1
|
Sun B, Zhou R, Zhu G, Xie X, Chai A, Li L, Fan T, Li B, Shi Y. Transcriptome Analysis Reveals the Involvement of Mitophagy and Peroxisome in the Resistance to QoIs in Corynespora cassiicola. Microorganisms 2023; 11:2849. [PMID: 38137993 PMCID: PMC10745780 DOI: 10.3390/microorganisms11122849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Quinone outside inhibitor fungicides (QoIs) are crucial fungicides for controlling plant diseases, but resistance, mainly caused by G143A, has been widely reported with the high and widespread use of QoIs. However, two phenotypes of Corynespora casiicola (RI and RII) with the same G143A showed significantly different resistance to QoIs in our previous study, which did not match the reported mechanisms. Therefore, transcriptome analysis of RI and RII strains after trifloxystrobin treatment was used to explore the new resistance mechanism in this study. The results show that 332 differentially expressed genes (DEGs) were significantly up-regulated and 448 DEGs were significantly down-regulated. The results of GO and KEGG enrichment showed that DEGs were most enriched in ribosomes, while also having enrichment in peroxide, endocytosis, the lysosome, autophagy, and mitophagy. In particular, mitophagy and peroxisome have been reported in medicine as the main mechanisms of reactive oxygen species (ROS) scavenging, while the lysosome and endocytosis are an important organelle and physiological process, respectively, that assist mitophagy. The oxidative stress experiments showed that the oxidative stress resistance of the RII strains was significantly higher than that of the RI strains: specifically, it was more than 1.8-fold higher at a concentration of 0.12% H2O2. This indicates that there is indeed a significant difference in the scavenging capacity of ROS between the two phenotypic strains. Therefore, we suggest that QoIs' action caused a high production of ROS, and that scavenging mechanisms such as mitophagy and peroxisomes functioned in RII strains to prevent oxidative stress, whereas RI strains were less capable of resisting oxidative stress, resulting in different resistance to QoIs. In this study, it was first revealed that mitophagy and peroxisome mechanisms available for ROS scavenging are involved in the resistance of pathogens to fungicides.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.S.); (R.Z.)
| | - Yanxia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (B.S.); (R.Z.)
| |
Collapse
|
2
|
Esposito C, Wang S, Lange UEW, Oellien F, Riniker S. Combining Machine Learning and Molecular Dynamics to Predict P-Glycoprotein Substrates. J Chem Inf Model 2020; 60:4730-4749. [DOI: 10.1021/acs.jcim.0c00525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Carmen Esposito
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Shuzhe Wang
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Udo E. W. Lange
- Neuroscience Discovery, Medicinal Chemistry, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Frank Oellien
- Neuroscience Discovery, Medicinal Chemistry, AbbVie Deutschland GmbH & Co KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Pinocytosis as the Biological Mechanism That Protects Pgp Function in Multidrug Resistant Cancer Cells and in Blood–Brain Barrier Endothelial Cells. Symmetry (Basel) 2020. [DOI: 10.3390/sym12081221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cancer is the second leading cause of death worldwide. Chemotherapy has shown reasonable success in treating cancer. However, multidrug resistance (MDR), a phenomenon by which cancerous cells become resistant to a broad range of functionally and structurally unrelated chemotherapeutic agents, is a major drawback in the effective use of chemotherapeutic agents in the clinic. Overexpression of P-glycoprotein (Pgp) is a major cause of MDR in cancer as it actively effluxes a wide range of structurally and chemically unrelated substrates, including chemotherapeutic agents. Interestingly, Pgp is also overexpressed in the endothelial cells of blood–brain barrier (BBB) restricting the entry of 98% small molecule drugs to the brain. The efficacy of Pgp is sensitive to any impairment of the membrane structure. A small increase of 2% in the membrane surface tension, which can be caused by a very low drug concentration, is enough to block the Pgp function. We demonstrate in this work by mathematical equations that the incorporation of drugs does increase the surface tension as expected, and the mechanism of endocytosis dissipates any increase in surface tension by augmenting the internalisation of membrane per unit of time, such that an increase in the surface tension of about 2% can be dissipated within only 4.5 s.
