1
|
Zou L, Yao N, Qiu S, Jiang Y, Xing Y, Zhou W, Huang Q, Chen W. From plasticizers to pollutants: The ecological consequences of PAEs in agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126198. [PMID: 40185181 DOI: 10.1016/j.envpol.2025.126198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Phthalate esters (PAEs), commonly employed as plasticizers, have emerged as widespread contaminants in agricultural soils. This study involved the collection of 52 representative agricultural soil samples from 13 counties and municipalities within the middle reaches of the Yangtze River to examine the distribution and ecological impacts of six priority PAEs in the agricultural soils of central China. The findings indicated that the detection rates for dimethyl phthalate (DMP), di(2-ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), and di-n-octyl phthalate (DNOP) in the soil samples were 88.46 %, 88.46 %, 82.69 %, 71.15 %, 67.31 %, and 59.62 %, respectively. DEHP exhibited the highest concentration levels, ranging from 2.99 to 991.26 mg/kg. To elucidate the ecological mechanisms underlying PAEs contamination, further investigations focused on soil properties, enzyme activities, and bacterial community characteristics. Elevated PAEs concentrations resulted in significant increases in soil total carbon (TC), organic matter (OM), and total nitrogen (TN). These concentrations stimulated enzyme activities related to carbon and nitrogen cycles while inhibiting those associated with the phosphorus cycle, thereby disrupting soil biochemical processes. Additionally, microbial diversity and abundance diminished with increasing PAEs concentrations, significantly altering the soil microbial community structure. PAEs were determined to be the primary agents influencing these changes, promoting the proliferation of PAE-tolerant taxa, including Verrucomicrobia and Clostridiaceae, while diminishing the presence of sensitive taxa. This study underscores the significant impact of PAEs contamination on the ecological dynamics of agricultural soils, manifesting in the disruption of nutrient cycling, suppression of enzyme activity, and alteration of bacterial communities. These findings emphasize the critical need for future research to concentrate on devising bioremediation strategies that utilize microbiota to degrade PAEs and restore the ecological functions of soils.
Collapse
Affiliation(s)
- Lei Zou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Nihong Yao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Simang Qiu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yi Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yonghui Xing
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wenli Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
2
|
Huang Z, Chen Y, Zou J, Zhou P, Huang X, Zhuang R, Wang X, Liu L. Plant endophytic bacteria reduce phthalates accumulation in soil-crop-body system: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2025:reveh-2024-0040. [PMID: 39899388 DOI: 10.1515/reveh-2024-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025]
Abstract
Phthalate esters (PAEs) represent a class of widely utilized plasticizers, resulting in their pervasive presence in soil and agricultural crops, which poses significant risks to human health. This review examines the current state of PAE pollution, the microbial resources available for PAE degradation, and the associated degradation pathways. It highlights the advantages of endophytic bacteria over environmental microorganisms, including the prolonged survival of inoculated strains, in vivo biodegradation of PAEs, and multifunctional capabilities. Furthermore, the mechanisms by which endophytic bacteria mitigate PAE accumulation across the three defense lines (soil, crops, and the human body) are elucidated. The integrated approach of employing both plants and microbial agents for the remediation of PAEs demonstrates considerable potential for ensuring the safety of agricultural products and safeguarding human health. This work offers new insights into addressing the challenges posed by organic pollutant contamination and reducing PAE accumulation in the human body.
Collapse
Affiliation(s)
- Ziyi Huang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Yanli Chen
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Jieying Zou
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Peng Zhou
- Center for New Drug Research and Development, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Xingyu Huang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Ruihao Zhuang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Xinyu Wang
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| | - Lihui Liu
- School of Life Sciences and Biopharmaceutics, 71237 Guangdong Pharmaceutical University , Guangzhou, China
| |
Collapse
|
3
|
Chen X, Yu N, Yang N, Zhang J, Chen J. Simultaneous determination of sixteen phthalic acid esters (PAEs) in soil and evaluation of matrix effect using a QuEChERS/GC/MS-internal standard method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51253-51266. [PMID: 39106010 DOI: 10.1007/s11356-024-34600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Phthalic acid esters (PAEs) are emerging pollutants that need to be analyzed precisely. Chromatography-based determination of PAE content in soils are frequently affected by matrix effect, which may limit the quantification of different kinds of PAEs from different types of soil. Here we optimized a QuEChERS protocol combined with gas chromatography-mass spectrometry (GC-MS) for simultaneous determination of 16 PAEs in different soils. PAEs in different type of soils (fluvo-aquic soil, red soil, and black soil) were extracted with acetonitrile followed by GC-MS detection based on quantitative ion internal standard method. All 16 PAEs showed excellent linear relationships with mass peak areas (R2 > 0.99). The limits of detection (LOD) and limits of quantitation (LOQ) of all the samples were in the range of 0.91-66.97 µg/kg and 2.7-200.9 µg/kg, respectively. The accurate test at 0.5, 0.1, and 1.0 mg/kg spiking level recorded recovery rate between 80.11% and 100.99% with relative standard deviations (RSDs) ranging from 0.37 to 8.50% in tested matrices. No significant matrix effect was observed for most tested PAEs. This is a simple method with high sensitivity and strong stability, which is suitable and reproducible for quantifying large number of PAEs in different types of soil.
