song
- Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hwa Kyoung Shin
- Department of Anatomy, Pusan National University School of Korean Medicine, Yangsan, Republic of Korea
| | - Chi Dae Kim
- MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Sun Sik Bae
- MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| |
Collapse
|
33
|
Xu R, Yang R, Hu H, Xi Q, Wan H, Wu Y. Diabetes alters the expression of partial vasoactivators in cerebral vascular disease susceptible regions of the diabetic rat. Diabetol Metab Syndr 2013; 5:63. [PMID: 24499567 PMCID: PMC3854485 DOI: 10.1186/1758-5996-5-63] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 10/17/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The pathogenesis between cerebral vascular disease (CVD) and the endothelial dysfunction (ETD) remains elusive in diabetes. Therefore, we investigated the expression of partial vasoactivators which be closely relative to ETD in CVD susceptible brain regions in the diabetic rat. The aim was to search some possible pathogenesis. METHODS Diabetes was induced by a single intraperitoneal injection of streptozotocin and a high lipid/sugar diet. The expression of vasoactivators ET-1, CGRP, VCAM-1, ICAM-1 and P-selectin were assessed by immunohistochemical staining and measurement of optic density of positive cells in the frontal and temporal lobe, basal ganglia and thalamus at 4 weeks after establishment of the diabetic model. RESULTS The expression of ET-1, VCAM-1, ICAM-1 and P-selectin significantly increased and CGRP significantly decreased in the diabetic group, and the expression of these vasoactivators was significantly different among the frontal, temporal lobe, basal ganglia and thalamus, and among the emotion, splanchno-motor and neuroendocrine center in the diabetic group. CONCLUSIONS Diabetes alters the expression of partial vasoactivators in cerebral vascular disease susceptible regions of the diabetic rat. Therefore, we suggested that CVD complications in diabetes are partly caused by ETD via an imbalance expression of endothelial vasoactivators, which might be associated with dysfunction of emotion, autonomic nerve and endocrine center. However, further studies are warranted.
Collapse
Affiliation(s)
- Renshi Xu
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Rongwei Yang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Huoyou Hu
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qiujiang Xi
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hui Wan
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yuchen Wu
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
34
|
Marini MA, Frontoni S, Succurro E, Arturi F, Fiorentino TV, Sciacqua A, Hribal ML, Perticone F, Sesti G. Insulin clearance is associated with carotid artery intima–media thickness. Atherosclerosis 2013; 229:453-8. [DOI: 10.1016/j.atherosclerosis.2013.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/13/2013] [Accepted: 06/13/2013] [Indexed: 11/16/2022]
|
35
|
Dandona P, Ghanim H, Green K, Sia CL, Abuaysheh S, Kuhadiya N, Batra M, Dhindsa S, Chaudhuri A. Insulin infusion suppresses while glucose infusion induces Toll-like receptors and high-mobility group-B1 protein expression in mononuclear cells of type 1 diabetes patients. Am J Physiol Endocrinol Metab 2013; 304:E810-8. [PMID: 23403945 DOI: 10.1152/ajpendo.00566.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The purpose of this study was to determine whether an insulin infusion exerts an anti-inflammatory effect and whether the infusion of small amounts of glucose results in oxidative and inflammatory stress in patients with type 1 diabetes. Ten patients with type 1 diabetes were infused with either 2 U/h of insulin with 100 ml 5% dextrose/h to or just dextrose (100 ml/h) or physiological saline (100 ml/h) for 4 h after an overnight fast on three separate days. Blood samples were collected at 0, 2, 4, and 6 h. Insulin with glucose infusion led to the maintenance of euglycemia and a significant suppression of reactive oxygen species (ROS) generation, p47(phox) expression, Toll-like receptor (TLR)-4, TLR-2, TLR-1, CD14, high-mobility group-B1 (HMGB1), p38 mitogen-activated protein (MAP) kinase, c-Jun NH2-terminal kinase (JNK)-1, and platelet/endothelial cell adhesion molecule expression and a fall in serum concentrations of C-reactive protein, HMGB1, and rapid upon activation T cell expressed and secreted. Glucose infusion led to an increase in plasma glucose concentration from 115 (fasting) to 215 (at 4 and 6 h) mg/dl and to an increase in ROS generation, the expression of TLR-4, TLR-2, TLR-1, HMGB1, p38 MAP kinase, and JNK-1, and plasma concentrations of HMGB1. While insulin reduces indexes of oxidative and inflammatory stress in patients with type 1 diabetes, even small amounts of glucose (20 g over 4 h) induce oxidative and inflammatory stress. These effects are reflected in TLR, p38 MAP kinase, and HMGB1 expression. The induction of significant oxidative and inflammatory stress by small amounts of glucose in patients with type 1 diabetes may have important pathophysiological and therapeutic implications.