Collapse
|
4
|
Avnet S, Lemma S, Cortini M, Pellegrini P, Perut F, Zini N, Kusuzaki K, Chano T, Grisendi G, Dominici M, De Milito A, Baldini N. Altered pH gradient at the plasma membrane of osteosarcoma cells is a key mechanism of drug resistance. Oncotarget 2018; 7:63408-63423. [PMID: 27566564 PMCID: PMC5325373 DOI: 10.18632/oncotarget.11503] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022] Open
Abstract
Current therapy of osteosarcoma (OS), the most common primary bone malignancy, is based on a combination of surgery and chemotherapy. Multidrug resistance mediated by P-glycoprotein (P-gp) overexpression has been previously associated with treatment failure and progression of OS, although other mechanisms may also play a role. We considered the typical acidic extracellular pH (pHe) of sarcomas, and found that doxorubicin (DXR) cytotoxicity is reduced in P-gp negative OS cells cultured at pHe 6.5 compared to standard 7.4. Short-time (24-48 hours) exposure to low pHe significantly increased the number and acidity of lysosomes, and the combination of DXR with omeprazole, a proton pump inhibitor targeting lysosomal acidity, significantly enhanced DXR cytotoxicity. In OS xenografts, the combination treatment of DXR and omeprazole significantly reduced tumor volume and body weight loss. The impaired toxicity of DXR at low pHe was not associated with increased autophagy or lysosomal acidification, but rather, as shown by SNARF staining, with a reversal of the pH gradient at the plasma membrane (ΔpHcm), eventually leading to a reduced DXR intracellular accumulation. Finally, the reversal of ΔpHcm in OS cells promoted resistance not only to DXR, but also to cisplatin and methotrexate, and, to a lesser extent, to vincristine. Altogether, our findings show that, in OS cells, short-term acidosis induces resistance to different chemotherapeutic drugs by a reversal of ΔpHcm, suggesting that buffer therapies or regimens including proton pump inhibitors in combination to low concentrations of conventional anticancer agents may offer novel solutions to overcome drug resistance.
Collapse
Affiliation(s)
- Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Silvia Lemma
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Margherita Cortini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paola Pellegrini
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Francesca Perut
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicoletta Zini
- CNR - National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy.,Laboratory of Musculoskeletal Cell Biology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children and Adults, University-hospital of Modena e Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University-hospital of Modena e Reggio Emilia, Modena, Italy
| | - Angelo De Milito
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Omran Z, Scaife P, Stewart S, Rauch C. Physical and biological characteristics of multi drug resistance (MDR): An integral approach considering pH and drug resistance in cancer. Semin Cancer Biol 2017; 43:42-48. [DOI: 10.1016/j.semcancer.2017.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 01/19/2023]
|
6
|
Harguindey S, Stanciu D, Devesa J, Alfarouk K, Cardone RA, Polo Orozco JD, Devesa P, Rauch C, Orive G, Anitua E, Roger S, Reshkin SJ. Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases. Semin Cancer Biol 2017; 43:157-179. [PMID: 28193528 DOI: 10.1016/j.semcancer.2017.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/06/2017] [Indexed: 12/27/2022]
Abstract
During the last few years, the understanding of the dysregulated hydrogen ion dynamics and reversed proton gradient of cancer cells has resulted in a new and integral pH-centric paradigm in oncology, a translational model embracing from cancer etiopathogenesis to treatment. The abnormalities of intracellular alkalinization along with extracellular acidification of all types of solid tumors and leukemic cells have never been described in any other disease and now appear to be a specific hallmark of malignancy. As a consequence of this intracellular acid-base homeostatic failure, the attempt to induce cellular acidification using proton transport inhibitors and other intracellular acidifiers of different origins is becoming a new therapeutic concept and selective target of cancer treatment, both as a metabolic mediator of apoptosis and in the overcoming of multiple drug resistance (MDR). Importantly, there is increasing data showing that different ion channels contribute to mediate significant aspects of cancer pH regulation and etiopathogenesis. Finally, we discuss the extension of this new pH-centric oncological paradigm into the opposite metabolic and homeostatic acid-base situation found in human neurodegenerative diseases (HNDDs), which opens novel concepts in the prevention and treatment of HNDDs through the utilization of a cohort of neural and non-neural derived hormones and human growth factors.
