1
|
Majdi Yazdi M, Saran S, Mrozowich T, Lehnert C, Patel TR, Sanders DAR, Palmer DRJ. Asparagine-84, a regulatory allosteric site residue, helps maintain the quaternary structure of Campylobacter jejuni dihydrodipicolinate synthase. J Struct Biol 2019; 209:107409. [PMID: 31678256 DOI: 10.1016/j.jsb.2019.107409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 02/05/2023]
Abstract
Dihydrodipicolinate synthase (DHDPS) from Campylobacter jejuni is a natively homotetrameric enzyme that catalyzes the first unique reaction of (S)-lysine biosynthesis and is feedback-regulated by lysine through binding to an allosteric site. High-resolution structures of the DHDPS-lysine complex have revealed significant insights into the binding events. One key asparagine residue, N84, makes hydrogen bonds with both the carboxyl and the α-amino group of the bound lysine. We generated two mutants, N84A and N84D, to study the effects of these changes on the allosteric site properties. However, under normal assay conditions, N84A displayed notably lower catalytic activity, and N84D showed no activity. Here we show that these mutations disrupt the quaternary structure of DHDPS in a concentration-dependent fashion, as demonstrated by size-exclusion chromatography, multi-angle light scattering, dynamic light scattering, small-angle X-ray scattering (SAXS) and high-resolution protein crystallography.
Collapse
Affiliation(s)
- Mohadeseh Majdi Yazdi
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Sagar Saran
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Tyler Mrozowich
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Cheyanne Lehnert
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada; Li Ka Shing Institute of Virology and DiscoveryLab, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | - David A R Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
2
|
Pomel S, Mao W, Ha-Duong T, Cavé C, Loiseau PM. GDP-Mannose Pyrophosphorylase: A Biologically Validated Target for Drug Development Against Leishmaniasis. Front Cell Infect Microbiol 2019; 9:186. [PMID: 31214516 PMCID: PMC6554559 DOI: 10.3389/fcimb.2019.00186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/15/2019] [Indexed: 01/02/2023] Open
Abstract
Leishmaniases are neglected tropical diseases that threaten about 350 million people in 98 countries around the world. In order to find new antileishmanial drugs, an original approach consists in reducing the pathogenic effect of the parasite by impairing the glycoconjugate biosynthesis, necessary for parasite recognition and internalization by the macrophage. Some proteins appear to be critical in this way, and one of them, the GDP-Mannose Pyrophosphorylase (GDP-MP), is an attractive target for the design of specific inhibitors as it is essential for Leishmania survival and it presents significant differences with the host counterpart. Two GDP-MP inhibitors, compounds A and B, have been identified in two distinct studies by high throughput screening and by a rational approach based on molecular modeling, respectively. Compound B was found to be the most promising as it exhibited specific competitive inhibition of leishmanial GDP-MP and antileishmanial activities at the micromolar range with interesting selectivity indexes, as opposed to compound A. Therefore, compound B can be used as a pharmacological tool for the development of new specific antileishmanial drugs.
Collapse
Affiliation(s)
- Sébastien Pomel
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Wei Mao
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Tâp Ha-Duong
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Christian Cavé
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Philippe M Loiseau
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
3
|
Sun B, Peng J, Wang S, Liu X, Zhang K, Zhang Z, Wang C, Jing X, Zhou C, Wang Y. Applications of stem cell-derived exosomes in tissue engineering and neurological diseases. Rev Neurosci 2018; 29:531-546. [PMID: 29267178 DOI: 10.1515/revneuro-2017-0059] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/12/2017] [Indexed: 12/13/2022]
Abstract
Exosomes are extracellular vesicles with diameters of 30-100 nm that are key for intercellular communication. Almost all types of cell, including dendritic cells, T cells, mast cells, epithelial cells, neuronal cells, adipocytes, mesenchymal stem cells, and platelets, can release exosomes. Exosomes are present in human body fluids, such as urine, amniotic fluid, malignant ascites, synovial fluid, breast milk, cerebrospinal fluid, semen, saliva, and blood. Exosomes have biological functions in immune response, antigen presentation, intercellular communication, and RNA and protein transfer. This review provides a brief overview of the origin, morphological characteristics, enrichment and identification methods, biological functions, and applications in tissue engineering and neurological diseases of exosomes.
Collapse
Affiliation(s)
- Baichuan Sun
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopaedics, Beijing 100853, China
| | - Shoufeng Wang
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Xuejian Liu
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Kaihong Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Zengzeng Zhang
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Chong Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoguang Jing
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Chengfu Zhou
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China.,Beijing Key Laboratory of Regenerative Medicine in Orthopaedics, Beijing 100853, China
| |
Collapse
|
4
|
Atkinson SC, Dogovski C, Wood K, Griffin MDW, Gorman MA, Hor L, Reboul CF, Buckle AM, Wuttke J, Parker MW, Dobson RCJ, Perugini MA. Substrate Locking Promotes Dimer-Dimer Docking of an Enzyme Antibiotic Target. Structure 2018; 26:948-959.e5. [PMID: 29804823 DOI: 10.1016/j.str.2018.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/27/2018] [Accepted: 04/19/2018] [Indexed: 11/19/2022]
Abstract
Protein dynamics manifested through structural flexibility play a central role in the function of biological molecules. Here we explore the substrate-mediated change in protein flexibility of an antibiotic target enzyme, Clostridium botulinum dihydrodipicolinate synthase. We demonstrate that the substrate, pyruvate, stabilizes the more active dimer-of-dimers or tetrameric form. Surprisingly, there is little difference between the crystal structures of apo and substrate-bound enzyme, suggesting protein dynamics may be important. Neutron and small-angle X-ray scattering experiments were used to probe substrate-induced dynamics on the sub-second timescale, but no significant changes were observed. We therefore developed a simple technique, coined protein dynamics-mass spectrometry (ProD-MS), which enables measurement of time-dependent alkylation of cysteine residues. ProD-MS together with X-ray crystallography and analytical ultracentrifugation analyses indicates that pyruvate locks the conformation of the dimer that promotes docking to the more active tetrameric form, offering insight into ligand-mediated stabilization of multimeric enzymes.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Con Dogovski
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael A Gorman
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Lilian Hor
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe University, Melbourne, VIC 3086, Australia
| | - Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Joachim Wuttke
- Juelich Centre for Neutron Science (JCNS), at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Juelich GmbH, Lichtenstrasse 1, Garching 85 747, Germany
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Renwick C J Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag, Christchurch 4800, New Zealand
| | - Matthew A Perugini
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
5
|
Desbois S, John UP, Perugini MA. Dihydrodipicolinate synthase is absent in fungi. Biochimie 2018; 152:73-84. [PMID: 29959064 DOI: 10.1016/j.biochi.2018.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
The class I aldolase dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step of the diaminopimelate (DAP) lysine biosynthesis pathway in bacteria, archaea and plants. Despite the existence, in databases, of numerous fungal sequences annotated as DHDPS, its presence in fungi has been the subject of contradictory claims. We report the characterization of DHDPS candidates from fungi. Firstly, the putative DHDPS from Coccidioides immitis (PDB ID: 3QFE) was shown to have negligible enzyme activity. Sequence analysis of 3QFE showed that three out of the seven amino acid residues critical for DHDPS activity are absent; however, exact matches to catalytic residues from two other class I aldolases, 2-keto-3-deoxygluconate aldolase (KDGA), and 4-hydroxy-2-oxoglutarate aldolase (HOGA), were identified. The presence of both KDGA and HOGA activity in 3QFE was confirmed in vitro using enzyme assays, the first report of such dual activity. Subsequent analyses of all publically available fungal sequences revealed that no entry contains all seven residues important for DHDPS function. The candidate with the highest number of identities (6 of 7), KIW77228 from Fonsecaea pedrosoi, was shown to have trace DHDPS activity in vitro, partially restored by substitution of the seventh critical residue, and to be incapable of complementing DHDPS-deficient E. coli cells. Combined with the presence of all seven sequences for the alternative α-aminoadipate (AAA) lysine biosynthesis pathway in C. immitis and F. pedrosoi, we believe that DHDPS and the DAP pathway are absent in fungi, and further, that robust informed methods for annotating genes need to be implemented.
