1
|
The Regulatory Circuit Underlying Downregulation of a Type III Secretion System in Yersinia enterocolitica by Transcription Factor OmpR. Int J Mol Sci 2022; 23:ijms23094758. [PMID: 35563149 PMCID: PMC9100119 DOI: 10.3390/ijms23094758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
In a previous study, differential proteomic analysis was used to identify membrane proteins of the human enteropathogen Yersinia enterocolitica, whose levels are influenced by OmpR, the transcriptional regulator in the two-component EnvZ/OmpR system. Interestingly, this analysis demonstrated that at 37 °C, OmpR negatively affects the level of over a dozen Ysc-Yop proteins, which constitute a type III secretion system (T3SS) that is essential for the pathogenicity of Y. enterocolitica. Here, we focused our analysis on the role of OmpR in the expression and secretion of Yops (translocators and effectors). Western blotting with anti-Yops antiserum and specific anti-YopD, -YopE and -YopH antibodies, confirmed that the production of Yops is down-regulated by OmpR with the greatest negative effect on YopD. The RT-qPCR analysis demonstrated that, while OmpR had a negligible effect on the activity of regulatory genes virF and yscM1, it highly repressed the expression of yopD. OmpR was found to bind to the promoter of the lcrGVsycD-yopBD operon, suggesting a direct regulatory effect. In addition, we demonstrated that the negative regulatory influence of OmpR on the Ysc-Yop T3SS correlated with its positive role in the expression of flhDC, the master regulator of the flagellar-associated T3SS.
Collapse
|
2
|
Milne-Davies B, Wimmi S, Diepold A. Adaptivity and dynamics in type III secretion systems. Mol Microbiol 2020; 115:395-411. [PMID: 33251695 DOI: 10.1111/mmi.14658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
The type III secretion system is the common core of two bacterial molecular machines: the flagellum and the injectisome. The flagellum is the most widely distributed prokaryotic locomotion device, whereas the injectisome is a syringe-like apparatus for inter-kingdom protein translocation, which is essential for virulence in important human pathogens. The successful concept of the type III secretion system has been modified for different bacterial needs. It can be adapted to changing conditions, and was found to be a dynamic complex constantly exchanging components. In this review, we highlight the flexibility, adaptivity, and dynamic nature of the type III secretion system.
Collapse
Affiliation(s)
- Bailey Milne-Davies
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Stephan Wimmi
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
3
|
Anh Le TT, Thuptimdang P, McEvoy J, Khan E. Phage shock protein and gene responses of Escherichia coli exposed to carbon nanotubes. CHEMOSPHERE 2019; 224:461-469. [PMID: 30831497 DOI: 10.1016/j.chemosphere.2019.02.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Two-dimensional electrophoretic, western blotting, and quantitative polymerase chain reaction analyses of Escherichia coli cells exposed to pristine single walled carbon nanotubes (SWCNTs), and hydroxyl and carboxylic functionalized SWCNTs (SWCNT-OHs and SWCNT-COOHs) were conducted. SWCNT concentration and length were experimental variables. Exposing E. coli cells to SWCNTs led to changes in protein and gene expressions. Several proteins altered their regulations at a low SWCNT concentration (10 μg/ml) and were shut down at a high SWCNT concentration (100 μg/ml). The expressions of the phage shock protein (psp) operon including pspA, pspB, and pspC genes responded to the membrane stressors, SWCNTs, were also examined. While pspA and pspC expressions were influenced by the length, concentration, and functional groups of SWCNTs, pspB expression was not induced by SWCNTs. The alterations in phage shock protein and gene expressions indicated that SWCNTs caused cell membrane perturbation.
Collapse
Affiliation(s)
- Tu Thi Anh Le
- Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND 58108, USA; Biology Department, Dalat University, Dalat, Lamdong, Viet Nam.
| | - Pumis Thuptimdang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Environmental Science Research Center (ESRC), Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - John McEvoy
- Microbiological Sciences Department, North Dakota State University, Fargo, ND 58108, USA.
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA.
| |
Collapse
|
4
|
Rudenko I, Ni B, Glatter T, Sourjik V. Inefficient Secretion of Anti-sigma Factor FlgM Inhibits Bacterial Motility at High Temperature. iScience 2019; 16:145-154. [PMID: 31170626 PMCID: PMC6551532 DOI: 10.1016/j.isci.2019.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/01/2019] [Accepted: 05/15/2019] [Indexed: 12/03/2022] Open
Abstract
Temperature is one of the key cues that enable microorganisms to adjust their physiology in response to environmental changes. Here we show that motility is the major cellular function of Escherichia coli that is differentially regulated between growth at normal host temperature of 37°C and the febrile temperature of 42°C. Expression of both class II and class III flagellar genes is reduced at 42°C because of lowered level of the upstream activator FlhD. Class III genes are additionally repressed because of the destabilization and malfunction of secretion apparatus at high temperature, which prevents secretion of the anti-sigma factor FlgM. This mechanism of repression apparently accelerates loss of motility at 42°C. We hypothesize that E. coli perceives high temperature as a sign of inflammation, downregulating flagella to escape detection by the immune system of the host. Secretion-dependent coupling of gene expression to the environmental temperature is likely common among many bacteria. E. coli motility is tightly turned off at febrile temperature (42°C) Repression of motility is achieved at two levels of hierarchical gene regulation Lowered FlhD level reduces expression of all flagellar genes Impaired FlgM secretion tightens repression of class III genes
Collapse
Affiliation(s)
- Iaroslav Rudenko
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg 35043, Germany
| | - Bin Ni
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg 35043, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry & Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Victor Sourjik
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg 35043, Germany.
| |
Collapse
|
5
|
Thanikkal EJ, Gahlot DK, Liu J, Fredriksson Sundbom M, Gurung JM, Ruuth K, Francis MK, Obi IR, Thompson KM, Chen S, Dersch P, Francis MS. The Yersinia pseudotuberculosis Cpx envelope stress system contributes to transcriptional activation of rovM. Virulence 2019; 10:37-57. [PMID: 30518290 PMCID: PMC6298763 DOI: 10.1080/21505594.2018.1556151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Gram-negative enteropathogen Yersinia pseudotuberculosis possesses a number of regulatory systems that detect cell envelope damage caused by noxious extracytoplasmic stresses. The CpxA sensor kinase and CpxR response regulator two-component regulatory system is one such pathway. Active Cpx signalling upregulates various factors designed to repair and restore cell envelope integrity. Concomitantly, this pathway also down-regulates key determinants of virulence. In Yersinia, cpxA deletion accumulates high levels of phosphorylated CpxR (CpxR~P). Accumulated CpxR~P directly repressed rovA expression and this limited expression of virulence-associated processes. A second transcriptional regulator, RovM, also negatively regulates rovA expression in response to nutrient stress. Hence, this study aimed to determine if CpxR~P can influence rovA expression through control of RovM levels. We determined that the active CpxR~P isoform bound to the promoter of rovM and directly induced its expression, which naturally associated with a concurrent reduction in rovA expression. Site-directed mutagenesis of the CpxR~P binding sequence in the rovM promoter region desensitised rovM expression to CpxR~P. These data suggest that accumulated CpxR~P inversely manipulates the levels of two global transcriptional regulators, RovA and RovM, and this would be expected to have considerable influence on Yersinia pathophysiology and metabolism.
