1
|
Huang JJ, Shi JY, Li KY, Zheng H, Zhang WH, Yi XB, Liu MJ, Bo RN, Li JG. Eucalyptus oil: A promising anticoccidial agent with multifaceted protective effects. Vet Parasitol 2025; 336:110455. [PMID: 40117835 DOI: 10.1016/j.vetpar.2025.110455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
In-feed preventive coccidiostat additives are regarded as the primary choice of coccidiosis control, whereas the lasting appearance of drug resistance seriously hampered its application. Eucalyptus oil (EUC) has been evidenced to possess anti-malaria and anti-helminth efficacy. Confronting the urgent requirements for novel anticoccidial remedies, EUC was picked to scrutinize its anticoccidial efficacy with the in vivo coccidiosis model. Birds were orally administrated with 8 × 104 sporulated oocysts and treated with 20 mg/kg EUC in feed during the whole experimental period, diclazuril (DIC) was selected as a positive control. The results manifested that EUC supplementation lessened cecal damage, oocyst shedding and mortality, and recovering body weight gain, so the anticoccidial index (ACI) was up to 160, indicating moderate anticoccidial activity. Additionally, the safeguarding effects of EUC on E. tenella-evoked cecal damage were respectively evidenced on macroscopic, histopathological, and ultrastructural levels. Meanwhile, EUC also exerted an inhibitory effect on redox imbalance and inflammatory response caused by E. tenella. Moreover, EUC treatment remarkably suppressed the invasion-related gene transcriptional level and enhanced the apoptosis mRNA expression level of coccidia. Besides, EUC noticeably decreased the Clostridium perfringens (C. perfringens) proliferation in vivo and in vitro. In conclusion, the EUC additive presented a moderate anticoccidial effect which is associated with the remission activity on E. tenella-induced cecal injury, redox imbalance, and inflammatory response which may be associated with inhibitory effect on Eimeria invasion and C. perfringens proliferation, and activating influence on coccidial apoptosis.
Collapse
Affiliation(s)
- Jun-Jie Huang
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Jie-Yu Shi
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Kai-Yuan Li
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - He Zheng
- Kemin (China) Technologies Co., Ltd., Zhuhai 519040, PR China
| | - Wen-Hai Zhang
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Xiao-Bin Yi
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Ming-Jiang Liu
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Ruo-Nan Bo
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China
| | - Jin-Gui Li
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
2
|
Britez JD, Rodriguez AE, Di Ciaccio L, Marugán-Hernandez V, Tomazic ML. What Do We Know about Surface Proteins of Chicken Parasites Eimeria? Life (Basel) 2023; 13:1295. [PMID: 37374079 DOI: 10.3390/life13061295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Poultry is the first source of animal protein for human consumption. In a changing world, this sector is facing new challenges, such as a projected increase in demand, higher standards of food quality and safety, and reduction of environmental impact. Chicken coccidiosis is a highly widespread enteric disease caused by Eimeria spp. which causes significant economic losses to the poultry industry worldwide; however, the impact on family poultry holders or backyard production-which plays a key role in food security in small communities and involves mainly rural women-has been little explored. Coccidiosis disease is controlled by good husbandry measures, chemoprophylaxis, and/or live vaccination. The first live vaccines against chicken coccidiosis were developed in the 1950s; however, after more than seven decades, none has reached the market. Current limitations on their use have led to research in next-generation vaccines based on recombinant or live-vectored vaccines. Next-generation vaccines are required to control this complex parasitic disease, and for this purpose, protective antigens need to be identified. In this review, we have scrutinised surface proteins identified so far in Eimeria spp. affecting chickens. Most of these surface proteins are anchored to the parasite membrane by a glycosylphosphatidylinositol (GPI) molecule. The biosynthesis of GPIs, as well as the role of currently identified surface proteins and interest as vaccine candidates has been summarised. The potential role of surface proteins in drug resistance and immune escape and how these could limit the efficacy of control strategies was also discussed.