Collapse
Affiliation(s)
- Sebastien Desbois
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, VIC, 3086, Australia
| | - Ulrik P John
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, VIC, 3086, Australia; Agriculture Victoria Research, Department of Economic Development, Jobs, Transport and Resources, AgriBio, La Trobe University, VIC, 3086, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, VIC, 3086, Australia.
| |
Collapse
|
6
|
Soares da Costa TP, Abbott BM, Gendall AR, Panjikar S, Perugini MA. Molecular evolution of an oligomeric biocatalyst functioning in lysine biosynthesis. Biophys Rev 2018; 10:153-162. [PMID: 29204887 PMCID: PMC5899710 DOI: 10.1007/s12551-017-0350-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) is critical to the production of lysine through the diaminopimelate (DAP) pathway. Elucidation of the function, regulation and structure of this key class I aldolase has been the focus of considerable study in recent years, given that the dapA gene encoding DHDPS has been found to be essential to bacteria and plants. Allosteric inhibition by lysine is observed for DHDPS from plants and some bacterial species, the latter requiring a histidine or glutamate at position 56 (Escherichia coli numbering) over a basic amino acid. Structurally, two DHDPS monomers form the active site, which binds pyruvate and (S)-aspartate β-semialdehyde, with most dimers further dimerising to form a tetrameric arrangement around a solvent-filled centre cavity. The architecture and behaviour of these dimer-of-dimers is explored in detail, including biophysical studies utilising analytical ultracentrifugation, small-angle X-ray scattering and macromolecular crystallography that show bacterial DHDPS tetramers adopt a head-to-head quaternary structure, compared to the back-to-back arrangement observed for plant DHDPS enzymes. Finally, the potential role of pyruvate in providing substrate-mediated stabilisation of DHDPS is considered.
Collapse
Affiliation(s)
- Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, Melbourne, VIC, 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, VIC, 3800, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
7
|
Gupta R, Soares da Costa TP, Faou P, Dogovski C, Perugini MA. Comparison of untagged and his-tagged dihydrodipicolinate synthase from the enteric pathogen Vibrio cholerae. Protein Expr Purif 2018; 145:85-93. [PMID: 29337198 DOI: 10.1016/j.pep.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 02/03/2023]
Abstract
Given the emergence of multi drug resistant Vibrio cholerae strains, there is an urgent need to characterize new anti-cholera targets. One such target is the enzyme dihydrodipicolinate synthase (DHDPS; EC 4.3.3.7), which catalyzes the first committed step in the diaminopimelate pathway. This pathway is responsible for the production of two key metabolites in bacteria and plants, namely meso-2,6-diaminopimelate and L-lysine. Here, we report the cloning, expression and purification of untagged and His-tagged recombinant DHDPS from V. cholerae (Vc-DHDPS) and provide comparative structural and kinetic analyses. Structural studies employing circular dichroism spectroscopy and analytical ultracentrifugation demonstrate that the recombinant enzymes are folded and exist as dimers in solution. Kinetic analyses of untagged and His-tagged Vc-DHDPS show that the enzymes are functional with specific activities of 75.6 U/mg and 112 U/mg, KM (pyruvate) of 0.14 mM and 0.15 mM, KM (L-aspartate-4-semialdehyde) of 0.08 mM and 0.09 mM, and kcat of 34 and 46 s-1, respectively. These results demonstrate there are no significant changes in the structure and function of Vc-DHDPS upon the addition of an N-terminal His tag and, hence, the tagged recombinant product is suitable for future studies, including screening for new inhibitors as potential anti-cholera agents. Additionally, a polyclonal antibody raised against untagged Vc-DHDPS is validated for specifically detecting recombinant and native forms of the enzyme.
Collapse
Affiliation(s)
- Ruchi Gupta
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Con Dogovski
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
8
|
Christensen JB, Soares da Costa TP, Faou P, Pearce FG, Panjikar S, Perugini MA. Structure and Function of Cyanobacterial DHDPS and DHDPR. Sci Rep 2016; 6:37111. [PMID: 27845445 PMCID: PMC5109050 DOI: 10.1038/srep37111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
Lysine biosynthesis in bacteria and plants commences with a condensation reaction catalysed by dihydrodipicolinate synthase (DHDPS) followed by a reduction reaction catalysed by dihydrodipicolinate reductase (DHDPR). Interestingly, both DHDPS and DHDPR exist as different oligomeric forms in bacteria and plants. DHDPS is primarily a homotetramer in all species, but the architecture of the tetramer differs across kingdoms. DHDPR also exists as a tetramer in bacteria, but has recently been reported to be dimeric in plants. This study aimed to characterise for the first time the structure and function of DHDPS and DHDPR from cyanobacteria, which is an evolutionary important phylum that evolved at the divergence point between bacteria and plants. We cloned, expressed and purified DHDPS and DHDPR from the cyanobacterium Anabaena variabilis. The recombinant enzymes were shown to be folded by circular dichroism spectroscopy, enzymatically active employing the quantitative DHDPS-DHDPR coupled assay, and form tetramers in solution using analytical ultracentrifugation. Crystal structures of DHDPS and DHDPR from A. variabilis were determined at 1.92 Å and 2.83 Å, respectively, and show that both enzymes adopt the canonical bacterial tetrameric architecture. These studies indicate that the quaternary structure of bacterial and plant DHDPS and DHDPR diverged after cyanobacteria evolved.
Collapse
Affiliation(s)
- Janni B. Christensen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - T. P. Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - F. Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, Victoria 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew A. Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
9
|
Abstract
Here, we review recent studies aimed at defining the importance of quaternary structure to a model oligomeric enzyme, dihydrodipicolinate synthase. This will illustrate the complementary and synergistic outcomes of coupling the techniques of analytical ultracentrifugation with enzyme kinetics, in vitro mutagenesis, macromolecular crystallography, small angle X-ray scattering, and molecular dynamics simulations, to demonstrate the role of subunit self-association in facilitating protein dynamics and enzyme function. This multitechnique approach has yielded new insights into the molecular evolution of protein quaternary structure.
