1
|
Sheng X, Li X, Jia Y, Chen P, Liu Y, Ru G, Xu M, Liu L, Zhu X, Jin X, Liu Y, Zhao H, Li H. Electrochemical Biosensor for Protein Concentration Monitoring Using Natural Wood Evaporation for Power Generation. Anal Chem 2024; 96:917-925. [PMID: 38171538 DOI: 10.1021/acs.analchem.3c05041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A high-sensitivity, low-cost, self-powered biomass electrochemical biosensor based on the "evaporating potential" theory is developed for protein detection. The feasibility of experimental evaluation methods was verified with a probe protein of bovine serum albumin. The sensor was then used to detect lung cancer marker CYFRA21-1, and the potential of our sensor for clinical diagnosis was demonstrated by serum analysis. This work innovatively exploits the osmotic power generation capability of natural wood to construct a promising electrochemical biosensor that was driven by kinetics during testing. The detection methods used for this sensor, chronoamperometry and AC impedance, showed potential for quantitative analysis and specific detection, respectively. Furthermore, the sensor could facilitate new insights into the development of high-sensitivity, low-cost, and easy-to-use electrochemical biosensors.
Collapse
Affiliation(s)
- Xia Sheng
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Xu Li
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, China
| | - Yanfang Jia
- Department of Clinical Laboratory, People's Hospital of Henan University of Chinese Medicine, No. 33, Huanghe Road, Zhengzhou 450053, Henan, China
| | - Pengxun Chen
- Department of Clinical Laboratory, People's Hospital of Henan University of Chinese Medicine, No. 33, Huanghe Road, Zhengzhou 450053, Henan, China
| | - Yawei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guangxin Ru
- College of Forestry, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Mengyi Xu
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Lijie Liu
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Xiuhong Zhu
- College of Forestry, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Xianchun Jin
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Yanyan Liu
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
| | - Hailiang Zhao
- College of Science, Henan Agricultural University, Nongye Road 63, Zhengzhou 450002, China
- School of Environmental Engineering, Henan University of Technology, Lianhua Street 100, Zhengzhou 450001, China
| | - Hongjuan Li
- Department of Clinical Laboratory, People's Hospital of Henan University of Chinese Medicine, No. 33, Huanghe Road, Zhengzhou 450053, Henan, China
| |
Collapse
|
2
|
Ning J, Yang M, Liu W, Luo X, Yue X. Proteomics and Peptidomics As a Tool to Compare the Proteins and Endogenous Peptides in Human, Cow, and Donkey Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16435-16451. [PMID: 37882656 DOI: 10.1021/acs.jafc.3c04534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Cow's milk is the most widely used ingredient in infant formulas. However, its specific protein composition can cause allergic reactions. Finding alternatives to replace cow's milk and fill the nutritional gap with human milk is essential for the health of infants. Proteomic and peptidomic techniques have supported the elucidation of milk's nutritional ingredients. Recently, omics approaches have attracted increasing interest in the investigation of milk because of their high throughput, precision, sensitivity, and reproducibility. This review offers a significant overview of recent developments in proteomics and peptidomics used to study the differences in human, cow, and donkey milk. All three types of milks were identified to have critical biological functions in human health, particularly in infants. Donkey milk proteins were closer in composition to human milk, were less likely to cause allergic reactions, and may be developed as novel raw materials for formula milk powders.
Collapse
Affiliation(s)
- Jianting Ning
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Wanting Liu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| |
Collapse
|
3
|
Brandão-Dias PFP, Deatsch AE, Tank JL, Shogren AJ, Rosi EJ, Ruggiero ST, Tanner CE, Egan SP. Novel Field-Based Protein Detection Method Using Light Transmission Spectroscopy and Antibody Functionalized Gold Nanoparticles. NANO LETTERS 2022; 22:2611-2617. [PMID: 35362986 DOI: 10.1021/acs.nanolett.1c04142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein detection is a universal tool critical to many applications in medicine, agriculture, and biotechnology. We developed a novel protein detection method combining light transmission spectroscopy and particle-size analysis of gold nanospheres monovalently functionalized with polyclonal antibodies and applied it to an emerging challenge for such technologies─the monitoring of environmental proteins (eProteins) present in natural aquatic systems. These are an underreported source of pollution and include the pseudopersistent Cry toxins that enter aquatic ecosystems from surrounding genetically engineered crops. The assay is capable of detecting proteins in complex matrices, such as water samples collected in the field, making it a competitive assay for eProtein detection. It is sensitive, reaching 1.25 ng mL-1, and we demonstrate its application to the detection of Cry1Ab from subsurface tile-drain and streamwater samples from agricultural waterways. The assay can also be quickly adapted for other protein detection applications in the future.