Collapse
Affiliation(s)
- Salvador Harguindey
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain.
| | - Daniel Stanciu
- Institute of Clinical Biology and Metabolism, c) Postas 13, 01004 Vitoria, Spain
| | - Jesús Devesa
- Department of Physiology, School of Medicine, University of Santiago de Compostela, Spain and Scientific Director of Foltra Medical Centre, Teo, Spain
| | - Khalid Alfarouk
- Al-Ghad International Colleges for Applied Medical Sciences, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | | | - Pablo Devesa
- Research and Development, Medical Centre Foltra, Teo, Spain
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham,College Road, Sutton Bonington, LE12 5RD, UK
| | - Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, 01006 Vitoria, Spain
| | - Eduardo Anitua
- BTI Biotechnology Institute ImasD, S.L. C/Jacinto Quincoces, 39, 01007 Vitoria, Spain
| | - Sébastien Roger
- Inserm UMR1069, University François-Rabelais of Tours,10 Boulevard Tonnellé, 37032 Tours, France; Institut Universitaire de France, 1 Rue Descartes, Paris 75231, France
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
7
|
Abstract
The discovery of antibiotics as specific and effective drugs against infectious agents has generated the belief that the famous Paul Erlich theory on magic bullet should be applied to cancer as well. However, after around 60 years of failures in finding a magic bullet against cancer, a question appears mandatory: does the magic bullet against cancer really exist? In trying to understand more on the issue, we propose three discoveries are coming from a nonmainstream approach against cancer. Tumor is acidic, and tumor acidity impairs drugs entering within tumor cells and isolates tumors from the rest of the body. Proton pumps are key in allowing tumor cells to live in the acidic microenvironment. A class of antiacidic drugs, proton pump inhibitors (PPIs), were shown to have a potent anti-tumor effect, through inhibition of proton pumps in tumor cells. PPIs are indeed prodrugs needing acidity to be activated into the active molecule. So they use protonation by H+ as an activating mechanism, while the vast majority of drugs are totally neutralized by protonation. An anti-tumor therapy based on PPI showed to be effective both in vitro and in vivo. Differently from normal cells, cancer cells meet their energy needs in great part by fermentation, and it appears conceivable that hypoxia and low nutrient transform tumor cells into fermenting anaerobes. This suggests that cancer cells are more similar to unicellular organisms, aimed at surviving in a continuous fighting, rather than cooperating, with other cells, as it occurs in the normal homeostasis of our body. We have shown that cancer cells take their fuel by "cannibalizing" other cells, either dead or alive, especially when starved and in acidic condition. This finding led to the discovery of a new oncogene TM9SF4 that human malignant cell shares with amoebas. The evidence is accumulating that almost all the cells release extracellular vehicles (EVs), from micro- to nanosize, which shuttle a variety of molecules. Tumor cells, particularly when stressed in their hostile microenvironment, release high levels of EVs, able to interact with target cells in various ways, within an organ or at a distance. They may represent both valuable tumor biomarker and shuttles for drugs with anti-tumor properties. This article wants to burst a real change in future anti-cancer strategies, based on the idea that tumors are much more common features than specific molecular targets.
Collapse
Affiliation(s)
- Stefano Fais
- a Anti-tumor Drug Section, Department of Therapeutic Research, Medicines Evaluation Istituto Superiore di Sanità (National Institute of Health) , Rome , Italy
| |
Collapse
|
8
|
Physics of the Chemical Asymmetry of the Cell Membrane: Implications in Gene Regulation and Pharmacology. Symmetry (Basel) 2015. [DOI: 10.3390/sym7041780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Taylor S, Spugnini EP, Assaraf YG, Azzarito T, Rauch C, Fais S. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resist Updat 2015; 23:69-78. [PMID: 26341193 DOI: 10.1016/j.drup.2015.08.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/27/2015] [Accepted: 08/13/2015] [Indexed: 12/31/2022]
Abstract
Despite the major progresses in biomedical research and the development of novel therapeutics and treatment strategies, cancer is still among the dominant causes of death worldwide. One of the crucial challenges in the clinical management of cancer is primary (intrinsic) and secondary (acquired) resistance to both conventional and targeted chemotherapeutics. Multiple mechanisms have been identifiedthat underlie intrinsic and acquired chemoresistance: these include impaired drug uptake, increased drug efflux, deletion of receptors, altered drug metabolism, quantitative and qualitative alterations in drug targets, increased DNA damage repair and various mechanisms of anti-apoptosis. The fast efflux of anticancer drugs mediated by multidrug efflux pumps and the partial or complete reversibility of chemoresistance combined with the absence of genetic mutations suggests a multifactorial process. However, a growing body of recent evidence suggests that chemoresistance is often triggered by the highly acidic microenvironment of tumors. The vast majority of drugs, including conventional chemotherapeutics and more recent biological agents, are weak bases that are quickly protonated and neutralized in acidic environments, such as the extracellular microenvironment and the acidic organelles of tumor cells. It is therefore essential to develop new strategies to overcome the entrapment and neutralization of weak base drugs. One such strategy is the use of proton pump inhibitors which can enhance tumor chemosensitivity by increasing the pH of the tumor microenvironment. Recent clinical trials in animals with spontaneous tumors have indicated that patient alkalization is capable of reversing acquired chemoresistance in a large percentage of tumors that are refractory to chemotherapy. Of particular interest was the benefit of alkalization for patients undergoing metronomic regimens which are becoming more widely used in veterinary medicine. Overall, these results provide substantial new evidence that altering the acidic tumor microenvironment is an effective, well tolerated and low cost strategy for the overcoming of anticancer drug resistance.