Collapse
Affiliation(s)
- Xiaolong Chen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Ningwei Yu
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Nan Yang
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Jiahui Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, 210014, China
| | - Jian Chen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, 210014, China.
| |
Collapse
|
4
|
Yamahara S, Viyakarn V, Chavanich S, Bureekul S, Isobe A, Nakata H. Open dumping site as a point source of microplastics and plastic additives: A case study in Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174827. [PMID: 39047819 DOI: 10.1016/j.scitotenv.2024.174827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPs) and plastic additive chemicals are emerging pollutants of great concerns around the world. Open dumping sites can be important sources of those pollutants in emerging countries, but little is known about their occurrence, distribution, transport pathway, and remediation approach. This study aimed to obtain the comprehensive dataset on plastic pollution in an open dumping site in Thailand, including (1) the polymer types and organic/inorganic plastic additives in plastic garbage, (2) horizontal distribution of MPs and plastic additives in the surface soil, (3) the effects of soil-capping treatment, and (4) the vertical transport. First, thirty-two plastic garbage collected from the dumping site were analyzed, and a total of 40 organic chemicals (mean: 1400,000 ng/g dw) and 7 heavy metals (mean: 2,030,000 ng/g dw) were identified. The burdens stored in the dumping site were estimated to reach to 3.3-18 tons for organic additives and 4.9-26 tons for heavy metals. In the surface soil analysis, 13 types of polymers in MPs, 20 elements, and 37 organic plastic additives were detected. The pollution levels were significantly higher near the dumping site than at control sites, indicating that the open dumping site is a point source of MPs and plastic additives. Interestingly, a significantly positive correlation was found between the concentrations of MPs and organic additives in soil. This suggests that MPs act as carriers of plastic-derived chemicals. Soil-capping treatment (including removal of some trash) drastically mitigated the contaminant levels in the surface soil, indicating this treatment is one of the effective approaches to control the horizontal distribution of MPs and plastic additives. However, soil core analyzes implied that the vertical transport is still continued even after soil-capping treatment. Our findings provided the comprehensive dataset to support for understanding plastic pollution in the open dumping site.
Collapse
Affiliation(s)
- Shinnosuke Yamahara
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Voranop Viyakarn
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Aquatic Resources Research Institute, Chulalongkorn University, 254, Institute Building No. 3, 9th floor, Wang Mai Sub District Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Suchana Chavanich
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Aquatic Resources Research Institute, Chulalongkorn University, 254, Institute Building No. 3, 9th floor, Wang Mai Sub District Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Sujaree Bureekul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Atsuhiko Isobe
- Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580, Japan; Center for Ocean Plastic Studies, Kyushu University, CU Research Building, Bangkok 10330, Thailand
| | - Haruhiko Nakata
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
5
|
Zhuang H, Li Z, Wang M, Liu B, Chu Y, Lin Z. Effects of microplastics and combined pollution of polystyrene and di-n-octyl phthalate on photosynthesis of cucumber (Cucumis sativus L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174426. [PMID: 38969123 DOI: 10.1016/j.scitotenv.2024.174426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Photosynthesis provides carbon sources and energy for crop growth and development, and the widespread presence of microplastics and plastic plasticisers in agricultural soils affects crop photosynthesis, but the mechanism of the effect is not clear. This study aims to investigate the effects of different microplastics and plasticizers on cucumber photosynthesis. Using polyvinyl chloride (PVC), polyethylene (PE), polystyrene (PS), and di-n-octyl phthalate (DOP) as representative microplastics and plasticizers, we assessed their impact on cucumber photosynthesis. Our results reveal significant alterations in key parameters: intercellular CO2 concentration (Ci) and transpiration rate (Tr) increased across all treatments, whereas stomatal limit value (Ls) and water use efficiency (WUE) decreased. Notably, PS + DOP treatment led to a significant reduction in the maximum efficiency of photosystem II (Fv/Fm) and ATP accumulation. Furthermore, PE and PS + DOP treatments decreased lycopene and ɛ-carotene synthesis rates, as well as abscisic acid (ABA) accumulation. All treatments inhibited the conversion of β-carotene into strigolactone (SL) and decreased chlorophyll synthesis rates, with PS + DOP exhibiting the most severe impact. Regarding chlorophyll degradation pathways, PVC and PE treatments reduced chlorophyll decomposition rates, whereas DOP with PS promoted degradation. PE and PS treatments also impaired light energy capture, electron transport, and the structural stability of photosystems I and II, as well as photosynthetic capacity and NADPH and ATP synthesis rates. Our findings underscore the differential impacts of microplastics and plasticizers on cucumber photosynthesis, with PS + DOP having the most detrimental effect. These results shed light on the complex interactions between microplastics and plant physiology, highlighting the urgent need for mitigation strategies in agricultural practices to safeguard crop productivity and environmental sustainability.
