1
|
Huang Y, Liao K, Yang Z, Tian S, Yuan X, Sun X, Li Z, Han L. Novel CRM cosine similarity mapping strategy for simultaneous in-situ visual profiling lignocellulose in plant cell walls. Carbohydr Polym 2025; 348:122904. [PMID: 39567139 DOI: 10.1016/j.carbpol.2024.122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
Confocal Raman microscopy (CRM) is a promising in-situ visual technique that provides detailed insights into multiple lignocellulosic components and structures in plant cell walls at the micro-nano scale. In this study, we propose a novel CRM cosine similarity (CS) mapping strategy for the simultaneous in-situ visual profiling of lignin, cellulose, and hemicellulose in plant cell walls. The main stages of this strategy include: 1) a modified Otsu algorithm for extracting the regions of interest (ROI); 2) a modified subtraction method for cleaning the background signals in the ROI spectra; 3) a lignin signal subtraction method based on the pixel correction factor for eliminating the interference of strong lignin signals with weak cellulose and hemicellulose signals in the Raman full spectra of the cell walls; 4) second-order derivative spectral preprocessing for enhancing the discrimination between the characteristic peaks of cellulose and hemicellulose; 5) a CS mapping algorithm for simultaneous in-situ profiling of lignin, cellulose, and hemicellulose in plant cell walls. The effectiveness of the strategy is verified by characterizing the Brittle Culm1 (BC1) gene-mutant rice stem (IL349-BC1-KO) with known bioinformatics. This approach provides methodological support for in-situ visualization and analysis in fields such as plant or crop science at the micro-nano scale.
Collapse
Affiliation(s)
- Yuanping Huang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Keke Liao
- College of Engineering, China Agricultural University, Beijing 100083, China; College of Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zengling Yang
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Sicong Tian
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xiangru Yuan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xingming Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zichao Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Lujia Han
- College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Faleri C, Xu X, Mareri L, Hausman JF, Cai G, Guerriero G. Immunohistochemical analyses on two distinct internodes of stinging nettle show different distribution of polysaccharides and proteins in the cell walls of bast fibers. PROTOPLASMA 2022; 259:75-90. [PMID: 33839957 PMCID: PMC8752570 DOI: 10.1007/s00709-021-01641-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/29/2021] [Indexed: 05/27/2023]
Abstract
Stinging nettle is a perennial herbaceous species holding value as a multi-purpose plant. Indeed, its leaves and roots are phytofactories providing functional ingredients of medicinal interest and its stems produce silky and resistant extraxylary fibers (a.k.a. bast fibers) valued in the biocomposite sector. Similarly to what is reported in other fiber crops, the stem of nettle contains both lignified and hypolignified fibers in the core and cortex, respectively, and it is therefore a useful model for cell wall research. Indeed, data on nettle stem tissues can be compared to those obtained in other models, such as hemp and flax, to support hypotheses on the differentiation and development of bast fibers. The suitability of the nettle stem as model for cell wall-related research was already validated using a transcriptomics and biochemical approach focused on internodes at different developmental stages sampled at the top, middle, and bottom of the stem. We here sought to complement and enrich these data by providing immunohistochemical and ultrastructural details on young and older stem internodes. Antibodies recognizing non-cellulosic polysaccharides (galactans, arabinans, rhamnogalacturonans) and arabinogalactan proteins were here investigated with the goal of understanding whether their distribution changes in the stem tissues in relation to the bast fiber and vascular tissue development. The results obtained indicate that the occurrence and distribution of cell wall polysaccharides and proteins differ between young and older internodes and that these changes are particularly evident in the bast fibers.
Collapse
Affiliation(s)
- Claudia Faleri
- Dipartimento Scienze della Vita, University of Siena, via Mattioli 4, Siena, Italy
| | - Xuan Xu
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Hautcharage, Luxembourg
| | - Lavinia Mareri
- Dipartimento Scienze della Vita, University of Siena, via Mattioli 4, Siena, Italy
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Hautcharage, Luxembourg
| | - Giampiero Cai
- Dipartimento Scienze della Vita, University of Siena, via Mattioli 4, Siena, Italy.
