1
|
Panda S, Subudhi E, Routray SP, Nair S. Systems pharmacology of phytochemical anacardic acid in the chemoprevention of hepatocellular carcinoma. Drug Metab Pers Ther 2025:dmdi-2024-0099. [PMID: 40260672 DOI: 10.1515/dmpt-2024-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/03/2025] [Indexed: 04/24/2025]
Abstract
OBJECTIVES Hepatocellular carcinoma (HCC) is a common type of liver cancer that progresses quickly and has limited treatment options. Nutraceutical anacardic acid (AA), a bioactive compound derived from cashew nut shell, has emerged as a potential candidate for HCC treatment owing to its reported anti-inflammatory, anticancer and diverse pharmacological properties. In the present study, we investigate the potential of AA as an HCC inhibitor using molecular docking, gene ontology, and network pharmacology. METHODS The pharmacokinetic and physicochemical properties of AA were assessed using Swiss ADME. SuperPred, Similarity Ensemble Approach, ChEMBL and Swiss Target Prediction online tools were used for determining molecular targets of AA. In addition, GeneCards, NCBI, DisGeNET and UniProt ID were used to search the targets of HCC and the top 25 hub genes were determined using Cytohubba plugin. A protein protein interaction (PPI) network was constructed through the STRING database. Gene Ontology (GO) biological process and Kyoto Encyclopaedia of Genes and Genes (KEGG) pathway enrichment analysis were performed through FunRich and ShinyGO 0.77. Moreover, molecular docking studies were performed on NF-κB and GSK-3β. The expression levels of the hub genes were also validated by western blotting. RESULTS Comprehensive data analysis identified 375 targets for AA and 11,333 for HCC, with 264 targets in common. Network analysis determined 25 key HCC targets, including caspase-3, and NF-κB. Gene ontology and topology analysis highlighted essential pathways implicated in HCC progression such as the renin-angiotensin system, VEGF signalling, and apoptosis. Molecular docking analysis revealed strong binding affinity of HCC proteins with NF-κB and GSK-3β. Upregulation of p-NRF2 and p-GSK-3β, and downregulation of p-NF-κB and caspase-1 expression were validated using western blotting. CONCLUSIONS Taken together, our study highlights the potential of AA as a promising chemopreventive agent for HCC because of its significant modulatory effects on important regulatory proteins linked to cell division, inflammation, apoptosis, and antioxidant response.
Collapse
Affiliation(s)
- Sangita Panda
- Centre for Biotechnology, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, India
| | - Enketeswara Subudhi
- Centre for Biotechnology, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, India
| | - Sweta Padma Routray
- Centre for Biotechnology, Siksha 'O' Anusandhan University (Deemed to be University), Bhubaneswar, India
| | - Sujit Nair
- 29396 University of Mumbai , Santa Cruz, Mumbai, India
| |
Collapse
|
2
|
Zhang X, Zhou C, Hu J, Hu J, Ding Y, Chen S, Wang X, Xu L, Gou Z, Zhang S, Shi W. Six-gene prognostic signature for non-alcoholic fatty liver disease susceptibility using machine learning. Medicine (Baltimore) 2024; 103:e38076. [PMID: 38728481 PMCID: PMC11081587 DOI: 10.1097/md.0000000000038076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND nonalcoholic fatty liver disease (NAFLD) is a common liver disease affecting the global population and its impact on human health will continue to increase. Genetic susceptibility is an important factor influencing its onset and progression, and there is a lack of reliable methods to predict the susceptibility of normal populations to NAFLD using appropriate genes. METHODS RNA sequencing data relating to nonalcoholic fatty liver disease was analyzed using the "limma" package within the R software. Differentially expressed genes were obtained through preliminary intersection screening. Core genes were analyzed and obtained by establishing and comparing 4 machine learning models, then a prediction model for NAFLD was constructed. The effectiveness of the model was then evaluated, and its applicability and reliability verified. Finally, we conducted further gene correlation analysis, analysis of biological function and analysis of immune infiltration. RESULTS By comparing 4 machine learning algorithms, we identified SVM as the optimal model, with the first 6 genes (CD247, S100A9, CSF3R, DIP2C, OXCT 2 and PRAMEF16) as predictive genes. The nomogram was found to have good reliability and effectiveness. Six genes' receiver operating characteristic curves (ROC) suggest an essential role in NAFLD pathogenesis, and they exhibit a high predictive value. Further analysis of immunology demonstrated that these 6 genes were closely connected to various immune cells and pathways. CONCLUSION This study has successfully constructed an advanced and reliable prediction model based on 6 diagnostic gene markers to predict the susceptibility of normal populations to NAFLD, while also providing insights for potential targeted therapies.