Collapse
Affiliation(s)
- Edvin J Thanikkal
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Dharmender K Gahlot
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Junfa Liu
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | | | - Jyoti M Gurung
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Kristina Ruuth
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Monika K Francis
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Ikenna R Obi
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| | - Karl M Thompson
- c Department of Microbiology , College of Medicine, Howard University , Washington , DC , USA.,d Interdisciplinary Research Building , Howard University , Washington , DC , USA
| | - Shiyun Chen
- e Key Laboratory of Special Pathogens and Biosafety , Wuhan Institute of Virology, Chinese Academy of Sciences , Wuhan , China
| | - Petra Dersch
- f Department of Molecular Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Matthew S Francis
- a Department of Molecular Biology , Umeå University , Umeå , Sweden.,b Umeå Centre for Microbial Research , Umeå University , Umeå , Sweden
| |
Collapse
|
6
|
Bancerz-Kisiel A, Pieczywek M, Łada P, Szweda W. The Most Important Virulence Markers of Yersinia enterocolitica and Their Role during Infection. Genes (Basel) 2018; 9:E235. [PMID: 29751540 PMCID: PMC5977175 DOI: 10.3390/genes9050235] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Yersinia enterocolitica is the causative agent of yersiniosis, a zoonotic disease of growing epidemiological importance with significant consequences for public health. This pathogenic species has been intensively studied for many years. Six biotypes (1A, 1B, 2, 3, 4, 5) and more than 70 serotypes of Y. enterocolitica have been identified to date. The biotypes of Y. enterocolitica are divided according to their pathogenic properties: the non-pathogenic biotype 1A, weakly pathogenic biotypes 2⁻5, and the highly pathogenic biotype 1B. Due to the complex pathogenesis of yersiniosis, further research is needed to expand our knowledge of the molecular mechanisms involved in the infection process and the clinical course of the disease. Many factors, both plasmid and chromosomal, significantly influence these processes. The aim of this study was to present the most important virulence markers of Y. enterocolitica and their role during infection.
Collapse
Affiliation(s)
- Agata Bancerz-Kisiel
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Marta Pieczywek
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Piotr Łada
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| | - Wojciech Szweda
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2 Str., 10-719 Olsztyn, Poland.
| |
Collapse
|
7
|
Horne S, Schroeder M, Murphy J, Prüβ B. Acetoacetate and ethyl acetoacetate as novel inhibitors of bacterial biofilm. Lett Appl Microbiol 2018; 66:329-339. [DOI: 10.1111/lam.12852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/20/2022]
Affiliation(s)
- S.M. Horne
- Department of Microbiological Sciences North Dakota State University Fargo ND USA
| | - M. Schroeder
- Department of Microbiological Sciences North Dakota State University Fargo ND USA
| | - J. Murphy
- Department of Microbiological Sciences North Dakota State University Fargo ND USA
| | - B.M. Prüβ
- Department of Microbiological Sciences North Dakota State University Fargo ND USA
| |
Collapse
|
8
|
Diepold A, Armitage JP. Type III secretion systems: the bacterial flagellum and the injectisome. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0020. [PMID: 26370933 DOI: 10.1098/rstb.2015.0020] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The flagellum and the injectisome are two of the most complex and fascinating bacterial nanomachines. At their core, they share a type III secretion system (T3SS), a transmembrane export complex that forms the extracellular appendages, the flagellar filament and the injectisome needle. Recent advances, combining structural biology, cryo-electron tomography, molecular genetics, in vivo imaging, bioinformatics and biophysics, have greatly increased our understanding of the T3SS, especially the structure of its transmembrane and cytosolic components, the transcriptional, post-transcriptional and functional regulation and the remarkable adaptivity of the system. This review aims to integrate these new findings into our current knowledge of the evolution, function, regulation and dynamics of the T3SS, and to highlight commonalities and differences between the two systems, as well as their potential applications.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Judith P Armitage
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
9
|
Abstract
Many Gram-negative pathogens express a type III secretion (T3SS) system to enable growth and survival within a host. The three human-pathogenic Yersinia species, Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica, encode the Ysc T3SS, whose expression is controlled by an AraC-like master regulator called LcrF. In this review, we discuss LcrF structure and function as well as the environmental cues and pathways known to regulate LcrF expression. Similarities and differences in binding motifs and modes of action between LcrF and the Pseudomonas aeruginosa homolog ExsA are summarized. In addition, we present a new bioinformatics analysis that identifies putative LcrF binding sites within Yersinia target gene promoters.
Collapse
|
10
|
Erhardt M, Dersch P. Regulatory principles governing Salmonella and Yersinia virulence. Front Microbiol 2015; 6:949. [PMID: 26441883 PMCID: PMC4563271 DOI: 10.3389/fmicb.2015.00949] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/27/2015] [Indexed: 11/13/2022] Open
Abstract
Enteric pathogens such as Salmonella and Yersinia evolved numerous strategies to survive and proliferate in different environmental reservoirs and mammalian hosts. Deciphering common and pathogen-specific principles for how these bacteria adjust and coordinate spatiotemporal expression of virulence determinants, stress adaptation, and metabolic functions is fundamental to understand microbial pathogenesis. In order to manage sudden environmental changes, attacks by the host immune systems and microbial competition, the pathogens employ a plethora of transcriptional and post-transcriptional control elements, including transcription factors, sensory and regulatory RNAs, RNAses, and proteases, to fine-tune and control complex gene regulatory networks. Many of the contributing global regulators and the molecular mechanisms of regulation are frequently conserved between Yersinia and Salmonella. However, the interplay, arrangement, and composition of the control elements vary between these closely related enteric pathogens, which generate phenotypic differences leading to distinct pathogenic properties. In this overview we present common and different regulatory networks used by Salmonella and Yersinia to coordinate the expression of crucial motility, cell adhesion and invasion determinants, immune defense strategies, and metabolic adaptation processes. We highlight evolutionary changes of the gene regulatory circuits that result in different properties of the regulatory elements and how this influences the overall outcome of the infection process.
