1
|
Lee W, Lin SL, Chiang CS, Chen JY, Chieng WW, Huang SR, Chang TY, Linju Yen B, Hung MC, Chang KC, Lee HT, Jeng LB, Shyu WC. Role of HIF-1α-Activated IL-22/IL-22R1/Bmi1 Signaling Modulates the Self-Renewal of Cardiac Stem Cells in Acute Myocardial Ischemia. Stem Cell Rev Rep 2024; 20:2194-2214. [PMID: 39264501 PMCID: PMC11554697 DOI: 10.1007/s12015-024-10774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
Impaired tissue regeneration negatively impacts on left ventricular (LV) function and remodeling after acute myocardial infarction (AMI). Little is known about the intrinsic regulatory machinery of ischemia-induced endogenous cardiac stem cells (eCSCs) self-renewing divisions after AMI. The interleukin 22 (IL-22)/IL-22 receptor 1 (IL-22R1) pathway has emerged as an important regulator of several cellular processes, including the self-renewal and proliferation of stem cells. However, whether the hypoxic environment could trigger the self-renewal of eCSCs via IL-22/IL-22R1 activation remains unknown. In this study, the upregulation of IL-22R1 occurred due to activation of hypoxia-inducible factor-1α (HIF-1α) under hypoxic and ischemic conditions. Systemic IL-22 administration not only attenuated cardiac remodeling, inflammatory responses, but also promoted eCSC-mediated cardiac repair after AMI. Unbiased RNA microarray analysis showed that the downstream mediator Bmi1 regulated the activation of CSCs. Therefore, the HIF-1α-induced IL-22/IL-22R1/Bmi1 cascade can modulate the proliferation and activation of eCSCs in vitro and in vivo. Collectively, investigating the HIF-1α-activated IL-22/IL-22R1/Bmi1 signaling pathway might offer a new therapeutic strategy for AMI via eCSC-induced cardiac repair.
Collapse
Affiliation(s)
- Wei Lee
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
| | - Syuan-Ling Lin
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Chih-Sheng Chiang
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University (CMU), Taichung, 404, Taiwan
- Neuroscience and Brain Disease Center and New Drug Development Center, CMU, Taichung, 404, Taiwan
| | - Jui-Yu Chen
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Wee-Wei Chieng
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Shu-Rou Huang
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Ting-Yu Chang
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, 350, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Research Centers for Cancer Biology and Molecular Medicine, CMU, Taichung, 404, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, Department of Medicine, CMUH, Taichung, 404, Taiwan
- School of Medicine, CMU, Taichung, 404, Taiwan
| | - Hsu-Tung Lee
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, 404, Taiwan
| | - Long-Bin Jeng
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
- Organ Transplantation Center, CMUH, Taichung, 404, Taiwan
| | - Woei-Cherng Shyu
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University (CMU), Taichung, 404, Taiwan.
- Neuroscience and Brain Disease Center and New Drug Development Center, CMU, Taichung, 404, Taiwan.
- Department of Neurology, CMUH, Taichung, 404, Taiwan.
- Department of Occupational Therapy, Asia University, No. 2, Yude Rd., North Dist, Taichung City, 404332, Taiwan.