Collapse
|
10
|
Atkinson SC, Hor L, Dogovski C, Dobson RCJ, Perugini MA. Identification of the bona fide DHDPS from a common plant pathogen. Proteins 2014; 82:1869-83. [PMID: 24677246 DOI: 10.1002/prot.24539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/06/2014] [Accepted: 02/13/2014] [Indexed: 11/10/2022]
Abstract
Agrobacterium tumefaciens is a Gram-negative soil-borne bacterium that causes Crown Gall disease in many economically important crops. The absence of a suitable chemical treatment means there is a need to discover new anti-Crown Gall agents and also characterize bona fide drug targets. One such target is dihydrodipicolinate synthase (DHDPS), a homo-tetrameric enzyme that catalyzes the committed step in the metabolic pathway yielding meso-diaminopimelate and lysine. Interestingly, there are 10 putative DHDPS genes annotated in the A. tumefaciens genome, including three whose structures have recently been determined (PDB IDs: 3B4U, 2HMC, and 2R8W). However, we show using quantitative enzyme kinetic assays that nine of the 10 dapA gene products, including 3B4U, 2HMC, and 2R8W, lack DHDPS function in vitro. A sequence alignment showed that the product of the dapA7 gene contains all of the conserved residues known to be important for DHDPS catalysis and allostery. This gene was cloned and the recombinant product expressed and purified. Our studies show that the purified enzyme (i) possesses DHDPS enzyme activity, (ii) is allosterically inhibited by lysine, and (iii) adopts the canonical homo-tetrameric structure in both solution and the crystal state. This study describes for the first time the structure, function and allostery of the bona fide DHDPS from A. tumefaciens, which offers insight into the rational design of pesticide agents for combating Crown Gall disease.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | | | | | | | | |
Collapse
|
11
|
Dogovski C, Gorman MA, Ketaren NE, Praszkier J, Zammit LM, Mertens HD, Bryant G, Yang J, Griffin MDW, Pearce FG, Gerrard JA, Jameson GB, Parker MW, Robins-Browne RM, Perugini MA. From knock-out phenotype to three-dimensional structure of a promising antibiotic target from Streptococcus pneumoniae. PLoS One 2013; 8:e83419. [PMID: 24349508 PMCID: PMC3862839 DOI: 10.1371/journal.pone.0083419] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/13/2013] [Indexed: 11/18/2022] Open
Abstract
Given the rise in drug-resistant Streptococcus pneumoniae, there is an urgent need to discover new antimicrobials targeting this pathogen and an equally urgent need to characterize new drug targets. A promising antibiotic target is dihydrodipicolinate synthase (DHDPS), which catalyzes the rate-limiting step in lysine biosynthesis. In this study, we firstly show by gene knock out studies that S. pneumoniae (sp) lacking the DHDPS gene is unable to grow unless supplemented with lysine-rich media. We subsequently set out to characterize the structure, function and stability of the enzyme drug target. Our studies show that sp-DHDPS is folded and active with a k(cat) = 22 s(-1), K(M)(PYR) = 2.55 ± 0.05 mM and K(M)(ASA) = 0.044 ± 0.003 mM. Thermal denaturation experiments demonstrate sp-DHDPS exhibits an apparent melting temperature (T(M)(app)) of 72 °C, which is significantly greater than Escherichia coli DHDPS (Ec-DHDPS) (T(M)(app) = 59 °C). Sedimentation studies show that sp-DHDPS exists in a dimer-tetramer equilibrium with a K(D)(4→2) = 1.7 nM, which is considerably tighter than its E. coli ortholog (K(D)(4→2) = 76 nM). To further characterize the structure of the enzyme and probe its enhanced stability, we solved the high resolution (1.9 Å) crystal structure of sp-DHDPS (PDB ID 3VFL). The enzyme is tetrameric in the crystal state, consistent with biophysical measurements in solution. Although the sp-DHDPS and Ec-DHDPS active sites are almost identical, the tetramerization interface of the s. pneumoniae enzyme is significantly different in composition and has greater buried surface area (800 Å(2)) compared to its E. coli counterpart (500 Å(2)). This larger interface area is consistent with our solution studies demonstrating that sp-DHDPS is considerably more thermally and thermodynamically stable than Ec-DHDPS. Our study describe for the first time the knock-out phenotype, solution properties, stability and crystal structure of DHDPS from S. pneumoniae, a promising antimicrobial target.
Collapse
Affiliation(s)
- Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Michael A. Gorman
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Natalia E. Ketaren
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Judy Praszkier
- Department of Microbiology & Immunology, University of Melbourne, Victoria, Australia
| | - Leanne M. Zammit
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | | | - Gary Bryant
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Ji Yang
- Department of Microbiology & Immunology, University of Melbourne, Victoria, Australia
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - F. Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Juliet A. Gerrard
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Callaghan Innovation, Lower Hutt, New Zealand
| | - Geoffrey B. Jameson
- Centre for Structural Biology, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Michael W. Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Roy M. Robins-Browne
- Department of Microbiology & Immunology, University of Melbourne, Victoria, Australia
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Siddiqui T, Paxman JJ, Dogovski C, Panjikar S, Perugini MA. Cloning to crystallization of dihydrodipicolinate synthase from the intracellular pathogen Legionella pneumophila. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1177-81. [PMID: 24100576 PMCID: PMC3792684 DOI: 10.1107/s1744309113024639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/03/2013] [Indexed: 11/11/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyses the rate-limiting step in the biosynthesis of meso-diaminopimelate and lysine. Here, the cloning, expression, purification and crystallization of DHDPS from the intracellular pathogen Legionella pneumophila are described. Crystals grown in the presence of high-molecular-weight PEG precipitant and magnesium chloride were found to diffract beyond 1.65 Å resolution. The crystal lattice belonged to the hexagonal space group P6₁22, with unit-cell parameters a=b=89.31, c=290.18 Å, and contained two molecules in the asymmetric unit. The crystal structure was determined by molecular replacement using a single chain of Pseudomonas aeruginosa DHDPS as the search model.
Collapse
Affiliation(s)
- Tanzeela Siddiqui
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3010, Australia
| | | | - Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3010, Australia
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, VIC 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, VIC 3800, Australia
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
13
|
Atkinson SC, Dogovski C, Downton MT, Czabotar PE, Dobson RCJ, Gerrard JA, Wagner J, Perugini MA. Structural, kinetic and computational investigation of Vitis vinifera DHDPS reveals new insight into the mechanism of lysine-mediated allosteric inhibition. PLANT MOLECULAR BIOLOGY 2013; 81:431-446. [PMID: 23354837 DOI: 10.1007/s11103-013-0014-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
Lysine is one of the most limiting amino acids in plants and its biosynthesis is carefully regulated through inhibition of the first committed step in the pathway catalyzed by dihydrodipicolinate synthase (DHDPS). This is mediated via a feedback mechanism involving the binding of lysine to the allosteric cleft of DHDPS. However, the precise allosteric mechanism is yet to be defined. We present a thorough enzyme kinetic and thermodynamic analysis of lysine inhibition of DHDPS from the common grapevine, Vitis vinifera (Vv). Our studies demonstrate that lysine binding is both tight (relative to bacterial DHDPS orthologs) and cooperative. The crystal structure of the enzyme bound to lysine (2.4 Å) identifies the allosteric binding site and clearly shows a conformational change of several residues within the allosteric and active sites. Molecular dynamics simulations comparing the lysine-bound (PDB ID 4HNN) and lysine free (PDB ID 3TUU) structures show that Tyr132, a key catalytic site residue, undergoes significant rotational motion upon lysine binding. This suggests proton relay through the catalytic triad is attenuated in the presence of lysine. Our study reveals for the first time the structural mechanism for allosteric inhibition of DHDPS from the common grapevine.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hor L, Dobson RCJ, Downton MT, Wagner J, Hutton CA, Perugini MA. Dimerization of bacterial diaminopimelate epimerase is essential for catalysis. J Biol Chem 2013; 288:9238-48. [PMID: 23426375 DOI: 10.1074/jbc.m113.450148] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diaminopimelate (DAP) epimerase is involved in the biosynthesis of meso-DAP and lysine, which are important precursors for the synthesis of peptidoglycan, housekeeping proteins, and virulence factors in bacteria. Accordingly, DAP epimerase is a promising antimicrobial target. Previous studies report that DAP epimerase exists as a monomeric enzyme. However, we show using analytical ultracentrifugation, X-ray crystallography, and enzyme kinetic analyses that DAP epimerase from Escherichia coli exists as a functional dimer in solution and the crystal state. Furthermore, the 2.0-Å X-ray crystal structure of the E. coli DAP epimerase dimer shows for the first time that the enzyme exists in an open, active conformation. The importance of dimerization was subsequently probed by using site-directed mutagenesis to generate a monomeric mutant (Y268A). Our studies show that Y268A is catalytically inactive, thus demonstrating that dimerization of DAP epimerase is essential for catalysis. Molecular dynamics simulations indicate that the DAP epimerase monomer is inherently more flexible than the dimer, suggesting that dimerization optimizes protein dynamics to support function. Our findings offer insight into the development of novel antimicrobial agents targeting the dimeric antibiotic target DAP epimerase.