Collapse
Affiliation(s)
- Paresh Dandona
- Division of Endocrinology, Diabetes, and Metabolism, State University of New York at Buffalo and Kaleida Health, Buffalo, NY 14209, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kaplan M, Aviram M, Hayek T. Oxidative stress and macrophage foam cell formation during diabetes mellitus‐induced atherogenesis: Role of insulin therapy. Pharmacol Ther 2012; 136:175-85. [DOI: 10.1016/j.pharmthera.2012.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 01/04/2023]
|
37
|
Bäck K, Islam R, Johansson GS, Chisalita SI, Arnqvist HJ. Insulin and IGF1 receptors in human cardiac microvascular endothelial cells: metabolic, mitogenic and anti-inflammatory effects. J Endocrinol 2012; 215:89-96. [PMID: 22825921 DOI: 10.1530/joe-12-0261] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diabetes is associated with microcirculatory dysfunction and heart failure and changes in insulin and IGF1 levels. Whether human cardiac microvascular endothelial cells (HMVEC-Cs) are sensitive to insulin and/or IGF1 is not known. We studied the role of insulin receptors (IRs) and IGF1 receptors (IGF1Rs) in metabolic, mitogenic and anti-inflammatory responses to insulin and IGF1 in HMVEC-Cs and human umbilical vein endothelial cells (HUVECs). IR and IGF1R gene expression was studied using real-time RT-PCR. Receptor protein expression and phosphorylation were determined by western blot and ELISA. Metabolic and mitogenic effects were measured as glucose accumulation and thymidine incorporation. An E-selectin ELISA was used to investigate inflammatory responses. According to gene expression and protein in HMVEC-Cs and HUVECs, IGF1R is more abundant than IR. Immunoprecipitation with anti-IGF1R antibody and immunoblotting with anti-IR antibody and vice versa, showed insulin/IGF1 hybrid receptors in HMVEC-Cs. IGF1 at a concentration of 10(-8) mol/l significantly stimulated phosphorylation of both IGF1R and IR in HMVEC-Cs. In HUVECs IGF1 10(-8) mol/l phosphorylated IGF1R. IGF1 stimulated DNA synthesis at 10(-8) mol/l and glucose accumulation at 10(-7) mol/l in HMVEC-Cs. TNF-α dramatically increased E-selectin expression, but no inflammatory or anti-inflammatory effects of insulin, IGF1 or high glucose were seen. We conclude that HMVEC-Cs express more IGF1Rs than IRs, and mainly react to IGF1 due to the predominance of IGF1Rs and insulin/IGF1 hybrid receptors. TNF-α has a pronounced pro-inflammatory effect in HMVEC-Cs, which is not counteracted by insulin or IGF1.
Collapse
Affiliation(s)
- Karolina Bäck
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, S-581 85 Linköping, Sweden
| | | | | | | | | |
Collapse
|
38
|
Giri H, Muthuramu I, Dhar M, Rathnakumar K, Ram U, Dixit M. Protein tyrosine phosphatase SHP2 mediates chronic insulin-induced endothelial inflammation. Arterioscler Thromb Vasc Biol 2012; 32:1943-50. [PMID: 22628433 DOI: 10.1161/atvbaha.111.239251] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Insulin promotes adhesion of leukocytes to the endothelium through increased expression of surface adhesion molecules. We determined whether src-homology domain-2-containing protein tyrosine phosphatase 2 (SHP2), a downstream effecter of insulin signaling, is involved in insulin-induced endothelial inflammation. METHODS AND RESULTS In human umbilical vein-derived endothelial cells, treatment with insulin (100 nmol/L) increased Tyr(542) phosphorylation, activity, and subsequently expression of SHP2. Increase in SHP2 accompanied a parallel decrease in the availability of the anti-inflammatory molecule, NO. This consequently enhanced the expression of cell adhesion molecules. Decrease in NO index was caused by endothelial NO synthase (eNOS) uncoupling and increased arginase activity. Among the 2 isoforms, insulin treatment induced the expression of arginase II. Inactivation of endogenous SHP2 via NSC87877 [8-hydroxy-7-(6-sulfonapthalen-2-yl)-diazenyl-quinoline-5-sulfonic acid] and its knockdown by small interfering RNA decreased arginase activity by blocking arginase II expression; however, it failed to restore eNOS coupling. Inactivation of SHP2 also abrogated insulin-mediated leukocyte adhesion by blocking the expression of adhesion molecules. Finally, downregulation of endogenous arginase II blocked insulin-mediated endothelial inflammation. CONCLUSIONS SHP2 mediates chronic insulin-induced endothelial inflammation by limiting the production of NO in an eNOS-independent and arginase-II-dependent manner.