Collapse
Affiliation(s)
- Haoran Zhuang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Zhenxia Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan 453003, China.
| | - Menglin Wang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Bo Liu
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Yiwen Chu
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Ziyu Lin
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan 453003, China
| |
Collapse
|
6
|
Li X, Hu S, Jiang N, Yao X, Wang C, Wang Q, Yang Z, Wang J. Biotoxicity responses of zebrafish in environmentally relevant concentration of di (2-ethylhexyl) phthalate. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104423. [PMID: 38521434 DOI: 10.1016/j.etap.2024.104423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 02/09/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
As an emerging environmental contaminant, di (2-ethylhexyl) phthalate (DEHP) is widely present in the aquatic environment, however, the effects and underlying mechanisms of DEHP on the aquatic organisms are poorly understood. This study systematically investigated the ecotoxicity induced by chronic exposure to environmental relevant concentrations of DEHP (0.03 mg/L, 0.1 mg/L, and 0.3 mg/L) on zebrafish brain. Results indicated that DEHP exposure significantly increased the levels of ROS and disturbance of the antioxidant enzymes activities in the brain, which may further enhance lipid peroxidation and DNA damage. Furthermore, acetylcholinesterase activity was first stimulated and inhibited by exposure to DEHP, and the antioxidant and apoptosis related genes were mainly upregulated. Risk assessment indicated that the ecotoxicity of DEHP on the zebrafish showed an "enhancement-reduction" trend as the exposure time was prolonged. Overall, these results provided new insights and useful information to ecological risk assessment and environmental management of DEHP pollution.
Collapse
Affiliation(s)
- Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Shichang Hu
- Tai'an Eco-environmental Monitoring Center of Shandong Province, Tai'an 271000, China
| | - Nan Jiang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China; College of Natural Resources and Environment, Northwest A& F University, Yangling 712000, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Can Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Zhongkang Yang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, China.
| |
Collapse
|
7
|
Zheng Y, Liu C, Chen J, Tang J, Luo J, Zou D, Tang Z, He J, Bai J. Integrated transcriptomic and biochemical characterization of the mechanisms governing stress responses in soil-dwelling invertebrate (Folsomia candida) upon exposure to dibutyl phthalate. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132644. [PMID: 37820532 DOI: 10.1016/j.jhazmat.2023.132644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Dibutyl phthalate (DBP) is one of the most commonly utilized plasticizers and a frequently detected phthalic acid ester (PAE) compound in soil samples. However, the toxicological effects of DBP on soil-dwelling organisms remain poorly understood. This study employed a multi-biomarker approach to investigate the impact of DBP exposure on Folsomia candida's survival, reproduction, enzyme activity levels, and transcriptional profiles. Analyses of antioxidant biomarkers, including catalase (CAT) and glutathione S-transferase (GST), as well as detoxifying enzymes such as acetylcholinesterase (AChE), Cytochrome P450 (CYP450), and lipid peroxidation (LPO), revealed significant increases in CAT activity, GST levels, and CYP450 expression following treatment with various doses of DBP for 2, 4, 7, or 14 days. Additionally, LPO induction was observed along with significant AChE inhibition. In total, 3175 differentially expressed genes (DEGs) were identified following DBP treatment that were enriched in six Gene Ontology (GO) terms and 144 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including 85 upregulated and 59 downregulated primarily associated with lipid metabolism, signal transduction, DNA repair, and cell growth and death. Overall these results provide foundational insights for further research into the molecular mechanisms underlying responses of soil invertebrates to DBP exposure.