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Hautcharage, Luxembourg
| |
Collapse
|
3
|
Madadi M, Zhao K, Wang Y, Wang Y, Tang SW, Xia T, Jin N, Xu Z, Li G, Qi Z, Peng L, Xiong Z. Modified lignocellulose and rich starch for complete saccharification to maximize bioethanol in distinct polyploidy potato straw. Carbohydr Polym 2021; 265:118070. [PMID: 33966834 DOI: 10.1016/j.carbpol.2021.118070] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 01/09/2023]
Abstract
Potato is a major food crop with enormous biomass straw, but lignocellulose recalcitrance causes a costly bioethanol conversion. Here, we selected the cytochimera (Cyt) potato samples showing significantly-modified lignocellulose and much increased soluble sugars and starch by 2-4 folds in mature straws. Under two pretreatments (8 min liquid hot water; 5% CaO) at minimized conditions, the potato Cyt straw showed complete enzymatic saccharification. Further performing yeast fermentation with all hexoses released from soluble sugars, starch and lignocellulose in the Cyt straw, this study achieved a maximum bioethanol yield of 24 % (% dry matter), being higher than those of other bioenergy crops as previously reported. Hence, this study has proposed a novel mechanism model on the reduction of major lignocellulose recalcitrance and regulation of carbon assimilation to achieve cost-effective bioethanol production under optimal pretreatments. This work also provides a sustainable strategy for utilization of potato straws with minimum waste release.
Collapse
Affiliation(s)
- Meysam Madadi
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China.
| | - Kanglu Zhao
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China.
| | - Youmei Wang
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; College of Life Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yanting Wang
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China.
| | - Shang-Wen Tang
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China.
| | - Tao Xia
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; College of Life Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Nengzhou Jin
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China.
| | - Zhijun Xu
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China.
| | - Guanhua Li
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China.
| | - Zhi Qi
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China.
| | - Liangcai Peng
- Biomass & Bioenergy Research Center, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang, China.
| | - Zhiyong Xiong
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China.
| |
Collapse
|
4
|
Breeding Targets to Improve Biomass Quality in Miscanthus. Molecules 2021; 26:molecules26020254. [PMID: 33419100 PMCID: PMC7825460 DOI: 10.3390/molecules26020254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 01/02/2023] Open
Abstract
Lignocellulosic crops are attractive bioresources for energy and chemicals production within a sustainable, carbon circular society. Miscanthus is one of the perennial grasses that exhibits great potential as a dedicated feedstock for conversion to biobased products in integrated biorefineries. The current biorefinery strategies are primarily focused on polysaccharide valorization and require severe pretreatments to overcome the lignin barrier. The need for such pretreatments represents an economic burden and impacts the overall sustainability of the biorefinery. Hence, increasing its efficiency has been a topic of great interest. Inversely, though pretreatment will remain an essential step, there is room to reduce its severity by optimizing the biomass composition rendering it more exploitable. Extensive studies have examined the miscanthus cell wall structures in great detail, and pinpointed those components that affect biomass digestibility under various pretreatments. Although lignin content has been identified as the most important factor limiting cell wall deconstruction, the effect of polysaccharides and interaction between the different constituents play an important role as well. The natural variation that is available within different miscanthus species and increased understanding of biosynthetic cell wall pathways have specified the potential to create novel accessions with improved digestibility through breeding or genetic modification. This review discusses the contribution of the main cell wall components on biomass degradation in relation to hydrothermal, dilute acid and alkaline pretreatments. Furthermore, traits worth advancing through breeding will be discussed in light of past, present and future breeding efforts.