Collapse
Affiliation(s)
- Jesica Daiana Britez
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | - Anabel Elisa Rodriguez
- Instituto Nacional de Tecnología Agropecuaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | - Lucía Di Ciaccio
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | | | - Mariela Luján Tomazic
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Ciudad Autónoma de Buenos Aires 1113, Argentina
| |
Collapse
|
3
|
Huang J, Huang J, Husien HM, Peng W, Liu M, Bo R, Li J. Comparison of endogenous development, invasion ability and apoptotic features between diclazuril resistant and sensitive strains of Eimeria tenella. Vet Parasitol 2022; 305:109719. [PMID: 35597690 DOI: 10.1016/j.vetpar.2022.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/30/2022]
Abstract
Diclazuril (DIC) is widely used in the poultry industry to control coccidiosis. However, drug resistance makes it less effective, and the underlying mechanism remains unclear. One DIC-resistant E. tenella (RE) isolate and one sensitive E. tenella (SE) isolate were used to compare the differences in their endogenous development, pathogenicity, invasion-related gene expression and apoptotic characteristics. Chickens were allocated into four groups to receive RE or SE strain and their corresponding DIC treatment or not. Caeca tissues were sampled at 96 h, 120 h and 144 h post-infection (PI) for pathological analysis. Meanwhile, second-generation merozoites (Mz2) were separated at 120 h PI to detect alterations in mitochondrial membrane potential (MMP), apoptotic rate and caspase-3 activity and mRNA expression of protein phosphatase 5 (PP5), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), actin depolymerizing factor (ADF) and microneme proteins (MICs). Haematoxylin and eosin staining revealed that DIC treatment strictly blocked the development of the SE strain but slightly affected the RE strain. Meanwhile, the number of SE Mz2 and their MMP decreased at the same time the apoptotic rate increased after DIC treatment. Real-time quantitative PCR and caspase-3 activity studies demonstrated that Mz2 from the RE strain had higher mRNA expression of ADF and MICs along with no significant changes in GAPDH and caspase-3 activity under DIC pressure compared to its control; in contrast, the mRNA expression of ADF, MICs and PP5 was markedly suppressed in Mz2 from SE with upregulated caspase-3 activity and GAPDH transcription. In addition, the mRNA expression of GAPDH and PP5 in Mz2 from RE was remarkably higher than that of SE. Taken together, the higher mRNA expression of invasion-related genes and almost unaffected endogenous development provide a better understanding of coccidian resistance to DIC.
Collapse
Affiliation(s)
- Junjie Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Jie Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Hosam Mohamed Husien
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China; College of veterinary medicine, Albutana University, Sudan
| | - Weilong Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Mingjiang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Ruonan Bo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - JinGui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
4
|
Ma X, Liu B, Gong Z, Qu Z, Cai J. Phosphoproteomic Comparison of Four Eimeria tenella Life Cycle Stages. Int J Mol Sci 2021; 22:ijms222212110. [PMID: 34829991 PMCID: PMC8624187 DOI: 10.3390/ijms222212110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022] Open
Abstract
Protein phosphorylation is an important post-translational modification (PTM) involved in diverse cellular functions. It is the most prevalent PTM in both Toxoplasma gondii and Plasmodium falciparum, but its status in Eimeria tenella has not been reported. Herein, we performed a comprehensive, quantitative phosphoproteomic profile analysis of four stages of the E. tenella life cycle: unsporulated oocysts (USO), partially sporulated (7 h) oocysts (SO7h), sporulated oocysts (SO), and sporozoites (S). A total of 15,247 phosphorylation sites on 9514 phosphopeptides corresponding to 2897 phosphoproteins were identified across the four stages. In addition, 456, 479, and 198 differentially expressed phosphoproteins (DEPPs) were identified in the comparisons SO7h vs. USO, SO vs. SO7h, and S vs. SO, respectively. Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEPPs suggested that they were involved in diverse functions. For SO7h vs. USO, DEPPs were mainly involved in cell division, actin cytoskeleton organization, positive regulation of transport, and pyruvate metabolism. For SO vs. SO7h, they were related to the peptide metabolic process, translation, and RNA transport. DEPPs in the S vs. SO comparison were associated with the tricarboxylic acid metabolic process, positive regulation of ATPase activity, and calcium ion binding. Time course sequencing data analysis (TCseq) identified six clusters with similar expression change characteristics related to carbohydrate metabolism, cytoskeleton organization, and calcium ion transport, demonstrating different regulatory profiles across the life cycle of E. tenella. The results revealed significant changes in the abundance of phosphoproteins during E. tenella development. The findings shed light on the key roles of protein phosphorylation and dephosphorylation in the E. tenella life cycle.
Collapse
Affiliation(s)
- Xueting Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (X.M.); (Z.G.); (Z.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (X.M.); (Z.G.); (Z.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Correspondence: (B.L.); (J.C.); Tel.: +86-(931)-834-2580 (B.L.); +86-(931)-834-2489 (J.C.)
| | - Zhenxing Gong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (X.M.); (Z.G.); (Z.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zigang Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (X.M.); (Z.G.); (Z.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China; (X.M.); (Z.G.); (Z.Q.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Correspondence: (B.L.); (J.C.); Tel.: +86-(931)-834-2580 (B.L.); +86-(931)-834-2489 (J.C.)