Collapse
Affiliation(s)
- Sophie Taylor
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Nottingham LE12 5RD, UK
| | | | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Tommaso Azzarito
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Nottingham LE12 5RD, UK.
| | - Stefano Fais
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
10
|
Kartal-Yandim M, Adan-Gokbulut A, Baran Y. Molecular mechanisms of drug resistance and its reversal in cancer. Crit Rev Biotechnol 2015; 36:716-26. [DOI: 10.3109/07388551.2015.1015957] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Melis Kartal-Yandim
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Urla, İzmir, Turkey and
| | - Aysun Adan-Gokbulut
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Urla, İzmir, Turkey and
| | - Yusuf Baran
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Urla, İzmir, Turkey and
- Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
11
|
Omran Z, Rauch C. Acid-mediated Lipinski's second rule: application to drug design and targeting in cancer. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:199-206. [PMID: 24687685 PMCID: PMC3997836 DOI: 10.1007/s00249-014-0953-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/28/2014] [Accepted: 03/10/2014] [Indexed: 12/04/2022]
Abstract
With a predicted 382.4 per 100,000 people expected to suffer from some form of malignant neoplasm by 2015, and a current death toll of 1 out of 8 deaths worldwide, improving treatment and/or drug design is an essential focus of cancer research. Multi-drug resistance is the leading cause of chemotherapeutic failure, and delivery of anticancer drugs to the inside of cancerous cells is another major challenge. Fifteen years ago, in a completely different field in which improving drug delivery is the objective, the bioavailability of oral compounds, Christopher Lipinski formulated some rules that are still used by the pharmaceutical industry as rules of thumb to improve drug delivery to their target. Although Lipinski’s rules were not formulated to improve delivery of antineoplastic drugs to the inside of cancer cells, it is interesting to note that the problems are similar. On the basis of the strong similarity between the fields, we discuss how they can be connected and how new drug targets can be defined in cancer.
Collapse
Affiliation(s)
- Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Al-Abidiyya, Makkah, 21955, Kingdom of Saudi Arabia
| | | |
Collapse
|
12
|
Importance of the difference in surface pressures of the cell membrane in doxorubicin resistant cells that do not express Pgp and ABCG2. Cell Biochem Biophys 2014; 66:499-512. [PMID: 23314884 PMCID: PMC3726932 DOI: 10.1007/s12013-012-9497-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
P-glycoprotein (Pgp) represents the archetypal mechanism of drug resistance. But Pgp alone cannot expel drugs. A small but growing body of works has demonstrated that the membrane biophysical properties are central to Pgp-mediated drug resistance. For example, a change in the membrane surface pressure is expected to support drug–Pgp interaction. An interesting aspect from these models is that under specific conditions, the membrane is predicted to take over Pgp concerning the mechanism of drug resistance especially when the surface pressure is high enough, at which point drugs remain physically blocked at the membrane level. However it remains to be determined experimentally whether the membrane itself could, on its own, affect drug entry into cells that have been selected by a low concentration of drug and that do not express transporters. We demonstrate here that in the case of the drug doxorubicin, alteration of the surface pressure of membrane leaflets drive drug resistance.