Collapse
Affiliation(s)
- Marc Erhardt
- Young Investigator Group Infection Biology of Salmonella, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research Braunschweig, Germany
| |
Collapse
|
11
|
Thuptimdang P, Limpiyakorn T, McEvoy J, Prüß BM, Khan E. Effect of silver nanoparticles on Pseudomonas putida biofilms at different stages of maturity. JOURNAL OF HAZARDOUS MATERIALS 2015; 290:127-133. [PMID: 25756827 DOI: 10.1016/j.jhazmat.2015.02.073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 06/04/2023]
Abstract
This study determined the effect of silver nanoparticles (AgNPs) on Pseudomonas putida KT2440 biofilms at different stages of maturity. Three biofilm stages (1-3, representing early to late stages of development) were identified from bacterial adenosine triphosphate (ATP) activity under static (96-well plate) and dynamic conditions (Center for Disease Control and Prevention biofilm reactor). Extracellular polymeric substance (EPS) levels, measured using crystal violet and total carbohydrate assays, and expression of the EPS-associated genes, csgA and alg8, supported the conclusion that biofilms at later stages were older than those at earlier stages. More mature biofilms (stages 2 and 3) showed little to no reduction in ATP activity following exposure to AgNPs. In contrast, the same treatment reduced ATP activity by more than 90% in the less mature stage 1 biofilms. Regardless of maturity, biofilms with EPS stripped off were more susceptible to AgNPs than controls with intact EPS, demonstrating that EPS is critical for biofilm tolerance of AgNPs. The findings from this study show that stage of maturity is an important factor to consider when studying effect of AgNPs on biofilms.
Collapse
Affiliation(s)
- Pumis Thuptimdang
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Bangkok 10330, Thailand.
| | - Tawan Limpiyakorn
- Center of Excellence on Hazardous Substance Management, Bangkok 10330, Thailand; Department of Environmental Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok 10330, Thailand.
| | - John McEvoy
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Birgit M Prüß
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
12
|
Asadishad B, Ghoshal S, Tufenkji N. Role of cold climate and freeze-thaw on the survival, transport, and virulence of Yersinia enterocolitica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:14169-14177. [PMID: 24283700 DOI: 10.1021/es403726u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Surface and near-surface soils in cold climate regions experience low temperature and freeze-thaw (FT) conditions in the winter. Microorganisms that are of concern to groundwater quality may have the potential to survive low temperature and FT in the soil and aqueous environments. Although there is a body of literature on the survival of pathogenic bacteria at different environmental conditions, little is known about their transport behavior in aquatic environments at low temperatures and after FT. Herein, we studied the survival, transport, and virulence of a Gram-negative bacterial pathogen, Yersinia enterocolitica, when subjected to low temperature and several FT cycles at two solution ionic strengths (10 and 100 mM) in the absence of nutrients. Our findings demonstrate that this bacterium exhibited higher retention on sand after exposure to FT. Increasing the number of FT cycles resulted in higher bacterial cell surface hydrophobicity and impaired the swimming motility and viability of the bacterium. Moreover, the transcription of flhD and fliA, the flagellin-encoding genes, and lpxR, the lipid A 3'-O-deacylase gene, was reduced in low temperature and after FT treatment while the transcription of virulence factors such as ystA, responsible for enterotoxin production, ail, attachment invasion locus gene, and rfbC, O-antigen gene, was increased. Y. enterocolitica tends to persist in soil for long periods and may become more virulent at low temperature in higher ionic strength waters in cold regions.
Collapse
Affiliation(s)
- Bahareh Asadishad
- Department of Chemical Engineering, McGill University , Montreal, Quebec H3A 2B2, Canada
| | | | | |
Collapse
|
13
|
Skorek K, Raczkowska A, Dudek B, Miętka K, Guz-Regner K, Pawlak A, Klausa E, Bugla-Płoskońska G, Brzostek K. Regulatory protein OmpR influences the serum resistance of Yersinia enterocolitica O:9 by modifying the structure of the outer membrane. PLoS One 2013; 8:e79525. [PMID: 24260242 PMCID: PMC3834241 DOI: 10.1371/journal.pone.0079525] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/01/2013] [Indexed: 11/29/2022] Open
Abstract
The EnvZ/OmpR two-component system constitutes a regulatory pathway involved in bacterial adaptive responses to environmental cues. Our previous findings indicated that the OmpR regulator in Yersinia enterocolitica O:9 positively regulates the expression of FlhDC, the master flagellar activator, which influences adhesion/invasion properties and biofilm formation. Here we show that a strain lacking OmpR grown at 37°C exhibits extremely high resistance to the bactericidal activity of normal human serum (NHS) compared with the wild-type strain. Analysis of OMP expression in the ompR mutant revealed that OmpR reciprocally regulates Ail and OmpX, two homologous OMPs of Y. enterocolitica, without causing significant changes in the level of YadA, the major serum resistance factor. Analysis of mutants in individual genes belonging to the OmpR regulon (ail, ompX, ompC and flhDC) and strains lacking plasmid pYV, expressing YadA, demonstrated the contribution of the respective proteins to serum resistance. We show that Ail and OmpC act in an opposite way to the OmpX protein to confer serum resistance to the wild-type strain, but are not responsible for the high resistance of the ompR mutant. The serum resistance phenotype of ompR seems to be multifactorial and mainly attributable to alterations that potentiate the function of YadA. Our results indicate that a decreased level of FlhDC in the ompR mutant cells is partly responsible for the serum resistance and this effect can be suppressed by overexpression of flhDC in trans. The observation that the loss of FlhDC enhances the survival of wild-type cells in NHS supports the involvement of FlhDC regulator in this phenotype. In addition, the ompR mutant exhibited a lower level of LPS, but this was not correlated with changes in the level of FlhDC. We propose that OmpR might alter the susceptibility of Y. enterocolitica O:9 to complement-mediated killing through remodeling of the outer membrane.