Collapse
Affiliation(s)
- Lilian Hor
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Comparative structure and function analyses of native and his-tagged forms of dihydrodipicolinate reductase from methicillin-resistant Staphylococcus aureus. Protein Expr Purif 2012; 85:66-76. [DOI: 10.1016/j.pep.2012.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 11/22/2022]
|
16
|
Atkinson SC, Dogovski C, Dobson RCJ, Perugini MA. Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from Agrobacterium tumefaciens. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1040-7. [PMID: 22949190 PMCID: PMC3433193 DOI: 10.1107/s1744309112033052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 07/20/2012] [Indexed: 11/10/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step of the lysine-biosynthesis pathway in bacteria, plants and some fungi. This study describes the cloning, expression, purification and crystallization of DHDPS (NP_354047.1) from the plant pathogen Agrobacterium tumefaciens (AgT-DHDPS). Enzyme-kinetics studies demonstrate that AgT-DHDPS possesses DHDPS activity in vitro. Crystals of AgT-DHDPS were grown in the unliganded form and in forms with substrate bound and with substrate plus allosteric inhibitor (lysine) bound. X-ray diffraction data sets were subsequently collected to a maximum resolution of 1.40 Å. Determination of the structure with and without substrate and inhibitor will offer insight into the design of novel pesticide agents.
Collapse
Affiliation(s)
- Sarah C. Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria 3010, Australia
| | - Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria 3010, Australia
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria 3010, Australia
| |
Collapse
|
17
|
Pomel S, Rodrigo J, Hendra F, Cavé C, Loiseau PM. In silico analysis of a therapeutic target in Leishmania infantum: the guanosine-diphospho-D-mannose pyrophosphorylase. Parasite 2012; 19:63-70. [PMID: 22314241 PMCID: PMC3671423 DOI: 10.1051/parasite/2012191063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Leishmaniases are tropical and sub-tropical diseases for which classical drugs (i.e. antimonials) exhibit toxicity and drug resistance. Such a situation requires to find new chemical series with antileishmanial activity. This work consists in analyzing the structure of a validated target in Leishmania: the GDP-mannose pyrophosphorylase (GDP-MP), an enzyme involved in glycosylation and essential for amastigote survival. By comparing both human and L. infantum GDP-MP 3D homology models, we identified (i) a common motif of amino acids that binds to the mannose moiety of the substrate and, interestingly, (ii) a motif that is specific to the catalytic site of the parasite enzyme. This motif could then be used to design compounds that specifically inhibit the leishmanial GDP-MP, without any effect on the human homolog.
Collapse
Affiliation(s)
- S Pomel
- Université Paris-Sud 11, UMR 8076 CNRS, Chimiothérapie Antiparasitaire, 5, rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Atkinson SC, Dogovski C, Newman J, Dobson RCJ, Perugini MA. Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from the grapevine Vitis vinifera. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1537-41. [PMID: 22139160 PMCID: PMC3232133 DOI: 10.1107/s1744309111038395] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/19/2011] [Indexed: 11/11/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyses the first committed step of the lysine-biosynthesis pathway in bacteria, plants and some fungi. This study describes the cloning, expression, purification and crystallization of DHDPS from the grapevine Vitis vinifera (Vv-DHDPS). Following in-drop cleavage of the hexahistidine tag, cocrystals of Vv-DHDPS with the substrate pyruvate were grown in 0.1 M Bis-Tris propane pH 8.2, 0.2 M sodium bromide, 20%(w/v) PEG 3350. X-ray diffraction data in space group P1 at a resolution of 2.2 Å are presented. Preliminary diffraction data analysis indicated the presence of eight molecules per asymmetric unit (V(M) = 2.55 Å(3) Da(-1), 52% solvent content). The pending crystal structure of Vv-DHDPS will provide insight into the molecular evolution in quaternary structure of DHDPS enzymes.
Collapse
Affiliation(s)
- Sarah C. Atkinson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Con Dogovski
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Janet Newman
- CSIRO Division of Molecular and Health Technologies, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Matthew A. Perugini
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
20
|
Structural and biochemical studies of human 4-hydroxy-2-oxoglutarate aldolase: implications for hydroxyproline metabolism in primary hyperoxaluria. PLoS One 2011; 6:e26021. [PMID: 21998747 PMCID: PMC3188589 DOI: 10.1371/journal.pone.0026021] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/15/2011] [Indexed: 11/19/2022] Open
Abstract
Background 4-hydroxy-2-oxoglutarate (HOG) aldolase is a unique enzyme in the hydroxyproline degradation pathway catalyzing the cleavage of HOG to pyruvate and glyoxylate. Mutations in this enzyme are believed to be associated with the excessive production of oxalate in primary hyperoxaluria type 3 (PH3), although no experimental data is available to support this hypothesis. Moreover, the identity, oligomeric state, enzymatic activity, and crystal structure of human HOGA have not been experimentally determined. Methodology/Principal Findings In this study human HOGA (hHOGA) was identified by mass spectrometry of the mitochondrial enzyme purified from bovine kidney. hHOGA performs a retro-aldol cleavage reaction reminiscent of the trimeric 2-keto-3-deoxy-6-phosphogluconate aldolases. Sequence comparisons, however, show that HOGA is related to the tetrameric, bacterial dihydrodipicolinate synthases, but the reaction direction is reversed. The 1.97 Å resolution crystal structure of hHOGA bound to pyruvate was determined and enabled the modeling of the HOG-Schiff base intermediate and the identification of active site residues. Kinetic analyses of site-directed mutants support the importance of Lys196 as the nucleophile, Tyr168 and Ser77 as components of a proton relay, and Asn78 and Ser198 as unique residues that facilitate substrate binding. Conclusions/Significance The biochemical and structural data presented support that hHOGA utilizes a type I aldolase reaction mechanism, but employs novel residue interactions for substrate binding. A mapping of the PH3 mutations identifies potential rearrangements in either the active site or the tetrameric assembly that would likely cause a loss in activity. Altogether, these data establish a foundation to assess mutant forms of hHOGA and how their activity could be pharmacologically restored.