Collapse
Affiliation(s)
- Hemant Giri
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai-600 036, India
| | | | | | | | | | | |
Collapse
|
39
|
Capurso C, Capurso A. From excess adiposity to insulin resistance: the role of free fatty acids. Vascul Pharmacol 2012; 57:91-7. [PMID: 22609131 DOI: 10.1016/j.vph.2012.05.003] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/01/2012] [Accepted: 05/08/2012] [Indexed: 12/13/2022]
Abstract
With a positive caloric balance, adipocytes undergo excessive hypertrophy, which causes adipocyte dysfunction, as well as adipose tissue endocrine and immune responses. A preferential site of fat accumulation is the abdominal-perivisceral region, due to peculiar factors of the adipose tissue in such sites, namely an excess of glucocorticoid activity, which promotes the accumulation of fat; and the greater metabolic activity and sensitivity to lipolysis, due to increased number and activity of β3-adrenoceptors and, partly, to reduced activity of α2-adrenoceptors. As a consequence, more free fatty acids (FFA) are released into the portal system. Hypertrophic adipocytes begin to secrete low levels of TNF-α, which stimulate preadipocytes and endothelial cells to produce MCP-1, in turn responsible for attracting macrophages to the adipose tissue, thus developing a state of chronic low-grade inflammation which is causally linked to insulin resistance. Excess of circulating FFA, TNF-α and other factors induces insulin resistance. FFA cause insulin resistance by inhibiting insulin signaling through the activation of serin-kinases, i.e. protein kinase C-Θ, and the kinases JNK and IKK, which promote a mechanism of serine phosphorylation of Insulin Receptor Substrates (IRS), leading to interruption of the downstream insulin receptor (IR) signaling. TNF-α, secreted by hypertrophic adipocytes and adipose tissue macrophages, also inhibits IR signaling by a double mechanism of serine-phosphorylation and tyrosine-dephosphorylation of IRS-1, causing inactivation and degradation of IRS-1 and a consequent stop of IR signaling. Such mechanisms explain the transition from excess adiposity to insulin resistance, key to the further development of type 2 diabetes.
Collapse
Affiliation(s)
- Cristiano Capurso
- University of Foggia, Department of Internal Medicine and Geriatrics, Foggia, Italy.