Collapse
Affiliation(s)
- Karolina Skorek
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Bartłomiej Dudek
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Katarzyna Miętka
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Katarzyna Guz-Regner
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Aleksandra Pawlak
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Elżbieta Klausa
- Regional Centre of Transfusion Medicine and Blood Bank, Wroclaw, Poland
| | | | - Katarzyna Brzostek
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
14
|
The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD. J Bacteriol 2013; 195:5174-85. [PMID: 24039264 DOI: 10.1128/jb.00501-13] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Gram-positive obligate anaerobe Clostridium difficile causes potentially fatal intestinal diseases. How this organism regulates virulence gene expression is poorly understood. In many bacterial species, the second messenger cyclic di-GMP (c-di-GMP) negatively regulates flagellar motility and, in some cases, virulence. c-di-GMP was previously shown to repress motility of C. difficile. Recent evidence indicates that flagellar gene expression is tightly linked with expression of the genes encoding the two C. difficile toxins TcdA and TcdB, which are key virulence factors for this pathogen. Here, the effect of c-di-GMP on expression of the toxin genes tcdA and tcdB was determined, and the mechanism connecting flagellar and toxin gene expressions was examined. In C. difficile, increasing c-di-GMP levels reduced the expression levels of tcdA and tcdB, as well as that of tcdR, which encodes an alternative sigma factor that activates tcdA and tcdB expression. We hypothesized that the C. difficile orthologue of the flagellar alternative sigma factor SigD (FliA; σ(28)) mediates regulation of toxin gene expression in response to c-di-GMP. Indeed, ectopic expression of sigD in C. difficile resulted in increased expression levels of tcdR, tcdA, and tcdB. Furthermore, sigD expression enhanced toxin production and increased the cytopathic effect of C. difficile on cultured fibroblasts. Finally, evidence is provided that SigD directly activates tcdR expression and that SigD cannot activate tcdA or tcdB expression independent of TcdR. Taken together, these data suggest that SigD positively regulates toxin genes in C. difficile and that c-di-GMP can inhibit both motility and toxin production via SigD, making this signaling molecule a key virulence gene regulator in C. difficile.
Collapse
|
15
|
Hockett KL, Burch AY, Lindow SE. Thermo-regulation of genes mediating motility and plant interactions in Pseudomonas syringae. PLoS One 2013; 8:e59850. [PMID: 23527276 PMCID: PMC3602303 DOI: 10.1371/journal.pone.0059850] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/22/2013] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas syringae is an important phyllosphere colonist that utilizes flagellum-mediated motility both as a means to explore leaf surfaces, as well as to invade into leaf interiors, where it survives as a pathogen. We found that multiple forms of flagellum-mediated motility are thermo-suppressed, including swarming and swimming motility. Suppression of swarming motility occurs between 28° and 30°C, which coincides with the optimal growth temperature of P. syringae. Both fliC (encoding flagellin) and syfA (encoding a non-ribosomal peptide synthetase involved in syringafactin biosynthesis) were suppressed with increasing temperature. RNA-seq revealed 1440 genes of the P. syringae genome are temperature sensitive in expression. Genes involved in polysaccharide synthesis and regulation, phage and IS elements, type VI secretion, chemosensing and chemotaxis, translation, flagellar synthesis and motility, and phytotoxin synthesis and transport were generally repressed at 30°C, while genes involved in transcriptional regulation, quaternary ammonium compound metabolism and transport, chaperone/heat shock proteins, and hypothetical genes were generally induced at 30°C. Deletion of flgM, a key regulator in the transition from class III to class IV gene expression, led to elevated and constitutive expression of fliC regardless of temperature, but did not affect thermo-regulation of syfA. This work highlights the importance of temperature in the biology of P. syringae, as many genes encoding traits important for plant-microbe interactions were thermo-regulated.
Collapse
Affiliation(s)
- Kevin L. Hockett
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Adrien Y. Burch
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Steven E. Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 2012; 76:262-310. [PMID: 22688814 DOI: 10.1128/mmbr.05017-11] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Flagellar and translocation-associated type III secretion (T3S) systems are present in most gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria.
Collapse
|
17
|
Abstract
A comprehensive TnphoA mutant library was constructed in Yersinia pestis KIM6 to identify surface proteins involved in Y. pestis host cell invasion and bacterial virulence. Insertion site analysis of the library repeatedly identified a 9,042-bp chromosomal gene (YPO3944), intimin/invasin-like protein (Ilp), similar to the Gram-negative intimin/invasin family of surface proteins. Deletion mutants of ilp were generated in Y. pestis strains KIM5(pCD1(+)) Pgm(-) (pigmentation negative)/, KIM6(pCD1(-)) Pgm(+), and CO92. Comparative analyses were done with the deletions and the parental wild type for bacterial adhesion to and internalization by HEp-2 cells in vitro, infectivity and maintenance in the flea vector, and lethality in murine models of systemic and pneumonic plague. Deletion of ilp had no effect on bacterial blockage of flea blood feeding or colonization. The Y. pestis KIM5 Δilp strain had reduced adhesion to and internalization by HEp-2 cells compared to the parental wild-type strain (P < 0.05). Following intravenous challenge with Y. pestis KIM5 Δilp, mice had a delayed time to death and reduced dissemination to the lungs, livers, and kidneys as monitored by in vivo imaging using a lux reporter system (in vivo imaging system [IVIS]) and bacterial counts. Intranasal challenge in mice with Y. pestis CO92 Δilp had a 55-fold increase in the 50% lethal dose ([LD(50)] 1.64 × 10(4) CFU) compared to the parental wild-type strain LD(50) (2.98 × 10(2) CFU). These findings identified Ilp as a novel virulence factor of Y. pestis.