Collapse
|
5
|
Li Y, Zhuo J, Liu P, Chen P, Hu H, Wang Y, Zhou S, Tu Y, Peng L, Wang Y. Distinct wall polymer deconstruction for high biomass digestibility under chemical pretreatment in Miscanthus and rice. Carbohydr Polym 2018; 192:273-281. [PMID: 29691021 DOI: 10.1016/j.carbpol.2018.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/02/2018] [Accepted: 03/08/2018] [Indexed: 11/18/2022]
Abstract
Miscanthus is a leading bioenergy crop and rice provides enormous biomass for biofuels. Using Calcofluor White staining, this work in situ observed an initial lignocellulose hydrolysis in two distinct Miscanthus accessions, rice cultivar (NPB), and Osfc16 mutant after mild chemical pretreatments. In comparison, the M. sin and Osfc16 respectively exhibited weak Calcofluor fluorescence compared to the M. sac and NPB during enzymatic hydrolysis, consistent with the high biomass saccharification detected in vitro. Using xyloglucan-directed monoclonal antibodies (mAbs), xyloglucan deconstruction was observed from initial cellulose hydrolysis, whereas the M. sin and Osfc16 exhibited relatively strong immunolabeling using xylan-directed mAb, confirming previous findings of xylan positive impacts on biomass saccharification. Furthermore, the M. sin showed quick disappearance of RG-I immunolabeling with varied HG labelings between acid and alkali pretreatments. Hence, this study demonstrated a quick approach to explore wall polymer distinct deconstruction for enhanced biomass saccharification under chemical pretreatment in bioenergy crops.
Collapse
Affiliation(s)
- Yuyang Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Jingdi Zhuo
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Peng Liu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Peng Chen
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Huizhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Youmei Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Shiguang Zhou
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Yuanyuan Tu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
6
|
Fan C, Li Y, Hu Z, Hu H, Wang G, Li A, Wang Y, Tu Y, Xia T, Peng L, Feng S. Ectopic expression of a novel OsExtensin-like gene consistently enhances plant lodging resistance by regulating cell elongation and cell wall thickening in rice. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:254-263. [PMID: 28574641 PMCID: PMC5785348 DOI: 10.1111/pbi.12766] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/30/2017] [Accepted: 05/29/2017] [Indexed: 05/17/2023]
Abstract
Plant lodging resistance is an important integrative agronomic trait of grain yield and quality in crops. Although extensin proteins are tightly associated with plant cell growth and cell wall construction, little has yet been reported about their impacts on plant lodging resistance. In this study, we isolated a novel extensin-like (OsEXTL) gene in rice, and selected transgenic rice plants that expressed OsEXTL under driven with two distinct promoters. Despite different OsEXTL expression levels, two-promoter-driven OsEXTL-transgenic plants, compared to a rice cultivar and an empty vector, exhibited significantly reduced cell elongation in stem internodes, leading to relatively shorter plant heights by 7%-10%. Meanwhile, the OsEXTL-transgenic plants showed remarkably thickened secondary cell walls with higher cellulose levels in the mature plants, resulting in significantly increased detectable mechanical strength (extension and pushing forces) in the mature transgenic plants. Due to reduced plant height and increased plant mechanical strength, the OsEXTL-transgenic plants were detected with largely enhanced lodging resistances in 3 years field experiments, compared to those of the rice cultivar ZH11. In addition, despite relatively short plant heights, the OsEXTL-transgenic plants maintain normal grain yields and biomass production, owing to their increased cellulose levels and thickened cell walls. Hence, this study demonstrates a largely improved lodging resistance in the OsEXTL-transgenic rice plants, and provides insights into novel extensin functions in plant cell growth and development, cell wall network construction and wall structural remodelling.