| |
Collapse
|
2
|
Feng Y, Wang Y, Li L, Yang Y, Tan X, Chen T. Exosomes Induce Crosstalk Between Multiple Types of Cells and Cardiac Fibroblasts: Therapeutic Potential for Remodeling After Myocardial Infarction. Int J Nanomedicine 2024; 19:10605-10621. [PMID: 39445157 PMCID: PMC11498042 DOI: 10.2147/ijn.s476995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Recanalization therapy can significantly improve the prognosis of patients with acute myocardial infarction (AMI). However, infarction or reperfusion-induced cardiomyocyte death, immune cell infiltration, fibroblast proliferation, and scarring formation lead to cardiac remodeling and gradually progress to heart failure or arrhythmia, resulting in a high mortality rate. Due to the inability of cardiomyocytes to regenerate, the healing of infarcted myocardium mainly relies on the formation of scars. Cardiac fibroblasts, as the main effector cells involved in repair and scar formation, play a crucial role in maintaining the structural integrity of the heart after MI. Recent studies have revealed that exosome-mediated intercellular communication plays a huge role in myocardial repair and signaling transduction after myocardial infarction (MI). Exosomes can regulate the biological behavior of fibroblasts by activating or inhibiting the intracellular signaling pathways through their contents, which are derived from cardiomyocytes, immune cells, endothelial cells, mesenchymal cells, and others. Understanding the interactions between fibroblasts and other cell types during cardiac remodeling will be the key to breakthrough therapies. This review examines the role of exosomes from different sources in the repair process after MI injury, especially the impacts on fibroblasts during myocardial remodeling, and explores the use of exosomes in the treatment of myocardial remodeling after MI.
Collapse
Affiliation(s)
- Yijuan Feng
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yan Wang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Li Li
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Tangting Chen
- Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
3
|
Liu DZ, Luo XZ, Lu CH, Feng YY, Chen DX, Zeng ZY, Huang F. Y4 RNA fragments from cardiosphere-derived cells ameliorate diabetic myocardial ischemia‒reperfusion injury by inhibiting protein kinase C β-mediated macrophage polarization. Cardiovasc Diabetol 2024; 23:202. [PMID: 38867293 PMCID: PMC11170846 DOI: 10.1186/s12933-024-02247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024] Open
Abstract
The specific pathophysiological pathways through which diabetes exacerbates myocardial ischemia/reperfusion (I/R) injury remain unclear; however, dysregulation of immune and inflammatory cells, potentially driven by abnormalities in their number and function due to diabetes, may play a significant role. In the present investigation, we simulated myocardial I/R injury by inducing ischemia through ligation of the left anterior descending coronary artery in mice for 40 min, followed by reperfusion for 24 h. Previous studies have indicated that protein kinase Cβ (PKCβ) is upregulated under hyperglycemic conditions and is implicated in the development of various diabetic complications. The Y4 RNA fragment is identified as the predominant small RNA component present in the extracellular vesicles of cardio sphere-derived cells (CDCs), exhibiting notable anti-inflammatory properties in the contexts of myocardial infarction and cardiac hypertrophy. Our investigation revealed that the administration of Y4 RNA into the ventricular cavity of db/db mice following myocardial I/R injury markedly enhanced cardiac function. Furthermore, Y4 RNA was observed to facilitate M2 macrophage polarization and interleukin-10 secretion through the suppression of PKCβ activation. The mechanism by which Y4 RNA affects PKCβ by regulating macrophage activation within the inflammatory environment involves the inhibition of ERK1/2 phosphorylation In our study, the role of PKCβ in regulating macrophage polarization during myocardial I/R injury was investigated through the use of PKCβ knockout mice. Our findings indicate that PKCβ plays a crucial role in modulating the inflammatory response associated with macrophage activation in db/db mice experiencing myocardial I/R, with a notable exacerbation of this response observed upon significant upregulation of PKCβ expression. In vitro studies further elucidated the protective mechanism by which Y4 RNA modulates the PKCβ/ERK1/2 signaling pathway to induce M2 macrophage activation. Overall, our findings suggest that Y4 RNA plays an anti-inflammatory role in diabetic I/R injury, suggesting a novel therapeutic approach for managing myocardial I/R injury in diabetic individuals.