| | | |
Collapse
|
40
|
Madonna R, De Caterina R. Aterogénesis y diabetes: resistencia a la insulina e hiperinsulinemia. Rev Esp Cardiol 2012; 65:309-13. [DOI: 10.1016/j.recesp.2011.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 11/11/2011] [Indexed: 01/04/2023]
|
41
|
Hooper L, Kay C, Abdelhamid A, Kroon PA, Cohn JS, Rimm EB, Cassidy A. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr 2012; 95:740-51. [PMID: 22301923 DOI: 10.3945/ajcn.111.023457] [Citation(s) in RCA: 443] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There is substantial interest in chocolate and flavan-3-ols for the prevention of cardiovascular disease (CVD). OBJECTIVE The objective was to systematically review the effects of chocolate, cocoa, and flavan-3-ols on major CVD risk factors. DESIGN We searched Medline, EMBASE, and Cochrane databases for randomized controlled trials (RCTs) of chocolate, cocoa, or flavan-3-ols. We contacted authors for additional data and conducted duplicate assessment of study inclusion, data extraction, validity, and random-effects meta-analyses. RESULTS We included 42 acute or short-term chronic (≤18 wk) RCTs that comprised 1297 participants. Insulin resistance (HOMA-IR: -0.67; 95% CI: -0.98, -0.36) was improved by chocolate or cocoa due to significant reductions in serum insulin. Flow-mediated dilatation (FMD) improved after chronic (1.34%; 95% CI: 1.00%, 1.68%) and acute (3.19%; 95% CI: 2.04%, 4.33%) intakes. Effects on HOMA-IR and FMD remained stable to sensitivity analyses. We observed reductions in diastolic blood pressure (BP; -1.60 mm Hg; 95% CI: -2.77, -0.43 mm Hg) and mean arterial pressure (-1.64 mm Hg; 95% CI: -3.27, -0.01 mm Hg) and marginally significant effects on LDL (-0.07 mmol/L; 95% CI: -0.13, 0.00 mmol/L) and HDL (0.03 mmol/L; 95% CI: 0.00, 0.06 mmol/L) cholesterol. Chocolate or cocoa improved FMD regardless of the dose consumed, whereas doses >50 mg epicatechin/d resulted in greater effects on systolic and diastolic BP. GRADE (Grading of Recommendations, Assessment, Development and Evaluation, a tool to assess quality of evidence and strength of recommendations) suggested low- to moderate-quality evidence of beneficial effects, with no suggestion of negative effects. The strength of evidence was lowered due to unclear reporting for allocation concealment, dropouts, missing data on outcomes, and heterogeneity in biomarker results in some studies. CONCLUSIONS We found consistent acute and chronic benefits of chocolate or cocoa on FMD and previously unreported promising effects on insulin and HOMA-IR. Larger, longer-duration, and independently funded trials are required to confirm the potential cardiovascular benefits of cocoa flavan-3-ols.
Collapse
Affiliation(s)
- Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
42
|
Relevance of new drug discovery to reduce NF-κB activation in cardiovascular disease. Vascul Pharmacol 2012; 57:41-7. [PMID: 22366375 DOI: 10.1016/j.vph.2012.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 01/04/2023]
Abstract
The transcription factor nuclear factor-κB (NF-κB) is a main regulator of the expression of several genes involved in the activation of inflammation, cell proliferation, cell immunity and apoptosis. Excess or inappropriate activation of NF-κB has been observed in human inflammatory diseases, including atherosclerosis. Because of the extensive involvement of NF-κB signaling in human diseases, efforts have been made in developing inhibitors of this pathway. Here we will provide an overview of the biology of NF-κB activation pathways. We will here especially focus on current knowledge of the role of the classical ("canonical") NF-κB activation pathway as a potential therapeutic target for anti-atherosclerotic therapies in clinical applications, and discuss classical and novel therapeutic strategies to reduce its prolonged activation.
Collapse
|
43
|
Mackesy DZ, Goalstone ML. Insulin augments tumor necrosis factor-alpha stimulated expression of vascular cell adhesion molecule-1 in vascular endothelial cells. JOURNAL OF INFLAMMATION-LONDON 2011; 8:34. [PMID: 22093181 PMCID: PMC3248376 DOI: 10.1186/1476-9255-8-34] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/17/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Atherosclerosis is an inflammatory disease that is marked by increased presence of Tumor Necrosis Factor-alpha (TNFα), increased expression of Vascular Cell Adhesion Molecule-1 (VCAM-1), increased presence of serum monocytes and activation of the canonical inflammatory molecule, Nuclear Factor Kappa-B (NFκB). Hyperinsulinemia is a hallmark of insulin resistance and may play a key role in this inflammatory process. METHODS Using Western blot analysis, immunocytochemistry, flow cytometry and biochemical inhibitors, we measured changes in VCAM-1 protein expression and NFκB translocation in vascular endothelial cells in the presence of TNFα and/or hyperinsulinemia and in the absence or presence of kinase pathway inhibitors. RESULTS We report that hyperinsulinemia augmented TNFα stimulated increases in VCAM-1 protein greater than seen with TNFα alone and decreased the time in which VCAM-1 translocated to the cell surface. We also observed that in the presence of Wortmannin, a biochemical inhibitor of phosphatidylinositol 3-kinase (a hallmark of insulin resistance), VCAM-1 expression was greater in the presence of TNFα plus insulin as compared to that seen with insulin or TNFα alone. Additionally, nuclear import of NFκB occurred sooner in the presence of insulin and TNFα together as compared to each alone, and in the presence of Wortmannin, nuclear import of NFκB was greater than that seen with insulin and TNFα alone. CONCLUSIONS hyperinsulinemia and insulin resistance appear to augment the inflammatory effects of TNFα on VCAM-1 expression and NFκB translocation, both of which are markers of inflammation in the vasculature.