Collapse
|
18
|
OmpR, a Central Integrator of Several Cellular Responses in Yersinia enterocolitica. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 954:325-34. [DOI: 10.1007/978-1-4614-3561-7_40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Palonen E, Lindström M, Karttunen R, Somervuo P, Korkeala H. Expression of signal transduction system encoding genes of Yersinia pseudotuberculosis IP32953 at 28°C and 3°C. PLoS One 2011; 6:e25063. [PMID: 21949852 PMCID: PMC3176822 DOI: 10.1371/journal.pone.0025063] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 08/26/2011] [Indexed: 11/18/2022] Open
Abstract
Yersinia pseudotuberculosis is a significant psychrotrophic food pathogen whose cold tolerance mechanisms are poorly understood. Signal transduction systems serve to monitor the environment, but no systematic investigation of their role at cold temperatures in Y. pseudotuberculosis has yet been undertaken. The relative expression levels of 54 genes predicted to encode proteins belonging to signal transduction systems in Y. pseudotuberculosis IP32953 were determined at 28°C and 3°C by quantitative real-time reverse transcription-PCR. The relative expression levels of 44 genes were significantly (p<0.05) higher at 3°C than at 28°C. Genes encoding the two-component system CheA/CheY had the highest relative expression levels at 3°C. Mutational analysis revealed that cheA is important for growth and motility at 3°C. The relative expression level of one gene, rssB, encoding an RpoS regulator, was significantly (p<0.05) lower at 3°C than at 28°C. The results suggest that several signal transduction systems might be used during growth at low temperature, and at least, CheA/CheY two-component system is important for low-temperature growth.
Collapse
Affiliation(s)
- Eveliina Palonen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
20
|
Regulation of cell division, biofilm formation, and virulence by FlhC in Escherichia coli O157:H7 grown on meat. Appl Environ Microbiol 2011; 77:3653-62. [PMID: 21498760 DOI: 10.1128/aem.00069-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To understand the continuous problems that Escherichia coli O157:H7 causes as food pathogen, this study assessed global gene regulation in bacteria growing on meat. Since FlhD/FlhC of E. coli K-12 laboratory strains was previously established as a major control point in transducing signals from the environment to several cellular processes, this study compared the expression pattern of an E. coli O157:H7 parent strain to that of its isogenic flhC mutant. This was done with bacteria that had been grown on meat. Microarray experiments revealed 287 putative targets of FlhC. Real-time PCR was performed as an alternative estimate of transcription and confirmed microarray data for 13 out of 15 genes tested (87%). The confirmed genes are representative of cellular functions, such as central metabolism, cell division, biofilm formation, and pathogenicity. An additional 13 genes from the same cellular functions that had not been hypothesized as being regulated by FlhC by the microarray experiment were tested with real-time PCR and also exhibited higher expression levels in the flhC mutant than in the parent strain. Physiological experiments were performed and confirmed that FlhC reduced the cell division rate, the amount of biofilm biomass, and pathogenicity in a chicken embryo lethality model. Altogether, this study provides valuable insight into the complex regulatory network of the pathogen that enables its survival under various environmental conditions. This information may be used to develop strategies that could be used to reduce the number of cells or pathogenicity of E. coli O157:H7 on meat by interfering with the signal transduction pathways.
Collapse
|
21
|
The Rcs signal transduction pathway is triggered by enterobacterial common antigen structure alterations in Serratia marcescens. J Bacteriol 2010; 193:63-74. [PMID: 20971912 DOI: 10.1128/jb.00839-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enterobacterial common antigen (ECA) is a highly conserved exopolysaccharide in Gram-negative bacteria whose role remains largely uncharacterized. In a previous work, we have demonstrated that disrupting the integrity of the ECA biosynthetic pathway imposed severe deficiencies to the Serratia marcescens motile (swimming and swarming) capacity. In this work, we show that alterations in the ECA structure activate the Rcs phosphorelay, which results in the repression of the flagellar biogenesis regulatory cascade. In addition, a detailed analysis of wec cluster mutant strains, which provoke the disruption of the ECA biosynthesis at different levels of the pathway, suggests that the absence of the periplasmic ECA cyclic structure could constitute a potential signal detected by the RcsF-RcsCDB phosphorelay. We also identify SMA1167 as a member of the S. marcescens Rcs regulon and show that high osmolarity induces Rcs activity in this bacterium. These results provide a new perspective from which to understand the phylogenetic conservation of ECA among enterobacteria and the basis for the virulence attenuation detected in wec mutant strains in other pathogenic bacteria.
Collapse
|
22
|
Raczkowska A, Skorek K, Bielecki J, Brzostek K. OmpR controls Yersinia enterocolitica motility by positive regulation of flhDC expression. Antonie van Leeuwenhoek 2010; 99:381-94. [PMID: 20830609 PMCID: PMC3032193 DOI: 10.1007/s10482-010-9503-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 08/25/2010] [Indexed: 11/26/2022]
Abstract
Flagella and invasin play important roles during the early stages of infection by the enteric pathogen Yersinia enterocolitica. Our previous study demonstrated that OmpR negatively regulates invasin gene expression at the transcriptional level. The present study focused on the role of OmpR in the regulation of flagella expression. Motility assays and microscopic observations revealed that an ompR mutant strain exhibits a non-motile phenotype due to the lack of flagella. An analysis of flhDC::lacZYA chromosomal fusions demonstrated a decrease in flhDC expression in ompR mutant cells, suggesting a role for OmpR in the positive control of flagellar master operon flhDC, which is in contrast to the negative role it plays in Escherichia coli. Moreover, high temperature or osmolarity and low pH decreased flhDC expression and OmpR was not required for the response to these factors. Evidence from an examination of the DNA binding properties of OmpR in vitro indicated that the mechanism by which OmpR regulates flhDC is direct. Electrophoretic mobility shift assays confirmed that OmpR binds specifically to the flhDC promoter region and suggested the presence of more than one OmpR-binding site. In addition, phosphorylation of OmpR by acetyl-P appeared to stimulate the binding abilities of OmpR. Together with the results of our previous studies revealing the negative role of OmpR in the regulation of invasin expression, these findings support a model in which invasion and motility might be reciprocally regulated by OmpR.