Collapse
|
13
|
Harguindey S, Arranz JL, Polo Orozco JD, Rauch C, Fais S, Cardone RA, Reshkin SJ. Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs--an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research. J Transl Med 2013; 11:282. [PMID: 24195657 PMCID: PMC3826530 DOI: 10.1186/1479-5876-11-282] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/25/2013] [Indexed: 02/04/2023] Open
Abstract
In recent years an increasing number of publications have emphasized the growing importance of hydrogen ion dynamics in modern cancer research, from etiopathogenesis and treatment. A proton [H+]-related mechanism underlying the initiation and progression of the neoplastic process has been recently described by different research groups as a new paradigm in which all cancer cells and tissues, regardless of their origin and genetic background, have a pivotal energetic and homeostatic disturbance of their metabolism that is completely different from all normal tissues: an aberrant regulation of hydrogen ion dynamics leading to a reversal of the pH gradient in cancer cells and tissues (↑pHi/↓pHe, or “proton reversal”). Tumor cells survive their hostile microenvironment due to membrane-bound proton pumps and transporters, and their main defensive strategy is to never allow internal acidification because that could lead to their death through apoptosis. In this context, one of the primary and best studied regulators of both pHi and pHe in tumors is the Na+/H+ exchanger isoform 1 (NHE1). An elevated NHE1 activity can be correlated with both an increase in cell pH and a decrease in the extracellular pH of tumors, and such proton reversal is associated with the origin, local growth, activation and further progression of the metastatic process. Consequently, NHE1 pharmaceutical inhibition by new and potent NHE1 inhibitors represents a potential and highly selective target in anticancer therapy. Cariporide, being one of the better studied specific and powerful NHE1 inhibitors, has proven to be well tolerated by humans in the cardiological context, however some side-effects, mainly related to drug accumulation and cerebrovascular complications were reported. Thus, cariporide could become a new, slightly toxic and effective anticancer agent in different human malignancies.
Collapse
Affiliation(s)
- Salvador Harguindey
- Instituto de Biología Clínica y Metabolismo (IBCM), Postas 13-01004, Vitoria, Spain.
| | | | | | | | | | | | | |
Collapse
|
14
|
Rauch C, Paine SW, Littlewood P. Can long range mechanical interaction between drugs and membrane proteins define the notion of molecular promiscuity? Application to P-glycoprotein-mediated multidrug resistance (MDR). Biochim Biophys Acta Gen Subj 2013; 1830:5112-8. [PMID: 23850561 DOI: 10.1016/j.bbagen.2013.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/17/2013] [Accepted: 06/30/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND Failure of treatment in over 90% of patients with metastatic cancer is due to acquired MDR. P-glycoprotein (Pgp) remains the archetypal drug membrane transporter expressed in many MDR cancer cells. Albeit the ATPase activity of Pgp is triggered by the presence of drug in the membrane, it is commonly assumed that when two drug molecules meet the same Pgp the protein cannot handle them efficiently due to steric effects and as a result the ATPase activity drops. However it is also possible that drug accumulating in the lipid-phase may affect the membrane in such a way that it imposes the mechanical closure of transporters by opposing the force mediated by ATP consumption. In this context, long range interactions between drug and membrane proteins could exist. METHODS Recent data concerning Pgp structure have allowed us to formalize this hypothesis and we present a physico-mathematical model that is not based on predictive QSAR or other empirical methods applied to experimental data. RESULTS Long range mechanical interactions between Pgp and drugs are predicted to occur at an external concentration of drug ~10-100μM as previously determined experimentally at which concentration ~50% of transporters should be rendered inactive. CONCLUSION Distance interaction(s) between Pgp and drugs exist explaining an ill-defined effect concerning the ability of any drug to inhibit Pgp once a threshold concentration in the membrane has been reached. GENERAL SIGNIFICANCE Potential application of the theory in the field of pharmacology concentrating on the notion of molecular promiscuity and toxicity in drug discovery prediction is discussed.
Collapse
Affiliation(s)
- Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK.