Collapse
Affiliation(s)
- Daniel Z Mackesy
- Department of Research Service, Eastern Colorado Health Care System, 1055 Clermont Street, Denver, 80220, USA.
| | | |
Collapse
|
44
|
Indulekha K, Surendar J, Mohan V. High sensitivity C-reactive protein, tumor necrosis factor-α, interleukin-6, and vascular cell adhesion molecule-1 levels in Asian Indians with metabolic syndrome and insulin resistance (CURES-105). J Diabetes Sci Technol 2011; 5:982-8. [PMID: 21880241 PMCID: PMC3192605 DOI: 10.1177/193229681100500421] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIM The aim of this study was to assess levels of high-sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and vascular cell adhesion molecule-1 (VCAM-1) in South Indian subjects with and without MS and among MS subjects with and without insulin resistance (IR). METHODOLOGY From the population-based Chennai Urban Rural Epidemiology Study, 334 subjects with MS and 342 subjects without MS were selected. Metabolic syndrome was diagnosed based on modified National Cholesterol Education Program criteria. High-sensitivity C-reactive protein, TNF-α, IL-6, and VCAM-1 were measured by enzyme-linked immunosorbent assay. Insulin resistance was calculated using the homeostasis model assessment (HOMA-IR) using the following formula: fasting insulin (µIU/ml) × fasting glucose (mmol/liter)/22.5. RESULTS Subjects with MS had significantly higher levels of all four inflammatory markers compared to those without MS: hs-CRP (2.57 vs 2.19 mg/liter) (p < .05), TNF-α (4.47 vs 3.89 pg/ml) (p < .05), IL-6 (16.22 vs 10.96 pg/ml) (p < .05), and VCAM-1 (13.8 vs 7.94 pg/ml) (p < .05). In the total study subjects, hs-CRP (r = 0.089, p = .047), TNF-α (r = 0.113, p = .040), IL-6 (r = 0.176, p = .042), and VCAM-1 (r = 0.230, p = .06) were significantly correlated with MS. With increasing quartiles of IR, mean levels of hs-CRP (p for trend <.001) and TNF-α (p for trend <.05) increased linearly. MS subjects with IR had higher levels of hs-CRP (p < .001) and TNF-α (p < .05) compared to MS subjects without IR. CONCLUSION In Asian Indians, inflammatory cytokines hs-CRP, TNF-α, IL-6, and VCAM-1 are elevated in subjects with MS while hs-CRP and TNF-α are further elevated in those with MS and IR.
Collapse
Affiliation(s)
- Karunakaran Indulekha
- Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities CentreChennai, India
| | - Jayagopi Surendar
- World Health Organization Collaborating Centre for Non-communicable Diseases Prevention and ControlChennai, India
| | - Viswanathan Mohan
- International Diabetes Federation Centre for EducationChennai, India
| |
Collapse
|
45
|
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) causes viral hemorrhagic fever with high case-fatality rates and is geographically widely distributed. Due to the requirement for a biosafety level 4 (BSL-4) laboratory and the lack of an animal model, knowledge of the viral pathogenesis is limited. Crimean-Congo hemorrhagic fever (CCHF) is characterized by hemorrhage and vascular permeability, indicating the involvement of endothelial cells (ECs). The interplay between ECs and CCHFV is therefore important for understanding the pathogenesis of CCHF. In a previous study, we found that CCHFV-infected monocyte-derived dendritic cells (moDCs) activated ECs; however, the direct effect of CCHFV on ECs was not investigated. Here, we report that ECs are activated upon infection, as demonstrated by upregulation of mRNA levels for E-selectin, vascular cell adhesion molecule 1 (VCAM1), and intercellular adhesion molecule 1 (ICAM1). Protein levels and cell surface expression of ICAM1 responded in a dose-dependent manner to increasing CCHFV titers with concomitant increase in leukocyte adhesion. Furthermore, we examined vascular endothelial (VE) cadherin in CCHFV-infected ECs by different approaches. Infected ECs released higher levels of interleukin 6 (IL-6) and IL-8; however, stimulation of resting ECs with supernatants derived from infected ECs did not result in increased ICAM1 expression. Interestingly, the moDC-mediated activation of ECs was abrogated by addition of neutralizing tumor necrosis factor alpha (TNF-α) antibody to moDC supernatants, thereby identifying this soluble mediator as the key cytokine causing EC activation. We conclude that CCHFV can exert both direct and indirect effects on ECs.