Collapse
Affiliation(s)
- Chunfen Fan
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ying Li
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zhen Hu
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Huizhen Hu
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Guangya Wang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ao Li
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Youmei Wang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yuanyuan Tu
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Tao Xia
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Liangcai Peng
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shengqiu Feng
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
7
|
Bai Y, Wu D, Liu F, Li Y, Chen P, Lu M, Zheng B. Characterization and Functional Analysis of the Poplar Pectate Lyase-Like Gene PtPL1-18 Reveal Its Role in the Development of Vascular Tissues. FRONTIERS IN PLANT SCIENCE 2017; 8:1123. [PMID: 28702042 PMCID: PMC5487484 DOI: 10.3389/fpls.2017.01123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 05/04/2023]
Abstract
Pectin is a major component of plant cell walls, and the structure of pectin impacts on the properties of wood. Although we know that pectate lyase (PL, EC 4.2.2.2) has a major influence on the structure of pectin, our knowledge of Pectate lyase-like genes (PLL) in tree species remains limited. To better understand the characteristics of PLL genes in trees and to identify novel PLL genes that are potentially involved in the development of wood, we performed comprehensive analyses of gene structures, phylogenetic relationships, chromosomal locations, gene duplication events, conserved protein motifs, and gene expression patterns of 30 PLLs in Populus trichocarpa (PtPL1s). We performed an in silico gene expression profiling and quantitative real-time PCR analysis and found that most of the PtPL1 genes from subgroups Ia and Ib were highly expressed in xylem. PtPL1-18 from subgroup Ia was preferentially expressed in developing primary xylem and in xylem cells that were developing secondary walls. Overexpression of PtPL1-18 in poplar reduced plant growth and xylem development. Reduced secondary cell wall thickening and irregular xylem cells were observed in the transgenic trees, probably due to their lower pectin content. Although pectin is not a major component of plant secondary cell walls, our results are consistent with the PtPL1 genes performing important functions during wood formation.
Collapse
Affiliation(s)
- Yun Bai
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Dan Wu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Fei Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yuyang Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
8
|
da Costa RMF, Pattathil S, Avci U, Lee SJ, Hazen SP, Winters A, Hahn MG, Bosch M. A cell wall reference profile for Miscanthus bioenergy crops highlights compositional and structural variations associated with development and organ origin. THE NEW PHYTOLOGIST 2017; 213:1710-1725. [PMID: 27859277 PMCID: PMC5324610 DOI: 10.1111/nph.14306] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/29/2016] [Indexed: 05/17/2023]
Abstract
Miscanthus spp. are promising lignocellulosic energy crops, but cell wall recalcitrance to deconstruction still hinders their widespread use as bioenergy and biomaterial feedstocks. Identification of cell wall characteristics desirable for biorefining applications is crucial for lignocellulosic biomass improvement. However, the task of scoring biomass quality is often complicated by the lack of a reference for a given feedstock. A multidimensional cell wall analysis was performed to generate a reference profile for leaf and stem biomass from several miscanthus genotypes harvested at three developmentally distinct time points. A comprehensive suite of 155 monoclonal antibodies was used to monitor changes in distribution, structure and extractability of noncellulosic cell wall matrix glycans. Glycan microarrays complemented with immunohistochemistry elucidated the nature of compositional variation, and in situ distribution of carbohydrate epitopes. Key observations demonstrated that there are crucial differences in miscanthus cell wall glycomes, which may impact biomass amenability to deconstruction. For the first time, variations in miscanthus cell wall glycan components were comprehensively characterized across different harvests, organs and genotypes, to generate a representative reference profile for miscanthus cell wall biomass. Ultimately, this portrait of the miscanthus cell wall will help to steer breeding and genetic engineering strategies for the development of superior energy crops.