| | | | | |
Collapse
|
15
|
Daniel C, Bell C, Burton C, Harguindey S, Reshkin SJ, Rauch C. The role of proton dynamics in the development and maintenance of multidrug resistance in cancer. Biochim Biophys Acta Mol Basis Dis 2013; 1832:606-17. [DOI: 10.1016/j.bbadis.2013.01.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/15/2013] [Accepted: 01/24/2013] [Indexed: 12/27/2022]
|
16
|
Sasaki H, Kawano R, Osaki T, Kamiya K, Takeuchi S. Single-vesicle estimation of ATP-binding cassette transporters in microfluidic channels. LAB ON A CHIP 2012; 12:702-704. [PMID: 22179619 DOI: 10.1039/c2lc21058d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We have developed a method to analyze the substrate transport of ATP-binding cassette (ABC) transporters, which are associated with drug resistance in tumor cells. Our microfluidic method is well suited to the single-vesicle estimation of substrate transport and the rapid drug screening of ABC transporters. Using this method, we have demonstrated, for the first time, the analysis of substrate transport by a single transporter and performed drug-inhibition experiments in less than 3 h.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Drug Screening Assays, Antitumor/instrumentation
- Drug Screening Assays, Antitumor/methods
- Humans
- Liposomes/chemistry
- Microfluidic Analytical Techniques/instrumentation
- Microfluidic Analytical Techniques/methods
- Neoplasms/chemistry
- Neoplasms/drug therapy
- Neoplasms/metabolism
Collapse
|
17
|
Rauch C. The “Multi” of Drug Resistance Explained by Oscillating Drug Transporters, Drug–Membrane Physical Interactions and Spatial Dimensionality. Cell Biochem Biophys 2011; 61:103-13. [DOI: 10.1007/s12013-011-9166-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Patra HK, Dasgupta AK, Sarkar S, Biswas I, Chattopadhyay A. Dual role of nanoparticles as drug carrier and drug. Cancer Nanotechnol 2011; 2:37-47. [PMID: 26069483 PMCID: PMC4451630 DOI: 10.1007/s12645-010-0011-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/07/2010] [Indexed: 01/13/2023] Open
Abstract
The conventional chemotherapeutic agents used in the treatment of human malignancies are directed nonspecifically against both malignant and nonmalignant cells, often limiting their efficacy with having serious side effects. Recent development of drug delivery vehicles has opened up the possibility of targeted drug delivery systems with the potential of achieving maximum efficacy with minimal toxicity. The possibility of using a nanomaterial as a combinational drug component is intuitively evident as it would compensate the toxicity level by enhancing drug delivery efficiency. Additionally, cell-specific cytotoxicity (reported earlier by our group) of the nanovehicle itself may potentiate a more effective targeted cell killing. In this paper, we explore the possibility of using gold nanoparticles playing the dual role of an anticancer agent and a carrier of a chemotherapeutic drug. This is demonstrated using vincristine sulfate (VS), salt of an alkaloid often used in the treatment of multiple myeloma (MM), and U266 as a test MM cell line. The drug VS shows the expected G2-M-phase arrest of cells. Notably, bare gold nanoparticle shows arrest of the S phase cells that may be particularly important in case of slow-growing malignancies like MM where most of the cells remain in G1 phase of the cell cycle. The VS conjugated gold retains the activity of both gold nanoparticle and VS leading to a synergistic rise of the apoptotic cell population.
Collapse
Affiliation(s)
- Hirak Kumar Patra
- />Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India
| | - Anjan Kr. Dasgupta
- />Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India
| | - Sounik Sarkar
- />Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019 India
- />Institute of Haematology and Transfusion Medicine, MCH Building (2nd floor), Medical College 88 College Street, Kolkata, 700073 India
| | - Indranil Biswas
- />Institute of Haematology and Transfusion Medicine, MCH Building (2nd floor), Medical College 88 College Street, Kolkata, 700073 India
| | - Arnab Chattopadhyay
- />Institute of Haematology and Transfusion Medicine, MCH Building (2nd floor), Medical College 88 College Street, Kolkata, 700073 India
| |
Collapse
|
19
|
Rauch C, Pluen A, Foster N, Loughna P, Mobasheri A, Lagadic-Gossmann D, Counillon L. On some aspects of the thermodynamic of membrane recycling mediated by fluid phase endocytosis: evaluation of published data and perspectives. Cell Biochem Biophys 2010; 56:73-90. [PMID: 20013072 DOI: 10.1007/s12013-009-9072-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The theoretical and experimental description of fluid phase endocytosis (FPE) requires an asymmetry in phospholipid number between the two leaflets of the cell membrane, which provides the biomechanical torque needed to generate membrane budding. Although the motor force behind FPE is defined, its kinetic has yet to be determined. Based on a body of evidences suggesting that the mean surface tension is unlikely to be involved in endocytosis we decided to determine whether the cytosolic hydrostatic pressure could be involved, by considering a constant energy exchanged between the cytosol and the cell membrane. The theory is compared to existing experimental data obtained from FPE kinetic studies in living cells where altered phospholipid asymmetry or changes in the extracellular osmotic pressure have been investigated. The model demonstrates that FPE is dependent on the influx and efflux of vesicular volumes (i.e. vesicular volumes recycling) rather than the membrane tension of cells. We conclude that: (i) a relationship exists between membrane lipid number asymmetry and resting cytosolic pressure and (ii) the validity of Laplace's law is limited to cells incubated in a definite hypotonic regime. Finally, we discuss how the model could help clarifying elusive observations obtained from different fields and including: (a) the non-canonical shuttling of aquaporin in cells, (b) the relationship between high blood pressure and inflammation and (c) the mechanosensitivity of the sodium/proton exchanger.