Collapse
Affiliation(s)
- Adrianna Raczkowska
- Department of Applied Microbiology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Karolina Skorek
- Department of Applied Microbiology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Jacek Bielecki
- Department of Applied Microbiology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Brzostek
- Department of Applied Microbiology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
23
|
Hu Y, Wang Y, Ding L, Lu P, Atkinson S, Chen S. Positive regulation of flhDC expression by OmpR in Yersinia pseudotuberculosis. Microbiology (Reading) 2009; 155:3622-3631. [DOI: 10.1099/mic.0.030908-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OmpR has been demonstrated to negatively regulate the expression of the flagellar master operon flhDC in a wide variety of bacterial species. Here we report the positive regulation of flhDC expression by OmpR in Yersinia pseudotuberculosis. A σ
70-dependent promoter was identified by primer extension analysis and an active region with two conserved OmpR-binding sites around the flhDC promoter was confirmed. To confirm the regulation of flhDC expression by OmpR, flhDC as well as the downstream flagellar genes fliA, flgD, flgA, flgM, fliC and flaA were fused to lacZ, and decreased expression of all these genes in an ompR mutant (ΔompR) was detected. Furthermore, ΔompR was defective in bacterial motility and flagella synthesis. This defect was due to the low level of expression of flhDC in ΔompR since overproduction of FlhDC in ΔompR restored bacterial motility. The importance of two conserved OmpR-binding sites around the flhDC promoter region in the regulation of flhDC expression by OmpR was demonstrated by the fact that mutation of either one or both sites significantly decreased the promoter activity in the wild-type but not in ΔompR. The binding of OmpR to these two sites was also demonstrated by DNA mobility shift assay. The possible mechanism underlying this positive regulation in Y. pseudotuberculosis is discussed. To our knowledge, this is the first report to demonstrate that OmpR positively regulates flhDC expression.
Collapse
Affiliation(s)
- Yangbo Hu
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Yao Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Lisha Ding
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Pei Lu
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Steve Atkinson
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Shiyun Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, the Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
24
|
Schumann W. Chapter 7 Temperature Sensors of Eubacteria. ADVANCES IN APPLIED MICROBIOLOGY 2009; 67:213-56. [DOI: 10.1016/s0065-2164(08)01007-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Du Z, Tan Y, Yang H, Qiu J, Qin L, Wang T, Liu H, Bi Y, Song Y, Guo Z, Han Y, Zhou D, Wang X, Yang R. Gene expression profiling of Yersinia pestis with deletion of lcrG, a known negative regulator for Yop secretion of type III secretion system. Int J Med Microbiol 2008; 299:355-66. [PMID: 19109068 DOI: 10.1016/j.ijmm.2008.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/12/2008] [Accepted: 10/02/2008] [Indexed: 12/20/2022] Open
Abstract
Yersinia pestis injects a set of virulent proteins into the cytosol of eukaryotic cells by a type III secretion system (T3SS). LcrG is a known negative regulator for secretion of Yersinia outer-membrane proteins (Yops) by blocking the secretion apparatus (Ysc) from the inner membrane. To further understand the effect of lcrG deletion on Y. pestis T3SS regulation, transcriptional profiles from the DeltalcrG mutant and wild-type Y. pestis strains were compared. The results showed that although the DeltalcrG mutant was markedly attenuated (600-fold increase of LD(50) in s.c. challenged BALB/c mice), transcriptions of almost all the type III genes were upregulated significantly in the DeltalcrG mutant. The immunoblotting analysis of YopM and LcrV demonstrated that their expressions were also increased in the DeltalcrG mutant in comparison to the wild-type strain. We speculate that, in addition to the negative regulation of the Yop secretion, LcrG could possibly play a negative regulatory role in the transcription of T3SS genes through indirect mechanisms. Furthermore, this report also revealed significant transcriptional changes in the genes encoding cell-envelope-related proteins and a virulence-related transcription factor RovA in the DeltalcrG mutant.
Collapse
Affiliation(s)
- Zongmin Du
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jahn CE, Willis DK, Charkowski AO. The flagellar sigma factor fliA is required for Dickeya dadantii virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1431-42. [PMID: 18842093 DOI: 10.1094/mpmi-21-11-1431] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The genome sequence of the Enterobacteriaceae phytopathogen Dickeya dadantii (formerly Erwinia chrysanthemi) revealed homologs of genes required for a complete flagellar secretion system and one flagellin gene. We found that D. dadantii was able to swim and swarm but that ability to swarm was dependent upon both growth media and temperature. Mutation of the D. dadantii fliA gene was pleiotropic, with the alternate sigma factor required for flagella production and development of disease symptoms but not bacterial growth in Nicotiana benthamiana leaves. The flagellar sigma factor was also required for multiple bacterial phenotypes, including biofilm formation in culture, bacterial adherence to plant tissue, and full expression of pectate lyase activity (but not cellulase or protease activity). Surprisingly, mutation of fliA resulted in the increased expression of avrL (a gene of unknown function in D. dadantii) and two pectate lyase gene homologs, pelX and ABF-0019391. Because FliA is a key contributor to virulence in D. dadantii, it is a new target for disease control.
Collapse
Affiliation(s)
- Courtney E Jahn
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
27
|
Abstract
Bacterial enteric infections are often associated with diarrhoea or vomiting, which are clinical presentations commonly referred to as gastroenteritis. However, some enteric pathogens, including typhoidal Salmonella serotypes, Brucella species and enteropathogenic Yersinia species are associated with a clinical syndrome that is characterized by abdominal pain and/or fever and is distinct from acute gastroenteritis. Recent insights into molecular mechanisms of the host-pathogen interaction show that these enteric pathogens share important characteristics that explain why the initial host responses associated with these agents more closely resemble host responses to viral or parasitic infections. Host responses contribute to the clinical presentation of disease and improved understanding of these responses in the laboratory is beginning to bridge the gap between bench and bedside.
Collapse
|
28
|
Puttamreddy S, Carruthers MD, Madsen ML, Minion FC. Transcriptome Analysis of Organisms with Food Safety Relevance. Foodborne Pathog Dis 2008; 5:517-29. [DOI: 10.1089/fpd.2008.0112] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Supraja Puttamreddy
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| | - Michael D. Carruthers
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| | - Melissa L. Madsen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| | - F. Chris Minion
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
29
|
Lanois A, Jubelin G, Givaudan A. FliZ, a flagellar regulator, is at the crossroads between motility, haemolysin expression and virulence in the insect pathogenic bacterium Xenorhabdus. Mol Microbiol 2008; 68:516-33. [PMID: 18383616 DOI: 10.1111/j.1365-2958.2008.06168.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is a complex interplay between the regulation of flagellar motility and the expression of virulence factors in many bacterial pathogens. We investigated the role of FliZ in the regulation of flagellar and virulence genes in Xenorhabdus nematophila, an insect pathogen. The fliZ gene is the second gene in the fliAZ operon in X. nematophila. In vivo transcription analysis revealed a positive feedback loop of fliAZ transcription in which FliZ activates flhDC, the master operon of flagellar regulon in X. nematophila, leading to an increased transcription of the FlhDC-dependent promoter of fliAZ. We also showed that fliAZ and flhDC mutants lacked motility, had no haemolysin or Tween lipase activity and displayed an attenuated virulence phenotype in insects. Lipase activity is controlled by FliA, whereas haemolysin production and full virulence phenotype have been reported to be FliZ-dependent. Transcriptional analysis revealed that FliZ directly controlled expression of the xhlBA and xaxAB operons, which encode haemolysins from the two-partner secretion system and the binary XaxAB toxin family respectively. We suggest that this regulatory pathway may also occur in other pathogenic enterobacteria with genes encoding members of these two growing families of haemolysins.