Collapse
|
46
|
Zerr M, Hechler B, Freund M, Magnenat S, Lanois I, Cazenave JP, Léon C, Gachet C. Major contribution of the P2Y₁receptor in purinergic regulation of TNFα-induced vascular inflammation. Circulation 2011; 123:2404-13. [PMID: 21576651 DOI: 10.1161/circulationaha.110.002139] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Atherosclerosis is an inflammatory disease, and extracellular nucleotides are one of the factors possibly involved in vascular inflammation. The P2Y(1) receptor for adenosine 5'-diphosphate has been shown to be involved in the development of atherosclerosis in apolipoprotein E--deficient mice. Our aim is to determine whether the endothelial P2Y(1) receptor plays a role in leukocyte recruitment during vascular inflammation and characterize underlying mechanisms. METHODS AND RESULTS We show here that the P2Y(1) receptor plays a role in leukocyte recruitment in inflamed mouse femoral arteries. Moreover, in wild-type bone marrow--transplanted chimeric P2Y(1)-deficient mice with an apolipoprotein E--deficient background, a strong reduction of adhesion molecule--dependent leukocyte recruitment was observed after local injection of tumor necrosis factor and interleukin 1β, excluding a role for the platelet or other hematopoietic cell type P2Y(1) in these events. Similarly, the in vitro adhesion of isolated mouse monocytes to tumor necrosis factor α--stimulated murine endothelial cell monolayers and their migration across the cell layers were strongly reduced in P2Y(1)-deficient compared with wild-type endothelial cells, as was the expression of the adhesion molecules P-selectin, Vascular cell adhesion molecule 1, and intercellular adhesion molecule 1. Pharmacological inhibition using the selective antagonist MRS2500 also resulted in decreased expression of adhesion molecules. These events are related to the p38 mitogen-activated protein kinase and activating transcription factor 2 pathway. Finally, in vivo administration of MRS2500 resulted in strong reduction of leukocyte recruitment in inflamed femoral arteries of apolipoprotein E--deficient mice. CONCLUSIONS The data highlight a key role of the endothelial P2Y(1) receptor in acute vascular inflammation. Pharmacological targeting the P2Y(1) receptor could represent a promising approach for the treatment of vascular inflammation.
Collapse
Affiliation(s)
- Murielle Zerr
- UMR_S949 INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zolota Z, Koliakos G, Paletas K, Kaloyianni M. NHE-1 and β1 integrin dependent monocyte adhesion and migration after glucose, insulin or PPARγ stimulation. Cell Adh Migr 2011; 5:258-65. [PMID: 21339703 DOI: 10.4161/cam.5.3.14534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In the present study the effect of high glucose concentrations, insulin, PPARγ activators (rosiglitazone) and NHE-1 inhibitors (cariporide) in atherosclerosis-related functions of human monocytes was investigated. Monocyte adhesion to laminin-1, collagen type IV and endothelial cells, as well as monocyte migration through the same substrates were studied. Incubation of the monocyte suspension with high glucose concentrations, insulin and rosiglitazone induced all the studied atherosclerosis-related functions of the monocytes. In all these functions the addition of cariporide counteracted the activity of glucose, insulin and rosiglitazone. The use of antigen for β1 integrin also counteracted the activity of the above in monocyte adhesion in all three substrates. The data of the present study suggests that PPARγ activation in monocytes induces atherosclerosis, and that NHE-1 and β1 integrin play an important role in the beginning of atherosclerosis.
