1
|
Umehara E, Cajas RA, Conceição GB, Antar GM, Andricopulo AD, de Moraes J, Lago JHG. In Vitro and In Vivo Evaluation of the Antischistosomal Activity of Polygodial and 9-Deoxymuzigadial Isolated from Drimys brasiliensis Branches. Molecules 2025; 30:267. [PMID: 39860137 PMCID: PMC11767830 DOI: 10.3390/molecules30020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
In the present study, the hexane extract from branches of Drimys brasiliensis (Winteraceae) displayed potent activity against Schistosoma mansoni parasites (100% mortality of the worms at 200 μg/mL). Bioactivity-guided fractionation afforded, in addition to the previously reported bioactive sesquiterpene 3,6-epidioxy-bisabola-1,10-diene, two chemically related drimane sesquiterpenes-polygodial (1) and 9-deoxymuzigadial (2). The anti-S. mansoni effects for compounds 1 and 2 were determined in vitro, with compound 1 demonstrating significant potency (EC50 value of 10 μM for both male and female worms), while 2 was inactive. Cytotoxicity assays against Vero cells revealed no toxicity for either compound (CC50 > 200 μM). Additionally, an in silico analysis was conducted using the SwissADME platform for 1, revealing that this natural sesquiterpene exhibited adherence to several ADME parameters and no PAINS violations. Finally, in vivo studies with S. mansoni-infected mice treated with compound 1 demonstrated a 44.0% reduction in worm burden, accompanied by decreases in egg production of 71.8% in feces and 69.5% in intestines. These findings highlight the potential of polygodial (1) as a promising prototype for schistosomiasis treatment.
Collapse
Affiliation(s)
- Eric Umehara
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09280-560, SP, Brazil;
| | - Rayssa A. Cajas
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos 07023-070, SP, Brazil; (R.A.C.); (G.B.C.)
| | - Gabriel B. Conceição
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos 07023-070, SP, Brazil; (R.A.C.); (G.B.C.)
| | - Guilherme M. Antar
- Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito Santo, São Mateus 29932-540, ES, Brazil;
| | - Adriano D. Andricopulo
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13563-120, SP, Brazil;
- Centro de Pesquisa e Inovação Especial em Ciências da Descoberta de Medicamentos (CEPIMED), Universidade de São Paulo, São Carlos 13563-120, SP, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisas em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos 07023-070, SP, Brazil; (R.A.C.); (G.B.C.)
- Centro de Pesquisa e Inovação Especial em Ciências da Descoberta de Medicamentos (CEPIMED), Universidade de São Paulo, São Carlos 13563-120, SP, Brazil
- Núcleo de Pesquisas em Doenças Negligenciadas, Instituto Científico e Tecnológico, Universidade Brasil, São Paulo 08230-030, SP, Brazil
| | - João Henrique G. Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09280-560, SP, Brazil;
- Centro de Pesquisa e Inovação Especial em Ciências da Descoberta de Medicamentos (CEPIMED), Universidade de São Paulo, São Carlos 13563-120, SP, Brazil
| |
Collapse
|
2
|
Sum W, Ebada SS, Kirchenwitz M, Wanga L, Decock C, Stradal TEB, Matasyoh JC, Mándi A, Kurtán T, Stadler M. Neurite Outgrowth-Inducing Drimane-Type Sesquiterpenoids Isolated from Cultures of the Polypore Abundisporus violaceus MUCL 56355. JOURNAL OF NATURAL PRODUCTS 2023; 86:2457-2467. [PMID: 37910033 PMCID: PMC10683085 DOI: 10.1021/acs.jnatprod.3c00525] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 11/03/2023]
Abstract
Abundisporin A (1), together with seven previously undescribed drimane sesquiterpenes named abundisporins B-H (2-8), were isolated from a polypore, Abundisporus violaceus MUCL 56355 (Polyporaceae), collected in Kenya. Chemical structures of the isolated compounds were elucidated based on exhaustive 1D and 2D NMR spectroscopic measurements and supported by HRESIMS data. The absolute configurations of the isolated compounds were determined by using Mosher's method for 1-4 and TDDFT-ECD calculations for 4 and 5-8. None of the isolated compounds exhibited significant activities in either antimicrobial or cytotoxicity assays. Notably, all of the tested compounds demonstrated neurotrophic effects, with 1 and 6 significantly increasing outgrowth of neurites when treated with 5 ng/mL NGF.