Collapse
Affiliation(s)
- De-Zhao Liu
- Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiao-Zhi Luo
- Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chuang-Hong Lu
- Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yang-Yi Feng
- Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - De-Xin Chen
- Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Zhi-Yu Zeng
- Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Feng Huang
- Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
4
|
Kraler S, Balbi C, Vdovenko D, Lapikova-Bryhinska T, Camici GG, Liberale L, Bonetti N, Canestro CD, Burger F, Roth A, Carbone F, Vassalli G, Mach F, Bhasin S, Wenzl FA, Muller O, Räber L, Matter CM, Montecucco F, Lüscher TF, Akhmedov A. Circulating GDF11 exacerbates myocardial injury in mice and associates with increased infarct size in humans. Cardiovasc Res 2023; 119:2729-2742. [PMID: 37742057 PMCID: PMC10757585 DOI: 10.1093/cvr/cvad153] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/25/2023] Open
Abstract
AIMS The heart rejuvenating effects of circulating growth differentiation factor 11 (GDF11), a transforming growth factor-β superfamily member that shares 90% homology with myostatin (MSTN), remains controversial. Here, we aimed to probe the role of GDF11 in acute myocardial infarction (MI), a frequent cause of heart failure and premature death during ageing. METHODS AND RESULTS In contrast to endogenous Mstn, myocardial Gdf11 declined during the course of ageing and was particularly reduced following ischaemia/reperfusion (I/R) injury, suggesting a therapeutic potential of GDF11 signalling in MI. Unexpectedly, boosting systemic Gdf11 by recombinant GDF11 delivery (0.1 mg/kg body weight over 30 days) prior to myocardial I/R augmented myocardial infarct size in C57BL/6 mice irrespective of their age, predominantly by accelerating pro-apoptotic signalling. While intrinsic cardioprotective signalling pathways remained unaffected by high circulating GDF11, targeted transcriptomics and immunomapping studies focusing on GDF11-associated downstream targets revealed attenuated Nkx2-5 expression confined to CD105-expressing cells, with pro-apoptotic activity, as assessed by caspase-3 levels, being particularly pronounced in adjacent cells, suggesting an indirect effect. By harnessing a highly specific and validated liquid chromatography-tandem mass spectrometry-based assay, we show that in prospectively recruited patients with MI circulating GDF11 but not MSTN levels incline with age. Moreover, GDF11 levels were particularly elevated in those at high risk for adverse outcomes following the acute event, with circulating GDF11 emerging as an independent predictor of myocardial infarct size, as estimated by standardized peak creatine kinase-MB levels. CONCLUSION Our data challenge the initially reported heart rejuvenating effects of circulating GDF11 and suggest that high levels of systemic GDF11 exacerbate myocardial injury in mice and humans alike. Persistently high GDF11 levels during ageing may contribute to the age-dependent loss of cardioprotective mechanisms and thus poor outcomes of elderly patients following acute MI.
Collapse
Affiliation(s)
- Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | - Carolina Balbi
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, EOC, Lugano, Switzerland
- Laboratories for Translational Research, EOC, Bellinzona, Switzerland
| | - Daria Vdovenko
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | | | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova—Italian Cardiovascular Network, Genoa, Italy
| | - Nicole Bonetti
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Candela Diaz Canestro
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | - Fabienne Burger
- Division of Cardiology, Foundation for Medical Research, University of Geneva, Geneva, Switzerland
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Research, University of Geneva, Geneva, Switzerland
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova—Italian Cardiovascular Network, Genoa, Italy
| | - Giuseppe Vassalli
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, EOC, Lugano, Switzerland
- Laboratories for Translational Research, EOC, Bellinzona, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Research, University of Geneva, Geneva, Switzerland
| | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Florian A Wenzl
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| | - Olivier Muller