Collapse
Affiliation(s)
- Ricardo M. F. da Costa
- Institute of BiologicalEnvironmental and Rural SciencesAberystwyth UniversityPlas GogerddanAberystwythCeredigionSY23 3EEUK
| | - Sivakumar Pattathil
- Complex Carbohydrate Research CenterThe University of Georgia315 Riverbend RoadAthensGA30602USA
- US Department of Energy Bioenergy Science CenterOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Utku Avci
- Complex Carbohydrate Research CenterThe University of Georgia315 Riverbend RoadAthensGA30602USA
- US Department of Energy Bioenergy Science CenterOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Scott J. Lee
- Biology DepartmentUniversity of MassachusettsAmherstMA01003USA
| | - Samuel P. Hazen
- Biology DepartmentUniversity of MassachusettsAmherstMA01003USA
| | - Ana Winters
- Institute of BiologicalEnvironmental and Rural SciencesAberystwyth UniversityPlas GogerddanAberystwythCeredigionSY23 3EEUK
| | - Michael G. Hahn
- Complex Carbohydrate Research CenterThe University of Georgia315 Riverbend RoadAthensGA30602USA
- US Department of Energy Bioenergy Science CenterOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Maurice Bosch
- Institute of BiologicalEnvironmental and Rural SciencesAberystwyth UniversityPlas GogerddanAberystwythCeredigionSY23 3EEUK
| |
Collapse
|
9
|
Fan C, Feng S, Huang J, Wang Y, Wu L, Li X, Wang L, Tu Y, Xia T, Li J, Cai X, Peng L. AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharification and lodging resistance by distinctively altering lignocellulose features in rice. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:221. [PMID: 28932262 PMCID: PMC5603028 DOI: 10.1186/s13068-017-0911-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/08/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Biomass recalcitrance and plant lodging are two complex traits that tightly associate with plant cell wall structure and features. Although genetic modification of plant cell walls can potentially reduce recalcitrance for enhancing biomass saccharification, it remains a challenge to maintain a normal growth with enhanced biomass yield and lodging resistance in transgenic plants. Sucrose synthase (SUS) is a key enzyme to regulate carbon partitioning by providing UDP-glucose as substrate for cellulose and other polysaccharide biosynthesis. Although SUS transgenic plants have reportedly exhibited improvement on the cellulose and starch based traits, little is yet reported about SUS impacts on both biomass saccharification and lodging resistance. In this study, we selected the transgenic rice plants that expressed OsSUS3 genes when driven by the AtCesA8 promoter specific for promoting secondary cell wall cellulose synthesis in Arabidopsis. We examined biomass saccharification and lodging resistance in the transgenic plants and detected their cell wall structures and wall polymer features. RESULTS During two-year field experiments, the selected AtCesA8::SUS3 transgenic plants maintained a normal growth with slightly increased biomass yields. The four independent transgenic lines exhibited much higher biomass enzymatic saccharification and bioethanol production under chemical pretreatments at P < 0.01 levels, compared with the controls of rice cultivar and empty vector transgenic line. Notably, all transgenic lines showed a consistently enhanced lodging resistance with the increasing extension and pushing forces. Correlation analysis suggested that the reduced cellulose crystallinity was a major factor for largely enhanced biomass saccharification and lodging resistance in transgenic rice plants. In addition, the cell wall thickenings with the increased cellulose and hemicelluloses levels should also contribute to plant lodging resistance. Hence, this study has proposed a mechanistic model that shows how OsSUS3 regulates cellulose and hemicelluloses biosyntheses resulting in reduced cellulose crystallinity and increased wall thickness, thereby leading to large improvements of both biomass saccharification and lodging resistance in transgenic rice plants. CONCLUSIONS This study has demonstrated that the AtCesA8::SUS3 transgenic rice plants exhibited largely improved biomass saccharification and lodging resistance by reducing cellulose crystallinity and increasing cell wall thickness. It also suggests a powerful genetic approach for cell wall modification in bioenergy crops.