Collapse
Affiliation(s)
| | - Alison E Deatsch
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jennifer L Tank
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arial J Shogren
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Emma J Rosi
- Cary Institute of Ecosystem Studies, Millbrook, New York 12545, United States
| | - Steven T Ruggiero
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Carol E Tanner
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Scott P Egan
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Gao J, Le S, Thayumanavan S. Enzyme Catalysis in Non‐Native Environment with Unnatural Selectivity Using Polymeric Nanoreactors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jingjing Gao
- Department of Chemistry University of Massachusetts Amherst Amherst MA 01003 USA
- Center for Nanomedicine and Division of Engineering in Medicine Department of Anesthesiology Brigham and Women's Hospital Boston MA 02115 USA
- Harvard Medical School Boston MA 02115 USA
| | - Stephanie Le
- Department of Chemistry University of Massachusetts Amherst Amherst MA 01003 USA
| | - S. Thayumanavan
- Department of Chemistry University of Massachusetts Amherst Amherst MA 01003 USA
| |
Collapse
|
5
|
Kumar P, Kanjilal P, Das R, Dash TK, Mohanan M, Le TN, Rao NV, Mukhopadhyay B, Shunmugam R. 1,6-heptadiynes based cyclopolymerization functionalized with mannose by post polymer modification for protein interaction. Carbohydr Res 2021; 508:108397. [PMID: 34280802 DOI: 10.1016/j.carres.2021.108397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022]
Abstract
Carbohydrate functionalized polymers or Glycopolymers have earned a great deal of interest in recent times for their potential biomedical applications. In the present study, a mannose containing glycopolymer was synthesized by cyclopolymerization of malonic acid derivative using second generation Hoveyda Grubbs' catalyst. Post-polymerization modification was done to install a propargyl moiety. Finally, functionalization of the propargylated polymer with 2-azidoethyl mannoside using azide-alkyne "click chemistry" furnished the target glycopolymer which was successfully characterized using NMR, FT-IR, mass spectroscopy and advanced polymer chromatography. The glycopolymer was found to self-assemble into capsule and spherical shape in water and DMSO respectively and these morphologies were observed through SEM and TEM. Upon interaction with Con A, the mannose containing glycopolymer showed an increment in aggregation induced fluorescence with increasing concentration of the lectin. In vitro cytotoxicity studies on MCF 7 cell line showed 90% cell viability up to glycopolymer concentration of 500 μg/mL.
Collapse
Affiliation(s)
- Pawan Kumar
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia, West Bengal, 741246, India
| | - Pintu Kanjilal
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia, West Bengal, 741246, India
| | - Rituparna Das
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India
| | - Tapan K Dash
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia, West Bengal, 741246, India
| | - Manikandan Mohanan
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia, West Bengal, 741246, India
| | - Trong-Nghia Le
- Medicinal Polymer Chemistry Lab, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - N Vijayakameswara Rao
- Medicinal Polymer Chemistry Lab, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Balaram Mukhopadhyay
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| | - Raja Shunmugam
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia, West Bengal, 741246, India.
| |
Collapse
|
6
|
Gao J, Le S, Thayumanavan S. Enzyme Catalysis in Non-Native Environment with Unnatural Selectivity Using Polymeric Nanoreactors. Angew Chem Int Ed Engl 2021; 60:27189-27194. [PMID: 34510672 DOI: 10.1002/anie.202109477] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/27/2021] [Indexed: 11/10/2022]
Abstract
The utilization of enzymes for catalysis in organic solvents, while exhibiting selectivity to different substrates, is a big challenge. We report an amphiphilic random copolymer system that self-assembles with enzymes in an organic solvent to form nanoreactors. These encapsulated enzymes are not denatured and they do preserve the catalytic activity. The cross-linkable functional groups in the hydrophobic compartments of the polymers offer to control accessibility to the enzyme. This varied accessibility due to the polymer host, rather than the enzyme itself, endows the nanoreactor with an unnatural selectivity. The findings here highlight the significant potential of simple polymer-based enzyme nanoreactors to execute selective organic reactions under non-native conditions.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA.,Center for Nanomedicine and Division of Engineering in Medicine, Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Stephanie Le
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|