Collapse
Affiliation(s)
- Yu Zheng
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China; Hunan Provincial Collaborative Innovation Center for Field Weeds Control, Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| | - Can Liu
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jiayi Chen
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jianquan Tang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jiali Luo
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Di Zou
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Zhen Tang
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jiali He
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China
| | - Jing Bai
- Hunan University of Humanities, Science and Technology, Loudi, Hunan 417000, China.
| |
Collapse
|
8
|
Liu W, Li X, Lv H, Liang C, Wang Q, Yao X, Dong C, Zhang W, Wang J, Zhu L, Wang J. Occurrence and health risk assessment of phthalates in a typical estuarine soil: A case study of the various functional areas of the Yellow River Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166972. [PMID: 37699481 DOI: 10.1016/j.scitotenv.2023.166972] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
In recent years, the extensive distribution of phthalates (PAEs) in soils has attracted increasing attention. In this study, the concentrations of six types of PAEs were measured in five dissimilar regions of the Yellow River Delta (YRD), and regional differences, pollution characteristics and health risks of PAEs pollution were investigated. The detection rate of PAEs was 100 %, and the concentration range of Σ6PAEs was 0.709-9.565 mg/kg, with an average of 3.258 ± 2.031 mg/kg. There were different spatial distribution differences of PAEs in soils of the YRD, with residential living, chemical industrial, and crop growing areas being the main areas of PAEs distribution. It was worth noting that di (2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) are prominent contributors to PAEs in soils of the YRD. Correlation analyses showed that soils physicochemical properties such as SOM, TN and CEC were closely correlated to the transport and transformation of PAEs. Use by petrochemical industries, accumulation of plasticizers, additives (derived from cosmetics, food, pharmaceutical), fertilizers, pesticides, plastics, and atmospheric deposition are the principal sources of PAEs in the YRD. A health risk assessment showed that the health risk caused by non-dietary intake of PAEs was low and considered acceptable. PAEs pollution in the YRD soil is particularly noteworthy, especially for the prevention and control of DEHP and DBP pollution. This study provides basic data for an effective control of soil PAEs pollution in the YRD, which is conducive to the sustainable development of the region.
Collapse
Affiliation(s)
- Wenrong Liu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Huijuan Lv
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Chunliu Liang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Chang Dong
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Wenjuan Zhang
- Shandong Green and Blue Bio-technology Co. Ltd, Tai'an, China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
9
|
Anake WU, Nnamani EA. Levels and health risk assessments of Phthalate acid esters in indoor dust of some microenvironments within Ikeja and Ota, Nigeria. Sci Rep 2023; 13:11209. [PMID: 37433814 PMCID: PMC10336085 DOI: 10.1038/s41598-023-38062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023] Open
Abstract
The levels, profiles of Phthalate acid esters (PAEs) and their associated health risk in children and adults using indoor dust samples were assessed from nine (9) microenvironments in Nigeria. Six PAEs congeners were determined using Gas Chromatography-Mass Spectrometry and the human health risk assessments of PAEs exposure to children and adults were computed using the United States Environmental Protection Agency (USEPA) exposure model. The mean concentrations of the total PAEs (Σ6PAEs) in indoor dust across the study locations ranged from 1.61 ± 0.12 to 53.3 ± 5.27 μg/g with 72.0% of di-n-octyl phthalate (DnOP) as the most predominant contributor of PAEs in sample locations B, C, D, E, F and G. PAEs estimated daily intake results exceeded the USEPA value of 20 and 50 kg/bw/day for children and adults respectively in some locations. Non-carcinogenic risk exposure indicated no risk (HI < 1), while the carcinogenic risk was within the recommended threshold of 1.00 × 10-4 to 1.00 × 10-6 for benzyl butyl phthalate and bis-2-ethylhexyl phthalate. From our findings, lower levels of PAEs were observed in locations with good ventilation system. Also, the human health risk evaluation indicated indoor dust ingestion as the dominant exposure route of PAEs for both children and adults, while the children were at a higher risk of PAEs exposure. To protect children susceptible to these endocrine-disrupting pollutants, soft vinyl children's toys and teething rings should be avoided. Appropriate policies and procedures on the reduction of PAEs exposure to humans should be enacted by all stakeholders, including government regulatory agencies, industries, school administrators and the entire community.