Collapse
Affiliation(s)
- Chunfen Fan
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengqiu Feng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiangfeng Huang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Leiming Wu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xukai Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lingqiang Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Tu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Xia
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingyang Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- HaiKou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102 China
| | - Xiwen Cai
- Department of Plant Science, North Dakota State University, Fargo, ND USA
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Zhang M, Wei F, Guo K, Hu Z, Li Y, Xie G, Wang Y, Cai X, Peng L, Wang L. A Novel FC116/ BC10 Mutation Distinctively Causes Alteration in the Expression of the Genes for Cell Wall Polymer Synthesis in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:1366. [PMID: 27708650 PMCID: PMC5030303 DOI: 10.3389/fpls.2016.01366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/29/2016] [Indexed: 05/11/2023]
Abstract
We report isolation and characterization of a fragile culm mutant fc116 that displays reduced mechanical strength caused by decreased cellulose content and altered cell wall structure in rice. Map-based cloning revealed that fc116 was a base substitution mutant (G to A) in a putative beta-1,6-N-acetylglucosaminyltransferase (C2GnT) gene (LOC_Os05g07790, allelic to BC10). This mutation resulted in one amino acid missing within a newly-identified protein motif "R, RXG, RA." The FC116/BC10 gene was lowly but ubiquitously expressed in the all tissues examined across the whole life cycle of rice, and slightly down-regulated during secondary growth. This mutant also exhibited a significant increase in the content of hemicelluloses and lignins, as well as the content of pentoses (xylose and arabinose). But the content of hexoses (glucose, mannose, and galactose) was decreased in both cellulosic and non-cellulosic (pectins and hemicelluloses) fractions of the mutant. Transcriptomic analysis indicated that the typical genes in the fc116 mutant were up-regulated corresponding to xylan biosynthesis, as well as lignin biosynthesis including p-hydroxyphenyl (H), syringyl (S), and guaiacyl (G). Our results indicate that FC116 has universal function in regulation of the cell wall polymers in rice.
Collapse
Affiliation(s)
- Mingliang Zhang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Feng Wei
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Kai Guo
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Zhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yuyang Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Guosheng Xie
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xiwen Cai
- Department of Plant Science, North Dakota State UniversityFargo, ND, USA
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Lingqiang Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural UniversityWuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural UniversityWuhan, China
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
11
|
Carneiro RGS, Oliveira DC, Isaias RMS. Developmental anatomy and immunocytochemistry reveal the neo-ontogenesis of the leaf tissues of Psidium myrtoides (Myrtaceae) towards the globoid galls of Nothotrioza myrtoidis (Triozidae). PLANT CELL REPORTS 2014; 33:2093-106. [PMID: 25228569 DOI: 10.1007/s00299-014-1683-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/13/2014] [Accepted: 08/31/2014] [Indexed: 05/20/2023]
Abstract
The temporal balance between hyperplasia and hypertrophy, and the new functions of different cell lineages led to cell transformations in a centrifugal gradient that determines the gall globoid shape. Plant galls develop by the redifferentiation of new cell types originated from those of the host plants, with new functional and structural designs related to the composition of cell walls and cell contents. Variations in cell wall composition have just started to be explored with the perspective of gall development, and are herein related to the histochemical gradients previously detected on Psidium myrtoides galls. Young and mature leaves of P. myrtoides and galls of Nothotrioza myrtoidis at different developmental stages were analysed using anatomical, cytometrical and immunocytochemical approaches. The gall parenchyma presents transformations in the size and shape of the cells in distinct tissue layers, and variations of pectin and protein domains in cell walls. The temporal balance between tissue hyperplasia and cell hypertrophy, and the new functions of different cell lineages led to cell transformations in a centrifugal gradient, which determines the globoid shape of the gall. The distribution of cell wall epitopes affected cell wall flexibility and rigidity, towards gall maturation. By senescence, it provided functional stability for the outer cortical parenchyma. The detection of the demethylesterified homogalacturonans (HGAs) denoted the activity of the pectin methylesterases (PMEs) during the senescent phase, and was a novel time-based detection linked to the increased rigidity of the cell walls, and to the gall opening. Current investigation firstly reports the influence of immunocytochemistry of plant cell walls over the development of leaf tissues, determining their neo-ontogenesis towards a new phenotype, i.e., the globoid gall morphotype.
Collapse
Affiliation(s)
- Renê G S Carneiro
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | | | | |
Collapse
|