Collapse
Affiliation(s)
- Xiang Zhang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunzi Zhou
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingwen Hu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingwen Hu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueping Ding
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shiqi Chen
- Lishui Hospital of Traditional Chinese Medicine, Lishui, China
| | - Xu Wang
- Shanghai Jinshan TCM-Integrated Hospital, Shanghai, China
| | - Lei Xu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Gou
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuqiao Zhang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiqun Shi
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Fondevila MF, Novoa E, Gonzalez-Rellan MJ, Fernandez U, Heras V, Porteiro B, Parracho T, Dorta V, Riobello C, da Silva Lima N, Seoane S, Garcia-Vence M, Chantada-Vazquez MP, Bravo SB, Senra A, Leiva M, Marcos M, Sabio G, Perez-Fernandez R, Dieguez C, Prevot V, Schwaninger M, Woodhoo A, Martinez-Chantar ML, Schwabe R, Cubero FJ, Varela-Rey M, Crespo J, Iruzubieta P, Nogueiras R. p63 controls metabolic activation of hepatic stellate cells and fibrosis via an HER2-ACC1 pathway. Cell Rep Med 2024; 5:101401. [PMID: 38340725 PMCID: PMC10897550 DOI: 10.1016/j.xcrm.2024.101401] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/19/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
The p63 protein has pleiotropic functions and, in the liver, participates in the progression of nonalcoholic fatty liver disease (NAFLD). However, its functions in hepatic stellate cells (HSCs) have not yet been explored. TAp63 is induced in HSCs from animal models and patients with liver fibrosis and its levels positively correlate with NAFLD activity score and fibrosis stage. In mice, genetic depletion of TAp63 in HSCs reduces the diet-induced liver fibrosis. In vitro silencing of p63 blunts TGF-β1-induced HSCs activation by reducing mitochondrial respiration and glycolysis, as well as decreasing acetyl CoA carboxylase 1 (ACC1). Ectopic expression of TAp63 induces the activation of HSCs and increases the expression and activity of ACC1 by promoting the transcriptional activity of HER2. Genetic inhibition of both HER2 and ACC1 blunt TAp63-induced activation of HSCs. Thus, TAp63 induces HSC activation by stimulating the HER2-ACC1 axis and participates in the development of liver fibrosis.
Collapse
Affiliation(s)
- Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain.
| | - Eva Novoa
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain
| | - Maria J Gonzalez-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Uxia Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain
| | - Violeta Heras
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Begoña Porteiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Tamara Parracho
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Valentina Dorta
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Cristina Riobello
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Natalia da Silva Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Samuel Seoane
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Garcia-Vence
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Maria P Chantada-Vazquez
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Susana B Bravo
- Proteomic Unit, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15705 Santiago de Compostela, Spain
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Magdalena Leiva
- Department of Immunology, Ophthalmology, & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain; CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Marcos
- University of Salamanca, Department of Internal Medicine, University Hospital of Salamanca-IBSAL, 37008 Salamanca, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Roman Perez-Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Vincent Prevot
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, European Genomic Institute for Diabetes (EGID), 59000 Lille, France
| | - Markus Schwaninger
- University of Lübeck, Institute for Experimental and Clinical Pharmacology and Toxicology, 23562 Lübeck, Germany
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria L Martinez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Robert Schwabe
- Department of Medicine, Columbia University, New York, NY 10027, USA
| | - Francisco J Cubero
- Department of Immunology, Ophthalmology, & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain; CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Varela-Rey
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, 39008 Santander, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, Clinical and Translational Digestive Research Group, IDIVAL, 39008 Santander, Spain
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15782 Santiago de Compostela, Spain; Galicia Agency of Innovation (GAIN), Xunta de Galicia, 15702 Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Tannouri N, Simmons DBD. Characterizing the origin of blood plasma proteins from organ tissues in rainbow trout (Oncorhynchus mykiss) using a comparative non-targeted proteomics approach. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101070. [PMID: 36871493 DOI: 10.1016/j.cbd.2023.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/05/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Protein expression patterns adapt to various cues to meet the needs of an organism. The dynamicity of an organism's proteome can therefore reveal information about an organism's health. Proteome databases contain limited information regarding organisms outside of medicinal biology. The UniProt human and mouse proteomes are extensively reviewed and ∼50 % of both proteomes include tissue specificity, while >99 % of the rainbow trout proteome lacks tissue specificity. This study aimed to expand knowledge on the rainbow trout proteome with a focus on understanding the origin of blood plasma proteins. Blood, brain, heart, liver, kidney, and gills were collected from adult rainbow trout, plasma and tissue proteins were analyzed using liquid chromatography tandem mass spectrometry. Over 10,000 proteins were identified across all groups. Our data indicated that the majority of the plasma proteome is shared amongst multiple tissue types, though 4-7 % of the plasma proteome is uniquely originated from each tissue (gill > heart > liver > kidney > brain).