Collapse
|
21
|
Dommaraju SR, Dogovski C, Czabotar PE, Hor L, Smith BJ, Perugini MA. Catalytic mechanism and cofactor preference of dihydrodipicolinate reductase from methicillin-resistant Staphylococcus aureus. Arch Biochem Biophys 2011; 512:167-74. [PMID: 21704017 DOI: 10.1016/j.abb.2011.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
Abstract
Given the rapid rise in antibiotic resistance, including methicillin resistance in Staphylococcus aureus (MRSA), there is an urgent need to characterize novel drug targets. Enzymes of the lysine biosynthesis pathway in bacteria are examples of such targets, including dihydrodipicolinate reductase (DHDPR, E.C. 1.3.1.26), which is the product of an essential bacterial gene. DHDPR catalyzes the NAD(P)H-dependent reduction of dihydrodipicolinate (DHDP) to tetrahydrodipicolinate (THDP) in the lysine biosynthesis pathway. We show that MRSA-DHDPR exhibits a unique nucleotide specificity utilizing NADPH (K(m)=12μM) as a cofactor more effectively than NADH (K(m)=26μM). However, the enzyme is inhibited by high concentrations of DHDP when using NADPH as a cofactor, but not with NADH. Isothermal titration calorimetry (ITC) studies reveal that MRSA-DHDPR has ∼20-fold greater binding affinity for NADPH (K(d)=1.5μM) relative to NADH (K(d)=29μM). Kinetic investigations in tandem with ITC studies show that the enzyme follows a compulsory-order ternary complex mechanism; with inhibition by DHDP through the formation of a nonproductive ternary complex with NADP(+). This work describes, for the first time, the catalytic mechanism and cofactor preference of MRSA-DHDPR, and provides insight into rational approaches to inhibiting this valid antimicrobial target.
Collapse
Affiliation(s)
- Sudhir R Dommaraju
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Kempinski CF, Haffar R, Barth C. Toward the mechanism of NH(4) (+) sensitivity mediated by Arabidopsis GDP-mannose pyrophosphorylase. PLANT, CELL & ENVIRONMENT 2011; 34:847-58. [PMID: 21332510 DOI: 10.1111/j.1365-3040.2011.02290.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The ascorbic acid (AA)-deficient Arabidopsis thaliana mutant vtc1-1, which is defective in GDP-mannose pyrophosphorylase (GMPase), exhibits conditional hypersensitivity to ammonium (NH(4) (+) ), a phenomenon that is independent of AA deficiency. As GMPase is important for GDP-mannose biosynthesis, a nucleotide sugar necessary for protein N-glycosylation, it has been thought that GDP-mannose deficiency is responsible for the growth defect in vtc1-1 in the presence of NH(4) (+) . Therefore, the motivation for this work was to elucidate the growth and developmental processes that are affected in vtc1-1 in the presence of NH(4) (+) and to determine whether GDP-mannose deficiency generally causes NH(4) (+) sensitivity. Furthermore, as NH(4) (+) may alter cytosolic pH, we investigated the responses of vtc1-1 to pH changes in the presence and absence of NH(4) (+) . Using qRT-PCR and staining procedures, we demonstrate that defective N-glycosylation in vtc1-1 contributes to cell wall, membrane and cell cycle defects, resulting in root growth inhibition in the presence of NH(4) (+) . However, by using mutants acting upstream of vtc1-1 and contributing to GDP-mannose biosynthesis, we show that GDP-mannose deficiency does not generally lead to and is not the primary cause of NH(4) (+) sensitivity. Instead, our data suggest that GMPase responds to pH alterations in the presence of NH(4) (+) .
Collapse
Affiliation(s)
- Chase F Kempinski
- Department of Biology, West Virginia University, 5228 Life Sciences Building, 53 Campus Drive, Morgantown, West Virginia 26506-6057, USA
| | | | | |
Collapse
|
23
|
Trempe JF, Shenker S, Kozlov G, Gehring K. Self-association studies of the bifunctional N-acetylglucosamine-1-phosphate uridyltransferase from Escherichia coli. Protein Sci 2011; 20:745-52. [PMID: 21370307 PMCID: PMC3081552 DOI: 10.1002/pro.608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 11/10/2022]
Abstract
The N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a key bifunctional enzyme in the biosynthesis of UDP-GlcNAc, a precursor in the synthesis of cell wall peptidoglycan. Crystal structures of the enzyme from different bacterial strains showed that the polypeptide forms a trimer through a unique parallel left-handed beta helix domain. Here, we show that the GlmU enzyme from Escherichia coli forms a hexamer in solution. Sedimentation equilibrium analytical ultracentrifugation demonstrated that the enzyme is in a trimer/hexamer equilibrium. Small-angle X-ray scattering studies were performed to determine the structure of the hexameric assembly and showed that two trimers assemble through their N-terminal domains. The interaction is mediated by a loop that undergoes a large conformational change in the uridyl transferase reaction, a feature that may affect the enzymatic activity of GlmU.
Collapse
Affiliation(s)
- Jean-François Trempe
- Department of Biochemistry, Groupe de recherche axé sur la structure des protéines, McGill University, Montreal, QC, Canada H3G 0B1.
| | | | | | | |
Collapse
|
24
|
Disruption of quaternary structure in Escherichia coli dihydrodipicolinate synthase (DHDPS) generates a functional monomer that is no longer inhibited by lysine. Arch Biochem Biophys 2010; 503:202-6. [PMID: 20709017 DOI: 10.1016/j.abb.2010.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 08/07/2010] [Accepted: 08/10/2010] [Indexed: 11/22/2022]
Abstract
Escherichia coli dihydrodipicolinate synthase (DHDPS, E.C. 4.2.1.52), a natively homotetrameric enzyme was converted to a monomeric species through the introduction of destabilising interactions at two different subunit interfaces allowing exploration of the roles of the quaternary structure in affecting catalytic competency. The double mutant DHDPS-L197D/Y107W displays gel filtration characteristics consistent with a single non-interacting monomeric species, which was confirmed by sedimentary velocity experiments. This monomer was shown to be catalytically active, but with reduced catalytic efficiency (k(cat)=9.8±0.5s(-1)), displaying 8% of the specific activity of the wild-type enzyme. The Michaelis constants for the substrates pyruvate and for (S)-aspartate semialdehyde increased by an order of magnitude, indicating that quaternary structure plays a significant role in substrate specificity. This monomeric species exhibited an enhanced propensity for aggregation and inactivation, indicating that whilst the oligomerization is not an intrinsic criterion for catalysis, higher oligomeric forms may benefit from both increased catalytic efficiency and diminished aggregation propensity. Furthermore, allosteric inhibition by (S)-lysine was abolished for DHDPS-L197D/Y107W, confirming the importance of the dimeric unit as the minimal functional assembly for efficient (S)-lysine binding.