Collapse
Affiliation(s)
- Anne Lanois
- INRA, UMR 1133 Laboratoire EMIP, F-34000 Montpellier, France
| | | | | |
Collapse
|
30
|
Bresolin G, Trček J, Scherer S, Fuchs TM. Presence of a functional flagellar cluster Flag-2 and low-temperature expression of flagellar genes in Yersinia enterocolitica W22703. MICROBIOLOGY-SGM 2008; 154:196-206. [PMID: 18174138 DOI: 10.1099/mic.0.2007/008458-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Twelve Yersinia enterocolitica mutants carrying luxCDABE-transposon insertions in motility and chemotaxis genes were isolated on the basis of strong low-temperature induction. Two transposons were located within an 11.2 kb enteric flagellar cluster 2 (Flag-2) of Y. enterocolitica biotype 2, serotype O : 9 strain W22703. The Flag-2 gene cluster is absent from the corresponding genomic location of the sequenced strain Y. enterocolitica biotype 1B, serotype O : 8 strain 8081. Evidence for the functionality of the O : 9 Flag-2 genes, probably located within the plasticity zone of the genome, is provided by swarming assays. PCR analysis of 49 strains revealed the presence of Flag-2 genes in biotypes 2-5, but not in biotypes 1A or 1B. Bioluminescence, measured between 6 and 37 degrees C, showed that the expression of all genes located in Flag-2 and in the known flagellar cluster, Flag-1, was highest at approximately 20 degrees C, and that expression of two Flag-2 genes is FlhC-dependent. In a motility assay, a non-motile and a hyper-motile phenotype resulted from knockout mutations of the Flag-1 genes fliS1 and fliT, respectively. Complemented strains validated these results, confirming the regulatory role of FliT.
Collapse
Affiliation(s)
- Geraldine Bresolin
- Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Abteilung Mikrobiologie, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Janja Trček
- Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Abteilung Mikrobiologie, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Siegfried Scherer
- Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Abteilung Mikrobiologie, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Thilo M Fuchs
- Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Abteilung Mikrobiologie, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
31
|
Townsend MK, Carr NJ, Iyer JG, Horne SM, Gibbs PS, Prüss BM. Pleiotropic phenotypes of a Yersinia enterocolitica flhD mutant include reduced lethality in a chicken embryo model. BMC Microbiol 2008; 8:12. [PMID: 18215272 PMCID: PMC2262085 DOI: 10.1186/1471-2180-8-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 01/23/2008] [Indexed: 11/22/2022] Open
Abstract
Background The Yersinia enterocolitica flagellar master regulator FlhD/FlhC affects the expression levels of non-flagellar genes, including 21 genes that are involved in central metabolism. The sigma factor of the flagellar system, FliA, has a negative effect on the expression levels of seven plasmid-encoded virulence genes in addition to its positive effect on the expression levels of eight of the flagellar operons. This study investigates the phenotypes of flhD and fliA mutants that result from the complex gene regulation. Results Phenotypes relating to central metabolism were investigated with Phenotype MicroArrays. Compared to the wild-type strain, isogenic flhD and fliA mutants exhibited increased growth on purines and reduced growth on N-acetyl-D-glucosamine and D-mannose, when used as a sole carbon source. Both mutants grew more poorly on pyrimidines and L-histidine as sole nitrogen source. Several intermediates of the tricarboxylic acid and the urea cycle, as well as several dipeptides, provided differential growth conditions for the two mutants. Gene expression was determined for selected genes and correlated with the observed phenotypes. Phenotypes relating to virulence were determined with the chicken embryo lethality assay. The assay that was previously established for Escherichia coli strains was modified for Y. enterocolitica. The flhD mutant caused reduced chicken embryo lethality when compared to wild-type bacteria. In contrast, the fliA mutant caused wild-type lethality. This indicates that the virulence phenotype of the flhD mutant might be due to genes that are regulated by FlhD/FlhC but not FliA, such as those that encode the flagellar type III secretion system. Conclusion Phenotypes of flhD and fliA mutants are related to central metabolism and virulence and correlate with gene regulation.
Collapse
Affiliation(s)
- Megan K Townsend
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Claret L, Miquel S, Vieille N, Ryjenkov DA, Gomelsky M, Darfeuille-Michaud A. The flagellar sigma factor FliA regulates adhesion and invasion of Crohn disease-associated Escherichia coli via a cyclic dimeric GMP-dependent pathway. J Biol Chem 2007; 282:33275-33283. [PMID: 17827157 DOI: 10.1074/jbc.m702800200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The invasion of intestinal epithelial cells by the Crohn disease-associated adherent-invasive Escherichia coli (AIEC) strain LF82 depends on surface appendages, such as type 1 pili and flagella. The absence of flagella in the AIEC strain LF82 results in a concomitant loss of type 1 pili. Here, we show that flagellar regulators, transcriptional activator FlhD(2)C(2), and sigma factor FliA are involved in the coordination of flagellar and type 1 pili synthesis. In the deletion mutants lacking these regulators, type 1 pili synthesis, adhesion, and invasion were severely decreased. FliA expressed alone in trans was sufficient to restore these defects in both the LF82-DeltaflhD and LF82-DeltafliA mutants. We related the loss of type 1 pili to the decreased expression of the FliA-dependent yhjH gene in the LF82-DeltafliA mutant. YhjH is an EAL domain phosphodiesterase involved in degradation of the bacterial second messenger cyclic dimeric GMP (c-di-GMP). Increased expression of either yhjH or an alternative c-di-GMP phosphodiesterase, yahA, partially restored type 1 pili synthesis, adhesion, and invasion in the LF82-DeltafliA mutant. Deletion of the GGDEF domain diguanylate cyclase gene, yaiC, involved in c-di-GMP synthesis in the LF82-DeltafliA mutant also partially restored these defects, whereas overexpression of the c-di-GMP receptor YcgR had the opposite effect. These findings show that in the AIEC strain LF82, FliA is a key regulatory component linking flagellar and type 1 pili synthesis and that its effect on type 1 pili is mediated, at least in part, via a c-di-GMP-dependent pathway.