- Department of Cardiology, University Hospital of Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Inselspital Bern, Bern, Switzerland
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- University Heart Center, Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova—Italian Cardiovascular Network, Genoa, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
- Royal Brompton and Harefield Hospitals and Imperial College and Kings College, London, UK
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Zurich CH-8952, Switzerland
| |
Collapse
|
5
|
Zubkova E, Dergilev K, Beloglazova I, Kalinin A, Guseva A, Andreev A, Partigulov S, Lepilin M, Menshikov M, Parfyonova Y. Paracrine Responses of Cardiosphere-Derived Cells to Cytokines and TLR Ligands: A Comparative Analysis. Int J Mol Sci 2023; 24:17278. [PMID: 38139105 PMCID: PMC10743612 DOI: 10.3390/ijms242417278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Cardiosphere-derived cells (CDCs) are currently being evaluated in clinical trials as a potential therapeutic tool for regenerative medicine. The effectiveness of transplanted CDCs is largely attributed to their ability to release beneficial soluble factors to enhance therapeutic effects. An emerging area of research is the pretreatment of stem cells, including CDCs, with various cytokines to improve their therapeutic properties. This strategy aims to enhance their survival, proliferation, differentiation, and paracrine activities after transplantation. In our study, we investigated the differential effects of various cytokines and TLR ligands on the secretory phenotype of human CDCs. Using a magnetic bead-based immunoassay, we analyzed the CDCs-conditioned media for 41 cytokines and growth factors and detected the presence of 21 cytokines. We found that CDC incubation with lipopolysaccharide, a TLR4 ligand, and the cytokine combination of TNF/IFN significantly increased the secretion of most of the cytokines detected. Specifically, we observed an increased secretion and gene expression of IP10, MCP3, IL8, and VEGFA. In contrast, the TLR3 ligand polyinosinic-polycytidylic acid and TGF-beta had minimal effects on CDC cytokine secretion. Additionally, TNF/IFN, but not LPS, enhanced ICAM1 expression. Our findings offer new insights into the role of cytokines in potentially modulating the biology and regenerative potential of CDCs.
Collapse
Affiliation(s)
- Ekaterina Zubkova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (E.Z.); (A.K.); (A.G.); (M.M.)
| | - Konstantin Dergilev
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (E.Z.); (A.K.); (A.G.); (M.M.)
| | - Irina Beloglazova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (E.Z.); (A.K.); (A.G.); (M.M.)
| | - Alexander Kalinin
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (E.Z.); (A.K.); (A.G.); (M.M.)
| | - Alika Guseva
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (E.Z.); (A.K.); (A.G.); (M.M.)
| | - Alexander Andreev
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (E.Z.); (A.K.); (A.G.); (M.M.)
| | - Stanislav Partigulov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (E.Z.); (A.K.); (A.G.); (M.M.)
| | - Mikhail Lepilin
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (E.Z.); (A.K.); (A.G.); (M.M.)
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (E.Z.); (A.K.); (A.G.); (M.M.)
| | - Yelena Parfyonova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (E.Z.); (A.K.); (A.G.); (M.M.)
- The Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
6
|
Chepeleva EV. Cell Therapy in the Treatment of Coronary Heart Disease. Int J Mol Sci 2023; 24:16844. [PMID: 38069167 PMCID: PMC10706847 DOI: 10.3390/ijms242316844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Heart failure is a leading cause of death in patients who have suffered a myocardial infarction. Despite the timely use of modern reperfusion therapies such as thrombolysis, surgical revascularization and balloon angioplasty, they are sometimes unable to prevent the development of significant areas of myocardial damage and subsequent heart failure. Research efforts have focused on developing strategies to improve the functional status of myocardial injury areas. Consequently, the restoration of cardiac function using cell therapy is an exciting prospect. This review describes the characteristics of various cell types relevant to cellular cardiomyoplasty and presents findings from experimental and clinical studies investigating cell therapy for coronary heart disease. Cell delivery methods, optimal dosage and potential treatment mechanisms are discussed.