Collapse
|
25
|
Pelissier MC, Lesley SA, Kuhn P, Bourne Y. Structural insights into the catalytic mechanism of bacterial guanosine-diphospho-D-mannose pyrophosphorylase and its regulation by divalent ions. J Biol Chem 2010; 285:27468-27476. [PMID: 20573954 DOI: 10.1074/jbc.m109.095182] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GMP catalyzes the formation of GDP-Man, a fundamental precursor for protein glycosylation and bacterial cell wall and capsular polysaccharide biosynthesis. Crystal structures of GMP from the thermophilic bacterium Thermotoga maritima in the apo form, in complex with the substrates mannose-1-phosphate or GTP and bound with the end product GDP-Man in the presence of the essential divalent cation Mg(2+), were solved in the 2.1-2.8 A resolution range. The T. maritima GMP molecule is organized in two separate domains: a N-terminal Rossman fold-like domain and a C-terminal left-handed beta-helix domain. Two molecules associate into a dimer through a tail-to-tail arrangement of the C-terminal domains. Comparative analysis of the structures along with characterization of enzymatic parameters reveals the bases of substrate specificity of this class of sugar nucleotidyltransferases. In particular, substrate and product binding are associated with significant changes in the conformation of loop regions lining the active center and in the relative orientation of the two domains. Involvement of both the N- and C-terminal domains, coupled to the catalytic role of a bivalent metal ion, highlights the catalytic features of bacterial GMPs compared with other members of the pyrophosphorylase superfamily.
Collapse
Affiliation(s)
- Marie-Cécile Pelissier
- Architecture et Fonction des Macromolécules Biologiques, UMR-6098, CNRS, Université Aix-Marseille, F-13288 Marseille, France
| | - Scott A Lesley
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121
| | - Peter Kuhn
- Scripps Research Institute, La Jolla, California 92037
| | - Yves Bourne
- Architecture et Fonction des Macromolécules Biologiques, UMR-6098, CNRS, Université Aix-Marseille, F-13288 Marseille, France.
| |
Collapse
|
26
|
Griffin MD, Dobson RC, Gerrard JA, Perugini MA. Exploring the dihydrodipicolinate synthase tetramer: How resilient is the dimer–dimer interface? Arch Biochem Biophys 2010; 494:58-63. [DOI: 10.1016/j.abb.2009.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/10/2009] [Accepted: 11/10/2009] [Indexed: 11/15/2022]
|
27
|
GDP-mannose pyrophosphorylase is essential in the bloodstream form of Trypanosoma brucei. Biochem J 2010; 425:603-14. [PMID: 19919534 DOI: 10.1042/bj20090896] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A putative GDP-Man PP (guanidine diphosphomannose pyrophosphorylase) gene from Trypanosoma brucei (TbGDP-Man PP) was identified in the genome and subsequently cloned, sequenced and recombinantly expressed, and shown to be a catalytically active dimer. Kinetic analysis revealed a Vmax of 0.34 mumol/min per mg of protein and Km values of 67 muM and 12 muM for GTP and mannose 1-phosphate respectively. Further kinetic studies showed GDP-Man was a potent product feedback inhibitor. RNAi (RNA interference) of the cytosolic TbGDP-Man PP showed that mRNA levels were reduced to ~20% of wild-type levels, causing the cells to die after 3-4 days, demonstrating that TbGDP-Man PP is essential in the bloodstream form of T. brucei and thus a potential drug target. The RNAi-induced parasites have a greatly reduced capability to form GDP-Man, leading ultimately to a reduction in their ability to synthesize their essential GPI (glycosylphosphatidylinositol) anchors. The RNAi-induced parasites also showed aberrant N-glycosylation of their major cell-surface glycoprotein, variant surface glycoprotein, with loss of the high-mannose Man9GlcNAc2 N-glycosylation at Asn428 and formation of complex N-glycans at Asn263.
Collapse
|
28
|
Sibarani NE, Gorman MA, Dogovski C, Parker MW, Perugini MA. Crystallization of dihydrodipicolinate synthase from a clinical isolate of Streptococcus pneumoniae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 66:32-6. [PMID: 20057065 DOI: 10.1107/s174430910904771x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/11/2009] [Indexed: 11/10/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS; EC 4.2.1.52) catalyzes the rate-limiting step in the (S)-lysine biosynthesis pathway of bacteria and plants. Here, the cloning of the DHDPS gene from a clinical isolate of Streptococcus pneumoniae (OXC141 strain) and the strategy used to express, purify and crystallize the recombinant enzyme are described. Diffracting crystals were grown in high-molecular-weight PEG precipitants using the hanging-drop vapour-diffusion method. The best crystal, from which data were collected, diffracted to beyond 2.0 A resolution. Initially, the crystals were thought to belong to space group P4(2)2(1)2, with unit-cell parameters a = 105.5, b = 105.5, c = 62.4 A. However, the R factors remained high following initial processing of the data. It was subsequently shown that the data set was twinned and it was thus reprocessed in space group P2, resulting in a significant reduction in the R factors. Determination of the structure will provide insight into the design of novel antimicrobial agents targeting this important enzyme from S. pneumoniae.
Collapse
Affiliation(s)
- Natalia E Sibarani
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
29
|
Voss JE, Scally SW, Taylor NL, Atkinson SC, Griffin MDW, Hutton CA, Parker MW, Alderton MR, Gerrard JA, Dobson RCJ, Dogovski C, Perugini MA. Substrate-mediated stabilization of a tetrameric drug target reveals Achilles heel in anthrax. J Biol Chem 2009; 285:5188-95. [PMID: 19948665 DOI: 10.1074/jbc.m109.038166] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus anthracis is a gram-positive spore-forming bacterium that causes anthrax. With the increased threat of anthrax in biowarfare, there is an urgent need to characterize new antimicrobial targets from B. anthracis. One such target is dihydrodipicolinate synthase (DHDPS), which catalyzes the committed step in the pathway yielding meso-diaminopimelate and lysine. In this study, we employed CD spectroscopy to demonstrate that the thermostability of DHDPS from B. anthracis (Ba-DHDPS) is significantly enhanced in the presence of the substrate, pyruvate. Analytical ultracentrifugation studies show that the tetramer-dimer dissociation constant of the enzyme is 3-fold tighter in the presence of pyruvate compared with the apo form. To examine the significance of this substrate-mediated stabilization phenomenon, a dimeric mutant of Ba-DHDPS (L170E/G191E) was generated and shown to have markedly reduced activity compared with the wild-type tetramer. This demonstrates that the substrate, pyruvate, stabilizes the active form of the enzyme. We next determined the high resolution (2.15 A) crystal structure of Ba-DHDPS in complex with pyruvate (3HIJ) and compared this to the apo structure (1XL9). Structural analyses show that there is a significant (91 A(2)) increase in buried surface area at the tetramerization interface of the pyruvate-bound structure. This study describes a new mechanism for stabilization of the active oligomeric form of an antibiotic target from B. anthracis and reveals an "Achilles heel" that can be exploited in structure-based drug design.