Collapse
Affiliation(s)
- Nancy Tannouri
- Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada. https://twitter.com/nancytannouri
| | | |
Collapse
|
5
|
Sepehrinezhad A, Shahbazi A, Sahab Negah S, Stolze Larsen F. New Insight Into Mechanisms of Hepatic Encephalopathy: An Integrative Analysis Approach to Identify Molecular Markers and Therapeutic Targets. Bioinform Biol Insights 2023; 17:11779322231155068. [PMID: 36814683 PMCID: PMC9940182 DOI: 10.1177/11779322231155068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/17/2023] [Indexed: 02/19/2023] Open
Abstract
Hepatic encephalopathy (HE) is a set of complex neurological complications that arise from advanced liver disease. The precise molecular and cellular mechanism of HE is not fully understood. Differentially expressed genes (DEGs) from microarray technologies are powerful approaches to obtain new insight into the pathophysiology of HE. We analyzed microarray data sets of cirrhotic patients with HE from Gene Expression Omnibus to identify DEGs in postmortem cerebral tissues. Consequently, we uploaded significant DEGs into the STRING to specify protein-protein interactions. Cytoscape was used to reconstruct the genetic network and identify hub genes. Target genes were uploaded to different databases to perform comprehensive enrichment analysis and repurpose new therapeutic options for HE. A total of 457 DEGs were identified in 2 data sets totally from 12 cirrhotic patients with HE compared with 12 healthy subjects. We found that 274 genes were upregulated and 183 genes were downregulated. Network analyses on significant DEGs indicated 12 hub genes associated with HE. Enrichment analysis identified fatty acid beta-oxidation, cerebral organic acidurias, and regulation of actin cytoskeleton as main involved pathways associated with upregulated genes; serotonin receptor 2 and ELK-SRF/GATA4 signaling, GPCRs, class A rhodopsin-like, and p38 MAPK signaling pathway were related to downregulated genes. Finally, we predicted 39 probable effective drugs/agents for HE. This study not only confirms main important involved mechanisms of HE but also reveals some yet unknown activated molecular and cellular pathways in human HE. In addition, new targets were identified that could be of value in the future study of HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fin Stolze Larsen
- Department of Hepatology CA-3163, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
6
|
Wei Y, Yu N, Wang Z, Hao Y, Wang Z, Yang Z, Liu J, Wang J. Analysis of the multi-physiological and functional mechanism of wheat alkylresorcinols based on reverse molecular docking and network pharmacology. Food Funct 2022; 13:9091-9107. [PMID: 35943408 DOI: 10.1039/d2fo01438f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Alkylresorcinols (ARs) are phenolic lipids present in the bran part of whole grain wheat and rye, which possess antioxidant, anti-inflammatory, anti-cancer and anti-tumor properties. The physiological activities of ARs have been proven to be diverse; however, the specific molecular mechanisms are still unclear. In this study, reverse virtual screening and network pharmacology were used to explore the potential molecular mechanisms of the physiological function of ARs and their endogenous metabolites. The Metascape database was used for GO enrichment and KEGG pathway analysis. Furthermore, molecular docking was used to investigate the interactions between active compounds and potential targets. The results showed that the bioavailability of most ARs and their endogenous metabolites was 0.55 and 0.56, while the bioavailability of certain endogenous metabolites was only 0.11. Multiplex analysis was used to screen 73 important targets and 4 core targets (namely, HSP90AA1, EP300, HSP90AB1 and ERBB2) out of the 163 initial targets. The important targets involved in the key KEGG pathway were pathways in cancer (hsa05200), lipid and atherosclerosis (hsa05417), Th17 cell differentiation (hsa04659), chemical carcinogenesis-receptor activation (hsa05207), and prostate cancer (hsa05215). The compounds involved in the core targets were AR-C21, AR-C19, AR-C17, 3,5-DHPHTA-S, 3,5-DHPHTA-G, 3,5-DHPPTA, 3,5-DHPPTA-S, 3,5-DHPPTA-G, 3,5-DHPPTA-Gly and 3,5-DHPPA-G. The interaction force between them was mainly related to hydrogen bonds and van der Waals. Overall, the physiological activities of ARs are not only related to their multiple targets, but may also be related to the synergistic effect of their endogenous metabolites.
Collapse
Affiliation(s)
- Yulong Wei
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Yiming Hao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Zongwei Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Zihui Yang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|