Collapse
Affiliation(s)
- Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK.
| | | | | | | | | | | | | |
Collapse
|
20
|
Huber V, De Milito A, Harguindey S, Reshkin SJ, Wahl ML, Rauch C, Chiesi A, Pouysségur J, Gatenby RA, Rivoltini L, Fais S. Proton dynamics in cancer. J Transl Med 2010; 8:57. [PMID: 20550689 PMCID: PMC2905351 DOI: 10.1186/1479-5876-8-57] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 06/15/2010] [Indexed: 02/04/2023] Open
Abstract
Cancer remains a leading cause of death in the world today. Despite decades of research to identify novel therapeutic approaches, durable regressions of metastatic disease are still scanty and survival benefits often negligible. While the current strategy is mostly converging on target-therapies aimed at selectively affecting altered molecular pathways in tumor cells, evidences are in parallel pointing to cell metabolism as a potential Achilles' heel of cancer, to be disrupted for achieving therapeutic benefit. Critical differences in the metabolism of tumor versus normal cells, which include abnormal glycolysis, high lactic acid production, protons accumulation and reversed intra-extracellular pH gradients, make tumor site a hostile microenvironment where only cancer cells can proliferate and survive. Inhibiting these pathways by blocking proton pumps and transporters may deprive cancer cells of a key mechanism of detoxification and thus represent a novel strategy for a pleiotropic and multifaceted suppression of cancer cell growth. Research groups scattered all over the world have recently started to investigate various aspects of proton dynamics in cancer cells with quite encouraging preliminary results. The intent of unifying investigators involved in this research line led to the formation of the "International Society for Proton Dynamics in Cancer" (ISPDC) in January 2010. This is the manifesto of the newly formed society where both basic and clinical investigators are called to foster translational research and stimulate interdisciplinary collaboration for the development of more specific and less toxic therapeutic strategies based on proton dynamics in tumor cell biology.
Collapse
Affiliation(s)
- Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Panagiotopoulou V, Richardson G, Jensen OE, Rauch C. On a biophysical and mathematical model of Pgp-mediated multidrug resistance: understanding the “space–time” dimension of MDR. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:201-11. [DOI: 10.1007/s00249-009-0555-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/05/2009] [Accepted: 10/09/2009] [Indexed: 11/28/2022]
|
22
|
Affiliation(s)
- Jonathan A Sheps
- Cancer Genetics and Developmental Biology, BC Cancer Research Centre, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3 Canada.
| |
Collapse
|
23
|
Rauch C. Toward a mechanical control of drug delivery. On the relationship between Lipinski's 2nd rule and cytosolic pH changes in doxorubicin resistance levels in cancer cells: a comparison to published data. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:829-46. [PMID: 19296096 DOI: 10.1007/s00249-009-0429-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 02/17/2009] [Accepted: 02/23/2009] [Indexed: 11/30/2022]
Abstract
Based on molecular and physiological resemblance, the mechanism that controls drug bioavailability and toxicity also shares strong similarities to the one that controls drug resistance. In both cases, this mechanism relies on the expression of drug transporters and the physico-chemical properties of drugs, which together alter the intracellular accumulation of chemicals in cells or tissues. However, a parameter that is central and has received great attention in the field of bioavailability, but almost none in the field of drug resistance, is the molecular weight of drugs. In the former area, it is well known that to achieve a reasonable bioavailability, drugs must have-among other properties-a molecular weight less than 500, known as Lipinski's 2nd rule. Accordingly, it is worth questioning whether a similar rule exists in the field of drug resistance and what subsequent mechanism would control the membrane permeability to drugs as a function of their molecular weight. I demonstrate here that cytosolic pH fixes the molecular weight of drugs entering cells, by altering the cell membrane mechanical properties and that, both cytosolic pH and membrane mechanical properties are needed and sufficient to explain doxorubicin resistance levels in different cancerous cell lines. Finally, I discuss the efficiency of a drug handling activity by transporters in MDR and suggest ways to control drug delivery mechanically. In addition, and for the first time, the literal expression of a Law similar to Lipinski's 2nd rule will be described as a function of cytosolic pH and lipid number asymmetry.