Collapse
Affiliation(s)
- Winnie
Chemutai Sum
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße
7, 38106 Braunschweig, Germany
| | - Sherif S. Ebada
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain
Shams University, 11566 Cairo, Egypt
| | - Marco Kirchenwitz
- Department
of Cell Biology, Helmholtz Centre for Infection
Research, Inhoffenstrasse
7, 38124 Braunschweig, Germany
| | - Lucy Wanga
- Department
of Biochemistry, Egerton University, P.O. Box 536, 20115, Njoro, Kenya
| | - Cony Decock
- Mycothéque
de l’ Universite Catholique de Louvain (BCCM/MUCL), Place Croix du Sud 3, B-1348 Louvain-la-Neuve, Belgium
| | - Theresia E. B. Stradal
- Department
of Cell Biology, Helmholtz Centre for Infection
Research, Inhoffenstrasse
7, 38124 Braunschweig, Germany
| | | | - Attila Mándi
- Department
of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary
| | - Tibor Kurtán
- Department
of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary
| | - Marc Stadler
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße
7, 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Anticancer Activity of Natural and Semi-Synthetic Drimane and Coloratane Sesquiterpenoids. Molecules 2022; 27:molecules27082501. [PMID: 35458699 PMCID: PMC9031474 DOI: 10.3390/molecules27082501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Drimane and coloratane sesquiterpenoids are present in several plants, microorganisms, and marine life. Because of their cytotoxic activity, these sesquiterpenoids have received increasing attention as a source for new anticancer drugs and pharmacophores. Natural drimanes and coloratanes, as well as their semi-synthetic derivatives, showed promising results against cancer cell lines with in vitro activities in the low micro- and nanomolar range. Despite their high potential as novel anticancer agents, the mode of action and structure–activity relationships of drimanes and coloratanes have not been completely enlightened nor systematically reviewed. Our review aims to give an overview of known structures and derivatizations of this class of sesquiterpenoids, as well as their activity against cancer cells and potential modes-of-action. The cytotoxic activities of about 40 natural and 25 semi-synthetic drimanes and coloratanes are discussed. In addition to that, we give a summary about the clinical significance of drimane and coloratane sesquiterpenoids.
Collapse
|
4
|
Da Rosa RB, Borsoi G, Conter LU, Feistel C, Gottems AL, Reginatto FH, Grivicich I, De Barros Falcão Ferraz A. Bioguided isolation of a selective compound from Calea phyllolepis leaves against breast cancer cells. Basic Clin Pharmacol Toxicol 2021; 130:20-27. [PMID: 34605186 DOI: 10.1111/bcpt.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
Plants of the Calea genus have been reported to contain lipophilic compounds, such as sesquiterpene lactones, with cytotoxic effect against different cancer cell lines. The aim of this manuscript was to investigate the chemical profile and cytotoxic activity of different fractions from Calea phylolepis leaves on different human cancer cell lines. The fractions were prepared using solvent extraction of increasing polarity, yielding hexane, ethyl acetate and methanolic fractions. All fractions were chemically analysed by thin layer chromatography (TLC), and their cytotoxic activity against HT-29 (colon adenocarcinoma), MCF-7 (breast cancer), U-251MG (malignant glioblastoma) and L929 (mouse fibroblast) cell lines was investigated. Among these, the hexane and ethyl acetate fractions showed higher cytotoxic effects, while the methanolic fraction did not show any cytotoxic effects. The major bioactive compound from the hexane fraction (12.15%) was isolated using chromatographic methods and was identified by nuclear magnetic resonance spectroscopy (NMR) and gas chromatography-mass spectrometry (GC-MS) analysis as 6-epi-β-verbesinol coumarate. This compound showed activity against breast cancer cells (IC50 = 5.8 ± 1.0 μg/ml), similar to etoposide. Furthermore, 6-epi-β-verbesinol coumarate showed low cytotoxicity to normal fibroblast cells, suggesting a high selectivity index (SI = 7.39) against breast cancer cells.
Collapse
Affiliation(s)
- Rodrigo Bitencourt Da Rosa
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaude), Universidade Luterana do Brasil, Canoas, Brazil
| | - Guilherme Borsoi
- Programa de Iniciação Científica e Tecnológica, Universidade Luterana do Brasil, Canoas, Brazil
| | - Lucas Umpierre Conter
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaude), Universidade Luterana do Brasil, Canoas, Brazil
| | - Cleverson Feistel
- Programa de Iniciação Científica e Tecnológica, Universidade Luterana do Brasil, Canoas, Brazil
| | | | - Flávio Henrique Reginatto
- Programa de Pós-graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ivana Grivicich
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaude), Universidade Luterana do Brasil, Canoas, Brazil
| | - Alexandre De Barros Falcão Ferraz
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde (PPGBioSaude), Universidade Luterana do Brasil, Canoas, Brazil
| |
Collapse
|
5
|