Collapse
Affiliation(s)
- Zacharoula Zolota
- Laboratory of Animal Physiology, School of Biology, Aristotle University, Thessaloniki, Greece
| | | | | | | |
Collapse
|
48
|
Madonna R, De Caterina R. Cellular and molecular mechanisms of vascular injury in diabetes--part I: pathways of vascular disease in diabetes. Vascul Pharmacol 2011; 54:68-74. [PMID: 21453786 DOI: 10.1016/j.vph.2011.03.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 03/19/2011] [Indexed: 02/08/2023]
Abstract
Diabetes-induced micro- and macrovascular complications are the major causes of morbidity and mortality in diabetic patients. While hyperglycemia is a key factor for the pathogenesis of diabetic microvascular complications, it is only one of the multiple factors capable of increasing the risk of macrovascular complications. Hyperglycemia induces vascular damage probably through a single common pathway - increased intracellular oxidative stress - linking four major mechanisms, namely the polyol pathway, advanced glycation end-products (AGEs) formation, the protein kinase C (PKC)-diacylglycerol (DAG) and the hexosamine pathways. In addition, in conditions of insulin resistance, i.e., preceding the onset of type 2 diabetes, the phosphatidylinositol (PI) 3-kinase (PI3K)/Akt pathway is selectively inhibited, while the mitogen activated protein (MAP)-kinase pathway remains largely unaffected, thus allowing compensatory hyperinsulinemia to elicit pro-atherogenic events in vascular smooth muscle and endothelial cells, including increased cell proliferation, and the expression of plasminogen activator inhibitor-1, as well as of proinflammatory cytokines and endothelial adhesion molecules.
Collapse
|
49
|
Madonna R, De Caterina R. Cellular and molecular mechanisms of vascular injury in diabetes--part II: cellular mechanisms and therapeutic targets. Vascul Pharmacol 2011; 54:75-9. [PMID: 21453785 DOI: 10.1016/j.vph.2011.03.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 03/19/2011] [Indexed: 11/29/2022]
Abstract
Although the mechanisms by which insulin-resistance and hyperglycemia lead to cardiovascular disease are still incompletely understood, all mechanisms apparently converge on the vessel wall and the endothelium as a common disease target. Endothelial cells play a crucial role in vascular homeostasis, providing a functional barrier and modulating several signals involved in vasomotion, as well as antiplatelet, anti-inflammatory, anti-proliferative, and anti-oxidant properties of the vessel wall. Endothelial cell dysfunction occurs early in diabetes and insulin resistance states. Since atherosclerosis may result from an imbalance between the magnitude of vascular injury and the capacity of repair, a role has been recently postulated for a defective mobilization of vascular progenitors, including endothelial progenitor cells, in the pathogenesis of vascular disease. Here we summarize the evidence for such an occurrence. We also here highlight how new insights into pathways of vascular damage in diabetes may indicate new targets for preventive and treatment strategies.
Collapse
|
50
|
Muntoni S, Muntoni S. Insulin resistance: pathophysiology and rationale for treatment. ANNALS OF NUTRITION AND METABOLISM 2011; 58:25-36. [PMID: 21304221 DOI: 10.1159/000323395] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 12/06/2010] [Indexed: 12/29/2022]
Abstract
After binding to its receptor and activating the β-subunit, insulin is faced with two divergent pathways: one is phosphatidylinositol 3-kinase (PI 3-K) dependent, while another is dependent upon activation of mitogen-activated protein kinase (MAP-K). The former is absolutely necessary for mediating most metabolic and antiapoptotic effects; the latter is linked to nonmetabolic, proliferative and mitogenic effects. In obese patients, especially with type 2 diabetes mellitus (DM2), only the PI 3-K, but not the MAP-K, is resistant to insulin stimulation: hence insulin resistance is better defined as metabolic insulin resistance. The resulting 'compensatory hyperinsulinemia' is an unsuccessful attempt to overcome the inhibition of the metabolic pathway at the price of unopposed stimulation of the MAP-K pathway, and the administration of exogenous insulin might worsen the metabolic dysfunction. As the preferential activation of the MAP-K pathway in insulin-resistant patients has atherogenic and mitogenic properties, this leads to atherosclerosis and cancer. Metformin may carry out direct protective action on human β cells, inasmuch as it improves both primary and secondary endpoints through selective inhibition of fatty acyl oxidation.
Collapse
Affiliation(s)
- Sergio Muntoni
- Centre for Metabolic Diseases and Atherosclerosis, The ME.DI.CO. Association, Unit of Oncology and Molecular Pathology, University Medical School, Cagliari, Italy.
| | | |
Collapse
|