Collapse
Affiliation(s)
- Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
24
|
Boccard J, Bajot F, Di Pietro A, Rudaz S, Boumendjel A, Nicolle E, Carrupt PA. A 3D linear solvation energy model to quantify the affinity of flavonoid derivatives toward P-glycoprotein. Eur J Pharm Sci 2009; 36:254-64. [DOI: 10.1016/j.ejps.2008.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 09/21/2008] [Accepted: 09/22/2008] [Indexed: 11/29/2022]
|
25
|
Rauch C. On the relationship between drug's size, cell membrane mechanical properties and high levels of multi drug resistance: a comparison to published data. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:537-46. [PMID: 19066880 DOI: 10.1007/s00249-008-0385-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 09/26/2008] [Accepted: 11/17/2008] [Indexed: 11/29/2022]
Abstract
Multi drug resistance (MDR) or cross resistance to drugs was initially explained on the basis that MDR cells express drug transporters that expel membrane-embedded drugs. However, it is now clear that transporters are a single piece from a complex puzzle. An issue that has been solved recently is, given that these transporters have to handle drugs, why should a membrane-embedded drug and a transporter meet? To solve this problem, a theory has been suggested considering the interaction between the cell membrane mechanical properties and the size of drugs. In simple terms, this theory proposes that an excess in the packing of lipid in the inner leaflet of the membrane of MDR cells is responsible for blocking drugs mechanically as a function of their sizes at the membrane level, thus impairing their flux into the cytosol. In turn it is expected that this would allow any membrane embedded drug to diffuse toward transporters. The study concluded that the size of drugs is necessarily important regarding the mechanical interaction between the drug and the membrane, and likely to be central to MDR. Remarkably, an experimental study based on MDR and published years ago concluded that the molecular weight (MW) of drugs was central to MDR (Biedler and Riehm in Cancer Res 30:1174-1184, 1970). Given that size and MW are linked together, I have compared the former theory to the latter experimental data and demonstrate that, indeed, basic membrane mechanics is involved in high levels of cross resistance to drugs in Pgp expressing cells.
Collapse
Affiliation(s)
- Cyril Rauch
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| |
Collapse
|
26
|
Rauch C, Flint A. Non-genomic steroid effects: Merging membrane fluidity and receptor-mediated responses. Vet J 2008; 176:265-6. [PMID: 17855132 DOI: 10.1016/j.tvjl.2007.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 07/10/2007] [Indexed: 11/25/2022]
|
27
|
Nandi T. Proposed lead molecules against Hemagglutinin of avian influenza virus (H5N1). Bioinformation 2008; 2:240-4. [PMID: 18317572 PMCID: PMC2258429 DOI: 10.6026/97320630002240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 01/05/2008] [Indexed: 11/23/2022] Open
Abstract
Human infection with avian influenza H5N1 is an emerging infectious disease characterized by respiratory symptoms and a high fatality rate. Hemagglutinin and neuraminidase are the two surface proteins responsible for infection by influenza virus. Till date, neuraminidase has been the major target for antiviral drugs. In the present study we chose hemagglutinin protein as it mediates the binding of the virus to target cells through sialic acid residues on the host cell-surface. Hemagglutinin of H5 avian influenza (PDB ID: 1JSN) was used as the receptor protein. Ligands were generated by structure-based de novo approach and virtual screening of ZINC database. A total of 11,104 conformers were generated and docked into the receptor binding site using 'High Throughput Virtual Screening'. We proposed potential lead molecules against the receptor binding site of hemagglutinin based on the results obtained from in silico docking and hydrogen bond interaction between the ligand and the 1JSN protein molecule. We found sialic acid derivative 1 to be the lead molecules amongst the ligands generated by structure based de novo approach. However the molecules obtained from ZINC database were showing better docking scores as well as conserved hydrogen bond interactions. Thus we proposed ZINC00487720 and ZINC00046810 as potential lead molecules that could be used as an inhibitor to the receptor binding site of hemagglutinin. They could now be studied in vivo to validate the in silico results.
Collapse
Affiliation(s)
- Tannistha Nandi
- Department of Biotechnology, Jaypee Institute of Information Technology University, Noida (UP) 201307 India.
| |
Collapse
|