Zhuang XC, Zhang YL, Chen GL, Liu Y, Hu XL, Li N, Wu JL, Guo MQ. Identification of Anti-Inflammatory and Anti-Proliferative Neolignanamides from Warburgia ugandensis Employing Multi-Target Affinity Ultrafiltration and LC-MS. Pharmaceuticals (Basel) 2021; 14:ph14040313. [PMID: 33915848 PMCID: PMC8065987 DOI: 10.3390/ph14040313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Previous reports have illustrated that the incidence and mortality of cancer are increasing year by year worldwide. In addition, the occurrence, development, recurrence and metastasis of cancer are closely related to inflammation, which is a kind of defensive response of human body to various stimuli. As an important medicinal plant in Africa, Warburgia ugandensis has been reported to have certain anti-inflammatory and anti-proliferative activities, but its specific components and mechanisms of action remain elusive. To tackle this challenge, affinity ultrafiltration with drug targets of interest coupled to high-performance liquid chromatography-mass spectrometry (AUF-HPLC-MS/MS) could be utilized to quickly screen out bioactive constituents as ligands against target enzymes from complex extracts of this plant. AUF-HPLC-MS/MS with four drug targets, i.e., cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), topoisomerase I (Top I) and topoisomerase II (Top II) were used to rapidly screen and characterize the anti-inflammatory and anti-proliferative natural ligands from W. ugandensis, and the resulting potential active compounds as ligands with specific binding affinity to COX-2, 5-LOX, Top I and Top II, were isolated with modern separation and purification techniques and identified with spectroscopic method like NMR, and then their antiinflammatory and anti-proliferative activities were tested to verify the screening results from AUF-HPLC-MS/MS. Compounds 1 and 2, which screened out and identified from W. ugandensis showed remarkable binding affinity to COX-2, 5-LOX, Top I and Top II with AUF-HPLC-MS/MS. In addition, 1 new compound (compound 3), together with 5 known compounds were also isolated and identified from W. ugandensis. The structure of compound 3 was elucidated by extensive 1D, 2D NMR data and UPLC-QTOF-MS/MS. Furthermore, compounds 1 and 2 were further proved to possess both anti-inflammatory and anti-proliferative activities which are in good agreement with the screening results using AUF-HPLC-MS/MS. This work showcased an efficient method for quickly screening out bioactive components with anti-inflammatory and anti-proliferative activity from complex medicinal plant extracts using AUF-HPLC-MS/MS with target enzymes of interest, and also demonstrated that neolignanamides (compounds 1 and 2) from W. ugandensis would be the active components responsible for its anti-inflammatory and anti-proliferative activity with the potential to treat cancer and inflammation.
Collapse
Affiliation(s)
- Xiao-Cui Zhuang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.-C.Z.); (Y.-L.Z.); (G.-L.C.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Yong-Li Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.-C.Z.); (Y.-L.Z.); (G.-L.C.); (Y.L.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Gui-Lin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.-C.Z.); (Y.-L.Z.); (G.-L.C.); (Y.L.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ye Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.-C.Z.); (Y.-L.Z.); (G.-L.C.); (Y.L.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao-Lan Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China; (X.-L.H.); (N.L.); (J.-L.W.)
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China; (X.-L.H.); (N.L.); (J.-L.W.)
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China; (X.-L.H.); (N.L.); (J.-L.W.)
| | - Ming-Quan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.-C.Z.); (Y.-L.Z.); (G.-L.C.); (Y.L.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence: ; Tel.: +86-027-87700850
| |
Collapse
|
6
|
Kitte R, Tretbar M, Dluczek S, Beckmann L, Marquardt P, Duenkel A, Schubert A, Fricke S, Tretbar US. Chemical and Cytotoxic Activity of three main Sesquiterpenoids from Warburgia ugandensis. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
7
|
Liu YF, Yue YF, Feng LX, Zhu HJ, Cao F. Asperienes A-D, Bioactive Sesquiterpenes from the Marine-Derived Fungus Aspergillus flavus. Mar Drugs 2019; 17:md17100550. [PMID: 31561527 PMCID: PMC6836145 DOI: 10.3390/md17100550] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
Marine-derived fungi of the genera Aspergillus could produce novel compounds with significant bioactivities. Among these fungi, the strain Aspergillus flavus is notorious for its mutagenic mycotoxins production. However, some minor components with certain toxicities from A. flavus have not been specifically surveyed and might have potent biological activities. Our investigation of the marine-derived fungus Aspergillus flavus CF13-11 cultured in solid medium led to the isolation of four C-6′/C-7′ epimeric drimane sesquiterpene esters, asperienes A–D (1–4). Their absolute configurations were assigned by electronic circular dichroism (ECD) and Snatzke’s methods. This is the first time that two pairs of C-6′/C-7′ epimeric drimane sesquiterpene esters have successfully been separated. Aperienes A–D (1–4) displayed potent bioactivities towards four cell lines with the IC50 values ranging from 1.4 to 8.3 μM. Interestingly, compounds 1 and 4 exhibited lower toxicities than 2 and 3 toward normal GES-1 cells, indicating more potential for development as an antitumor agent in the future.
Collapse
Affiliation(s)
- Yun-Feng Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
- College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Yu-Fei Yue
- Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| | - Li-Xi Feng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| | - Hua-Jie Zhu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| | - Fei Cao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
- College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
8
|
Antiproliferative and toxicological properties of drimanes obtained from Drimys brasiliensis stem barks. Biomed Pharmacother 2018; 103:1498-1506. [DOI: 10.1016/j.biopha.2018.04.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023] Open
|