Collapse
Affiliation(s)
- Winifred U Anake
- Department of Chemistry, College of Science and Technology, Covenant University, P.M. B 1023, Ota, Ogun State, Nigeria.
| | - Esther A Nnamani
- Department of Chemistry, College of Science and Technology, Covenant University, P.M. B 1023, Ota, Ogun State, Nigeria
| |
Collapse
|
10
|
Li X, Li M, Jiang N, Yao X, Wang Q, Lv H, Wang C, Wang J. Evaluation of soil ecological health after exposure to environmentally relevant doses of Di (2-ethylhexyl) phthalate: Insights from toxicological studies of earthworms at different ecological niches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121204. [PMID: 36754202 DOI: 10.1016/j.envpol.2023.121204] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
As one of the most critical soil faunas in agroecosystems, earthworms are significant in preserving soil ecological health. Di (2-ethylhexyl) phthalate (DEHP) is a major plasticizer and widely used in plastic products like agricultural films. However, it has become ubiquitous contaminant in agricultural soil and poses a potential threat to soil health. Although the awareness of the impacts of DEHP on soil ecology is increasing, its adverse effects on soil invertebrates, especially earthworms, are still not well developed. In this study, the ecotoxicological effects and underlying mechanisms of environmentally relevant doses DEHP on earthworms of different ecological niches were investigated at the individual, cytological, and biochemical levels, respectively. Results showed that the acute toxicity of DEHP to M. guillelmi was higher than E. foetida. DEHP induced reactive oxygen species (ROS) levels and further caused oxidative damage (including cellular DNA and lipid peroxidation damage) in both species, speculating that they may exhibit similar oxidative stress mechanisms. Furthermore, two earthworms presented the alleviated toxicity when re-cultured in uncontaminated circumstances, yet, the accumulated ROS in bodies could not be completely scavenged. Risk assessment indicated that the detrimental impacts of DEHP were more significant in the M. guillelmi than in E. foetida in whole experiments prides, and the biomarkers additionally showed a species-specific trend. Besides, molecular docking revealed that DEHP could bind to the active center of superoxide dismutase/catalase (SOD/CAT) by hydrogen bonding or hydrophobic interactions. Overall, this study will provide a novel insight for accurate contaminant risk assessment, and also highlight that the comprehensive biological effects of different species should be emphasized in soil ecological health diagnostics and environmental toxicology assays, as otherwise it may lead to underestimation or misestimation of the soil health risk of contaminants.
Collapse
Affiliation(s)
- Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Min'an Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Nan Jiang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China; College of Natural Resources and Environment, Northwest A&; F University, Yangling, 712000, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Huijuan Lv
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Can Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China.
| |
Collapse
|
11
|
Li X, Wang Q, Jiang N, Lv H, Liang C, Yang H, Yao X, Wang J. Occurrence, source, ecological risk, and mitigation of phthalates (PAEs) in agricultural soils and the environment: A review. ENVIRONMENTAL RESEARCH 2023; 220:115196. [PMID: 36592811 DOI: 10.1016/j.envres.2022.115196] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The widespread distribution of phthalates (PAEs) in agricultural soils is increasing drastically; however, the environmental occurrence and potential risk of PAEs in agricultural systems remain largely unreviewed. In this study, the occurrence, sources, ecotoxicity, exposure risks, and control measures of PAEs contaminants in agricultural soils are summarized, and it is concluded that PAEs have been widely detected and persist in the soil at concentrations ranging from a few μg/kg to tens of mg/kg, with spatial and vertical variations in China. Agrochemicals and atmospheric deposition have largely contributed to the elevated contamination status of PAEs in soils. In addition, PAEs cause multi-level hazards to soil organisms (survival, oxidative damage, genetic and molecular levels, etc.) and further disrupt the normal ecological functions of soil. The health hazards of PAEs to humans are mainly generated through dietary and non-dietary pathways, and children may be at a higher risk of exposure than adults. Improving the soil microenvironment and promoting biochemical reactions and metabolic processes of PAEs are the main mechanisms for mitigating contamination. Based on these reviews, this study provides a valuable framework for determining future study objectives to reveal environmental risks and reduce the resistance control of PAEs in agricultural soils.
Collapse
Affiliation(s)
- Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271S000, China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271S000, China
| | - Nan Jiang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271S000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, China
| | - Huijuan Lv
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271S000, China
| | - Chunliu Liang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271S000, China
| | - Huiyan Yang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271S000, China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271S000, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271S000, China.
| |
Collapse
|