Collapse
Affiliation(s)
- Jarrod E Voss
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pearce FG, Dobson RCJ, Weber A, Lane LA, McCammon MG, Squire MA, Perugini MA, Jameson GB, Robinson CV, Gerrard JA. Mutating the tight-dimer interface of dihydrodipicolinate synthase disrupts the enzyme quaternary structure: toward a monomeric enzyme. Biochemistry 2008; 47:12108-17. [PMID: 18937497 DOI: 10.1021/bi801094t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) is a tetrameric enzyme that is the first enzyme unique to the ( S)-lysine biosynthetic pathway in plants and bacteria. Previous studies have looked at the important role of Tyr107, an amino acid residue located at the tight-dimer interface between two monomers, in participating in a catalytic triad of residues during catalysis. In this study, we examine the importance of this residue in determining the quaternary structure of the DHDPS enzyme. The Tyr107 residue was mutated to tryptophan, and structural, biophysical, and kinetic studies were carried out on the mutant enzyme. These revealed that while the solid-state structure of the mutant enzyme was largely unchanged, as judged by X-ray crystallography, it exists as a mixture of primarily monomer and tetramer in solution, as determined by analytical ultracentrifugation, size-exclusion chromatography, and mass spectrometry. The catalytic ability of the DHDPS enzyme was reduced by the mutation, which also allowed the adventitious binding of alpha-ketoglutarate to the active site. A reduction in the apparent melting temperature of the mutant enzyme was observed. Thus, the tetrameric quaternary structure of DHDPS is critical to controlling specificity, heat stability, and intrinsic activity.
Collapse
Affiliation(s)
- F Grant Pearce
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Burgess BR, Dobson RC, Bailey MF, Atkinson SC, Griffin MD, Jameson GB, Parker MW, Gerrard JA, Perugini MA. Structure and Evolution of a Novel Dimeric Enzyme from a Clinically Important Bacterial Pathogen. J Biol Chem 2008; 283:27598-27603. [DOI: 10.1074/jbc.m804231200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Girish TS, Sharma E, Gopal B. Structural and functional characterization ofStaphylococcus aureusdihydrodipicolinate synthase. FEBS Lett 2008; 582:2923-30. [DOI: 10.1016/j.febslet.2008.07.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/16/2008] [Accepted: 07/18/2008] [Indexed: 11/16/2022]
|
33
|
Phenix CP, Nienaber K, Tam PH, Delbaere LTJ, Palmer DRJ. Structural, Functional and Calorimetric Investigation of MosA, a Dihydrodipicolinate Synthase fromSinorhizobium melilotiL5–30, does not Support Involvement in Rhizopine Biosynthesis. Chembiochem 2008; 9:1591-602. [DOI: 10.1002/cbic.200700569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Brown PH, Balbo A, Schuck P. Characterizing protein-protein interactions by sedimentation velocity analytical ultracentrifugation. CURRENT PROTOCOLS IN IMMUNOLOGY 2008; Chapter 18:18.15.1-18.15.39. [PMID: 18491296 DOI: 10.1002/0471142735.im1815s81] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This unit introduces the basic principles and practice of sedimentation velocity analytical ultracentrifugation for the study of reversible protein interactions, such as the characterization of self-association, heterogeneous association, multi-protein complexes, binding stoichiometry, and the determination of association constants. The analytical tools described include sedimentation coefficient and molar mass distributions, multi-signal sedimentation coefficient distributions, Gilbert-Jenkins theory, different forms of isotherms, and global Lamm equation modeling. Concepts for the experimental design are discussed, and a detailed step-by-step protocol guiding the reader through the experiment and the data analysis is available as an Internet resource.
Collapse
Affiliation(s)
| | - Andrea Balbo
- National Institutes of Health, Bethesda, Maryland
| | - Peter Schuck
- National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
35
|
Crystal structure and kinetic study of dihydrodipicolinate synthase from Mycobacterium tuberculosis. Biochem J 2008; 411:351-60. [PMID: 18062777 DOI: 10.1042/bj20071360] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The three-dimensional structure of the enzyme dihydrodipicolinate synthase (KEGG entry Rv2753c, EC 4.2.1.52) from Mycobacterium tuberculosis (Mtb-DHDPS) was determined and refined at 2.28 A (1 A=0.1 nm) resolution. The asymmetric unit of the crystal contains two tetramers, each of which we propose to be the functional enzyme unit. This is supported by analytical ultracentrifugation studies, which show the enzyme to be tetrameric in solution. The structure of each subunit consists of an N-terminal (beta/alpha)(8)-barrel followed by a C-terminal alpha-helical domain. The active site comprises residues from two adjacent subunits, across an interface, and is located at the C-terminal side of the (beta/alpha)(8)-barrel domain. A comparison with the other known DHDPS structures shows that the overall architecture of the active site is largely conserved, albeit the proton relay motif comprising Tyr(143), Thr(54) and Tyr(117) appears to be disrupted. The kinetic parameters of the enzyme are reported: K(M)(ASA)=0.43+/-0.02 mM, K(M)(pyruvate)=0.17+/-0.01 mM and V(max)=4.42+/-0.08 micromol x s(-1) x mg(-1). Interestingly, the V(max) of Mtb-DHDPS is 6-fold higher than the corresponding value for Escherichia coli DHDPS, and the enzyme is insensitive to feedback inhibition by (S)-lysine. This can be explained by the three-dimensional structure, which shows that the (S)-lysine-binding site is not conserved in Mtb-DHDPS, when compared with DHDPS enzymes that are known to be inhibited by (S)-lysine. A selection of metabolites from the aspartate family of amino acids do not inhibit this enzyme. A comprehensive understanding of the structure and function of this important enzyme from the (S)-lysine biosynthesis pathway may provide the key for the design of new antibiotics to combat tuberculosis.
Collapse
|
36
|
Sticking together? Falling apart? Exploring the dynamics of the interactome. Trends Biochem Sci 2008; 33:195-200. [PMID: 18424047 DOI: 10.1016/j.tibs.2008.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 03/03/2008] [Accepted: 03/03/2008] [Indexed: 12/25/2022]
Abstract
Advances in techniques for the study of protein-protein interactions have dramatically improved our understanding of the interactome. However, we know little about the dynamics of this complex system. To better understand the dynamics of the interactome, it is important to consider what happens when single proteins are perturbed. Changes in protein abundance and post-translational modification can function as switches in the interactome, affecting protein-complex assembly and function. Changes in protein sequence or a dramatic increase in abundance might cause a promiscuous gain of interactions. These effects are not identical for all proteins and will differ depending on the number and type of interaction partners that a protein has.
Collapse
|
37
|
Dobson RCJ, Atkinson SC, Gorman MA, Newman JM, Parker MW, Perugini MA. The purification, crystallization and preliminary X-ray diffraction analysis of dihydrodipicolinate synthase from Clostridium botulinum. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:206-8. [PMID: 18323610 PMCID: PMC2374160 DOI: 10.1107/s1744309108002819] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 01/24/2008] [Indexed: 11/10/2022]
Abstract
In recent years, dihydrodipicolinate synthase (DHDPS; EC 4.2.1.52) has received considerable attention from both mechanistic and structural viewpoints. This enzyme, which is part of the diaminopimelate pathway leading to lysine, couples (S)-aspartate-beta-semialdehyde with pyruvate via a Schiff base to a conserved active-site lysine. In this paper, the expression, purification, crystallization and preliminary X-ray diffraction analysis of DHDPS from Clostridium botulinum, an important bacterial pathogen, are presented. The enzyme was crystallized in a number of forms, predominantly using PEG precipitants, with the best crystal diffracting to beyond 1.9 A resolution and displaying P4(2)2(1)2 symmetry. The unit-cell parameters were a = b = 92.9, c = 60.4 A. The crystal volume per protein weight (V(M)) was 2.07 A(3) Da(-1), with an estimated solvent content of 41%. The structure of the enzyme will help guide the design of novel therapeutics against the C. botulinum pathogen.