Collapse
Affiliation(s)
- Laurent Claret
- Université Clermont 1, Pathogénie Bactérienne Intestinale, Institut National de la Recherche Agronomique, Unité Sous Contrat 2018 (USC INRA 2018), Clermont-Ferrand F-63001, France; Institut Universitaire de Technologie en Génie Biologique, Aubière F-63172, France.
| | - Sylvie Miquel
- Université Clermont 1, Pathogénie Bactérienne Intestinale, Institut National de la Recherche Agronomique, Unité Sous Contrat 2018 (USC INRA 2018), Clermont-Ferrand F-63001, France; Institut Universitaire de Technologie en Génie Biologique, Aubière F-63172, France
| | - Natacha Vieille
- Université Clermont 1, Pathogénie Bactérienne Intestinale, Institut National de la Recherche Agronomique, Unité Sous Contrat 2018 (USC INRA 2018), Clermont-Ferrand F-63001, France
| | - Dmitri A Ryjenkov
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, 82071
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, 82071
| | - Arlette Darfeuille-Michaud
- Université Clermont 1, Pathogénie Bactérienne Intestinale, Institut National de la Recherche Agronomique, Unité Sous Contrat 2018 (USC INRA 2018), Clermont-Ferrand F-63001, France; Institut Universitaire de Technologie en Génie Biologique, Aubière F-63172, France
| |
Collapse
|
33
|
Gauger EJ, Leatham MP, Mercado-Lubo R, Laux DC, Conway T, Cohen PS. Role of motility and the flhDC Operon in Escherichia coli MG1655 colonization of the mouse intestine. Infect Immun 2007; 75:3315-24. [PMID: 17438023 PMCID: PMC1932950 DOI: 10.1128/iai.00052-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previously, we reported that the mouse intestine selected mutants of Escherichia coli MG1655 that have improved colonizing ability (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). These mutants grew 10 to 20% faster than their parent in mouse cecal mucus in vitro and 15 to 30% faster on several sugars found in the mouse intestine. The mutants were nonmotile and had deletions of various lengths beginning immediately downstream of an IS1 element located within the regulatory region of the flhDC operon, which encodes the master regulator of flagellum biosynthesis, FlhD(4)C(2). Here we show that during intestinal colonization by wild-type E. coli strain MG1655, 45 to 50% of the cells became nonmotile by day 3 after feeding of the strain to mice and between 80 and 90% of the cells were nonmotile by day 15 after feeding. Ten nonmotile mutants isolated from mice were sequenced, and all were found to have flhDC deletions of various lengths. Despite this strong selection, 10 to 20% of the E. coli MG1655 cells remained motile over a 15-day period, suggesting that there is an as-yet-undefined intestinal niche in which motility is an advantage. The deletions appear to be selected in the intestine for two reasons. First, genes unrelated to motility that are normally either directly or indirectly repressed by FlhD(4)C(2) but can contribute to maximum colonizing ability are released from repression. Second, energy normally used to synthesize flagella and turn the flagellar motor is redirected to growth.
Collapse
Affiliation(s)
- Eric J Gauger
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | | | | | | | | | | |
Collapse
|
34
|
Minnich SA, Rohde HN. A rationale for repression and/or loss of motility by pathogenic Yersinia in the mammalian host. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 603:298-310. [PMID: 17966426 DOI: 10.1007/978-0-387-72124-8_27] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pathogenic yersiniae either repress flagella expression under host conditions (Yersinia enterocolitica and Yersinia pseudotuberculosis) or have permanently lost this capability by mutation (Yersinia pestis). The block in flagella synthesis for the enteropathogenic Yersinia centers on fliA (sigmaF) repression. This repression ensures the downstream repression of flagellin structural genes which can be cross-recognized and secreted by virulence type III secretion systems. Y. pestis carries several flagellar mutations including a frame shift mutation in flhD, part of the flagellar master control operon. Repression of flagellins in the host environment may be critical because they are potent inducers of innate immunity. Artificial expression of flagellin in Y. enterocolitica completely attenuates virulence, supporting the hypothesis that motility is a liability in the mammalian host.
Collapse
Affiliation(s)
- Scott A Minnich
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, USA.
| | | |
Collapse
|
35
|
Iyoda S, Koizumi N, Satou H, Lu Y, Saitoh T, Ohnishi M, Watanabe H. The GrlR-GrlA regulatory system coordinately controls the expression of flagellar and LEE-encoded type III protein secretion systems in enterohemorrhagic Escherichia coli. J Bacteriol 2006; 188:5682-92. [PMID: 16885436 PMCID: PMC1540053 DOI: 10.1128/jb.00352-06] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The gene function of the locus of enterocyte effacement (LEE) is essential for full virulence of enterohemorrhagic Escherichia coli (EHEC). Strict control of LEE gene expression is mediated by the coordinated activities of several regulatory elements. We previously reported that the ClpX/ClpP protease positively controls LEE expression by down-regulating intracellular levels of GrlR, a negative regulator of LEE gene expression. We further revealed that the negative effect of GrlR on LEE expression was mediated through GrlA, a positive regulator of LEE expression. In this study, we found that the FliC protein, a major component of flagellar filament, was overproduced in clpXP mutant EHEC, as previously reported for Salmonella. We further found that FliC expression was reduced in a clpXP grlR double mutant. To determine the mediators of this phenotype, FliC protein levels in wild-type, grlR, grlA, and grlR grlA strains were compared. Steady-state levels of FliC protein were reduced only in the grlR mutant, suggesting that positive regulation of FliC expression by GrlR is mediated by GrlA. Correspondingly, cell motility was also reduced in the grlR mutant, but not in the grlA or grlR grlA mutant. Because overexpression of grlA from a multicopy plasmid strongly represses the FliC level, as well as cell motility, we conclude that GrlA acts as a negative regulator of flagellar-gene expression. The fact that an EHEC strain constitutively expressing FlhD/FlhC cannot adhere to HeLa cells leads us to hypothesize that GrlA-dependent repression of the flagellar regulon is important for efficient cell adhesion of EHEC to host cells.
Collapse
Affiliation(s)
- Sunao Iyoda
- Department of Bacteriology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | | | | | | | |
Collapse
|