Collapse
Affiliation(s)
- Elena V. Chepeleva
- Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia;
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, 2, Timakova Str., 630060 Novosibirsk, Russia
| |
Collapse
|
7
|
Zhu J, Wang S, Yang D, Xu W, Qian H. Extracellular vesicles: emerging roles, biomarkers and therapeutic strategies in fibrotic diseases. J Nanobiotechnology 2023; 21:164. [PMID: 37221595 DOI: 10.1186/s12951-023-01921-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
Extracellular vesicles (EVs), a cluster of cell-secreted lipid bilayer nanoscale particles, universally exist in body fluids, as well as cell and tissue culture supernatants. Over the past years, increasing attention have been paid to the important role of EVs as effective intercellular communicators in fibrotic diseases. Notably, EV cargos, including proteins, lipids, nucleic acids, and metabolites, are reported to be disease-specific and can even contribute to fibrosis pathology. Thus, EVs are considered as effective biomarkers for disease diagnosis and prognosis. Emerging evidence shows that EVs derived from stem/progenitor cells have great prospects for cell-free therapy in various preclinical models of fibrotic diseases and engineered EVs can improve the targeting and effectiveness of their treatment. In this review, we will focus on the biological functions and mechanisms of EVs in the fibrotic diseases, as well as their potential as novel biomarkers and therapeutic strategies.
Collapse
Affiliation(s)
- Junyan Zhu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Sicong Wang
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dakai Yang
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Wenrong Xu
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Hui Qian
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
8
|
de Couto G, Mesquita T, Wu X, Rajewski A, Huang F, Akhmerov A, Na N, Wu D, Wang Y, Li L, Tran M, Kilfoil P, Cingolani E, Marbán E. Cell therapy attenuates endothelial dysfunction in hypertensive rats with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol 2022; 323:H892-H903. [PMID: 36083797 PMCID: PMC9602891 DOI: 10.1152/ajpheart.00287.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is defined by increased left ventricular (LV) stiffness, impaired vascular compliance, and fibrosis. Although systemic inflammation, driven by comorbidities, has been proposed to play a key role, the precise pathogenesis remains elusive. To test the hypothesis that inflammation drives endothelial dysfunction in HFpEF, we used cardiosphere-derived cells (CDCs), which reduce inflammation and fibrosis, improving function, structure, and survival in HFpEF rats. Dahl salt-sensitive rats fed a high-salt diet developed HFpEF, as manifested by diastolic dysfunction, systemic inflammation, and accelerated mortality. Rats were randomly allocated to receive intracoronary infusion of CDCs or vehicle. Two weeks later, inflammation, oxidative stress, and endothelial function were analyzed. Single-cell RNA sequencing of heart tissue was used to assay transcriptomic changes. CDCs improved endothelial-dependent vasodilation while reducing oxidative stress and restoring endothelial nitric oxide synthase (eNOS) expression. RNA sequencing revealed CDC-induced attenuation of pathways underlying endothelial cell leukocyte binding and innate immunity. Exposure of endothelial cells to CDC-secreted extracellular vesicles in vitro reduced VCAM-1 protein expression and attenuated monocyte adhesion and transmigration. Cell therapy with CDCs corrects diastolic dysfunction, reduces oxidative stress, and restores vascular reactivity. These findings lend credence to the hypothesis that inflammatory changes of the vascular endothelium are important, if not central, to HFpEF pathogenesis.NEW & NOTEWORTHY We tested the concept that inflammation of endothelial cells is a major pathogenic factor in HFpEF. CDCs are heart-derived cell products with verified anti-inflammatory therapeutic properties. Infusion of CDCs reduced oxidative stress, restored eNOS abundance, lowered monocyte levels, and rescued the expression of multiple disease-associated genes, thereby restoring vascular reactivity. The salutary effects of CDCs support the hypothesis that inflammation of endothelial cells is a proximate driver of HFpEF.
Collapse
Affiliation(s)
- Geoffrey de Couto
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Thassio Mesquita
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Xiaokang Wu
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Alex Rajewski
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California
| | - Feng Huang
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Na Na
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Di Wu
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yizhou Wang
- Applied Genomics, Computation and Translational Core, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, California
| | - Liang Li
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - My Tran
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Peter Kilfoil
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Eugenio Cingolani
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|