Collapse
Affiliation(s)
- Renwick C J Dobson
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | |
Collapse
|
38
|
Handman E, Kedzierski L, Uboldi AD, Goding JW. Fishing for anti-leishmania drugs: principles and problems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 625:48-60. [PMID: 18365658 DOI: 10.1007/978-0-387-77570-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
To date, there are no vaccines against any of the major parasitic diseases including leishmaniasis, and chemotherapy is the main weapon in our arsenal. Current drugs are toxic and expensive, and are losing their effectiveness due to parasite resistance. The availability of the genome sequence of two species of Leishmania, Leishmania major and Leishmania infantum, as well as that of Trypanosoma brucei and Trypanosoma cruzi should provide a cornucopia of potential new drug targets. Their exploitation will require a multi-disciplinary approach that includes protein structure and function and high throughput screening of random and directed chemical libraries, followed by in vivo testing in animals and humans. We outline the opportunities that are made possible by recent technologies, and potential problems that need to be overcome.
Collapse
Affiliation(s)
- Emanuela Handman
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| | | | | | | |
Collapse
|
39
|
Balbo A, Brown PH, Braswell EH, Schuck P. Measuring protein-protein interactions by equilibrium sedimentation. CURRENT PROTOCOLS IN IMMUNOLOGY 2007; Chapter 18:18.8.1-18.8.28. [PMID: 18432990 DOI: 10.1002/0471142735.im1808s79] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This unit describes basic principles and practice of sedimentation equilibrium analytical ultracentrifugation for the study of reversible protein interactions, such as the characterization of self-association, heterogeneous association, and binding stoichiometry, as well as the determination of association constants. Advanced tools such as mass conservation analysis, multiwavelength analysis, and global analysis are introduced and discussed in the context of the experimental design. A detailed protocol guiding the investigator through the experimental steps and the data analysis is available as an internet resource.
Collapse
Affiliation(s)
- Andrea Balbo
- National Institutes of Health, Bethesda, Maryland
| | | | | | | |
Collapse
|
40
|
Hutton CA, Perugini MA, Gerrard JA. Inhibition of lysine biosynthesis: an evolving antibiotic strategy. MOLECULAR BIOSYSTEMS 2007; 3:458-65. [PMID: 17579770 DOI: 10.1039/b705624a] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial biosynthesis of lysine has come under increased scrutiny as a target for novel antibacterial agents as it provides lysine for protein synthesis and both lysine and meso-diaminopimelate for construction of the bacterial peptidoglycan cell wall. In this Highlight article we review recent advances in the validation of antibiotic targets, studies of the enzymes of the lysine biosynthetic pathway and development of inhibitors of these enzymes.
Collapse
Affiliation(s)
- Craig A Hutton
- School of Chemistry, The University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | |
Collapse
|
41
|
Dafforn TR. So how do you know you have a macromolecular complex? ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2006; 63:17-25. [PMID: 17164522 PMCID: PMC2483502 DOI: 10.1107/s0907444906047044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 11/07/2006] [Indexed: 11/16/2022]
Abstract
Structures of protein complexes offer some of the most interesting insights into biological processes. In this article, the methods required to show that the complex observed is the physiological one are investigated. Protein in crystal form is at an extremely high concentration and yet retains the complex secondary structure that defines an active protein. The protein crystal itself is made up of a repeating lattice of protein–protein and protein–solvent interactions. The problem that confronts any crystallographer is to identify those interactions that represent physiological interactions and those that do not. This review explores the tools that are available to provide such information using the original crystal liquor as a sample. The review is aimed at postgraduate and postdoctoral researchers who may well be coming up against this problem for the first time. Techniques are discussed that will provide information on the stoichiometry of complexes as well as low-resolution information on complex structure. Together, these data will help to identify the physiological complex.
Collapse
Affiliation(s)
- Timothy R Dafforn
- Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, England.
| |
Collapse
|
42
|
Pearce F, Perugini M, Mckerchar H, Gerrard J. Dihydrodipicolinate synthase from Thermotoga maritima. Biochem J 2006; 400:359-66. [PMID: 16872276 PMCID: PMC1652817 DOI: 10.1042/bj20060771] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
DHDPS (dihydrodipicolinate synthase) catalyses the branch point in lysine biosynthesis in bacteria and plants and is feedback inhibited by lysine. DHDPS from the thermophilic bacterium Thermotoga maritima shows a high level of heat and chemical stability. When incubated at 90 degrees C or in 8 M urea, the enzyme showed little or no loss of activity, unlike the Escherichia coli enzyme. The active site is very similar to that of the E. coli enzyme, and at mesophilic temperatures the two enzymes have similar kinetic constants. Like other forms of the enzyme, T. maritima DHDPS is a tetramer in solution, with a sedimentation coefficient of 7.2 S and molar mass of 133 kDa. However, the residues involved in the interface between different subunits in the tetramer differ from those of E. coli and include two cysteine residues poised to form a disulfide bond. Thus the increased heat and chemical stability of the T. maritima DHDPS enzyme is, at least in part, explained by an increased number of inter-subunit contacts. Unlike the plant or E. coli enzyme, the thermophilic DHDPS enzyme is not inhibited by (S)-lysine, suggesting that feedback control of the lysine biosynthetic pathway evolved later in the bacterial lineage.
Collapse
Affiliation(s)
- F. Grant Pearce
- *School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
- Correspondence may be addressed to either of the authors (email and )
| | - Matthew A. Perugini
- †Bio21 Molecular Science and Biotechnology Institute, and the Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Hannah J. Mckerchar
- *School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
| | - Juliet A. Gerrard
- *School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
- Correspondence may be addressed to either of the authors (email and )
| |
Collapse
|
43
|
Kleczkowski LA, Martz F, Wilczynska M. Factors affecting oligomerization status of UDP-glucose pyrophosphorylase. PHYTOCHEMISTRY 2005; 66:2815-21. [PMID: 16289256 DOI: 10.1016/j.phytochem.2005.09.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/02/2005] [Accepted: 09/14/2005] [Indexed: 05/05/2023]
Abstract
UDP-glucose pyrophosphorylase (UGPase) is involved in the production of UDP-glucose, a key precursor to polysaccharide synthesis in all organisms. UGPase activity has recently been proposed to be regulated by oligomerization, with monomer as the active species. In the present study, we investigated factors affecting oligomerization status of the enzyme, using purified recombinant barley UGPase. Incubation of wild-type (wt) UGPase with phosphate or Tris buffers promoted oligomerization, whereas Mops and Hepes completely dissociated the oligomers to monomers (the active form). Similar buffer effects were observed for KK127-128LL and C99S mutants of UGPase; however, the buffers had a relatively small effect on the oligomerization status of the LIV135-137NIN mutant, impaired in deoligomerization ability and showing only 6-9% activity of the wt. Buffer composition had no effect on UGPase activity at UGPase protein concentrations below ca. 20 ng/ml. However, at higher protein concentration the activity in Tris, but not Mops nor Hepes, underestimated the amount of the enzyme. The data suggest that oligomerization status of UGPase can be controlled by subtle changes in an immediate environment (buffers) and by protein dilution. The evidence is discussed in relation to our recent model of UGPase structure/function, and with respect to earlier reports on the oligomeric integrity/activity of UGPases from eukaryotic tissues.
Collapse
Affiliation(s)
- Leszek A Kleczkowski
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden.
| | | | | |
Collapse
|