| |
Collapse
|
5
|
Ribeiro E Silva A, Sausset A, Bussière FI, Laurent F, Lacroix-Lamandé S, Silvestre A. Genome-Wide Expression Patterns of Rhoptry Kinases during the Eimeria tenella Life-Cycle. Microorganisms 2021; 9:microorganisms9081621. [PMID: 34442701 PMCID: PMC8399136 DOI: 10.3390/microorganisms9081621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/07/2023] Open
Abstract
Kinome from apicomplexan parasites is composed of eukaryotic protein kinases and Apicomplexa specific kinases, such as rhoptry kinases (ROPK). Ropk is a gene family that is known to play important roles in host–pathogen interaction in Toxoplasma gondii but is still poorly described in Eimeria tenella, the parasite responsible for avian coccidiosis worldwide. In the E. tenella genome, 28 ropk genes are predicted and could be classified as active (n = 7), inactive (incomplete catalytic triad, n = 12), and non-canonical kinases (active kinase with a modified catalytic triad, n = 9). We characterized the ropk gene expression patterns by real-time quantitative RT-PCR, normalized by parasite housekeeping genes, during the E. tenella life-cycle. Analyzed stages were: non-sporulated oocysts, sporulated oocysts, extracellular and intracellular sporozoites, immature and mature schizonts I, first- and second-generation merozoites, and gametes. Transcription of all those predicted ropk was confirmed. The mean intensity of transcription was higher in extracellular stages and 7–9 ropk were specifically transcribed in merozoites in comparison with sporozoites. Transcriptional profiles of intracellular stages were closely related to each other, suggesting a probable common role of ROPKs in hijacking signaling pathways and immune responses in infected cells. These results provide a solid basis for future functional analysis of ROPK from E. tenella.
Collapse
|
6
|
Li X, Chen H, Zhao Q, Zhang L, Zhang K, Wang X, Wang M, Liu Y, Wang C, Xue F, Fei C. Preliminary study of the mechanism of action of ethanamizuril against Eimeria tenella. Parasitol Res 2020; 119:1653-1661. [PMID: 32219548 DOI: 10.1007/s00436-020-06665-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 03/15/2020] [Indexed: 10/24/2022]
Abstract
Ethanamizuril (EZL) is a novel triazine compound with excellent anticoccidial activity. We carried out a preliminary investigation of the effects of EZL on the different life cycle stages of Eimeria tenella. EZL mainly acted on the schizogony stage, with peak activity during the second-generation merozoite stage. We also studied the possible target of EZL by identifying the majorly differentially expressed gene affected by EZL in second-generation merozoites using real-time polymerase chain reaction, and screening for surface antigen proteins (SAGs). The relative expression levels of SAGs were compared by Western blot analysis showing that expression levels of surface antigen family member (SAGfm) and SAG19 were significantly downregulated by EZL. Immunofluorescence analysis indicated that SAGfm and SAG19 were localized on the surface of second-generation merozoites. In addition, fluorescence signals were significantly stronger in second-generation merozoites of infected non-medicated control (INC) group compared with that of the EZL group. Therefore, it was speculated that SAGs might be a potential target of EZL action. The inhibitory effects of anticoccidial drugs on SAG levels in coccidia thus warrant further research.
Collapse
Affiliation(s)
- Xueyan Li
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, 200241, Shanghai, People's Republic of China
| | - Huiya Chen
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, 200241, Shanghai, People's Republic of China
| | - Qiping Zhao
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, 200241, Shanghai, People's Republic of China
| | - Lifang Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, 200241, Shanghai, People's Republic of China
| | - Keyu Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, 200241, Shanghai, People's Republic of China
| | - Xiaoyang Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, 200241, Shanghai, People's Republic of China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, 200241, Shanghai, People's Republic of China
| | - Yingchun Liu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, 200241, Shanghai, People's Republic of China
| | - Chunmei Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, 200241, Shanghai, People's Republic of China
| | - Feiqun Xue
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, 200241, Shanghai, People's Republic of China
| | - Chenzhong Fei
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, 200241, Shanghai, People's Republic of China.
| |
Collapse
|
7
|
Li XY, Liu LL, Zhang M, Zhang LF, Wang XY, Wang M, Zhang KY, Liu YC, Wang CM, Xue FQ, Fei CZ. Proteomic analysis of the second-generation merozoites of Eimeria tenella under nitromezuril and ethanamizuril stress. Parasit Vectors 2019; 12:592. [PMID: 31852494 PMCID: PMC6921512 DOI: 10.1186/s13071-019-3841-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background Eimeria tenella is a highly pathogenic coccidian that causes avian coccidiosis. Both nitromezuril (NZL) and ethanamizuril (EZL) are novel triazine compounds with high anticoccidial activity, but the mechanisms of their action are still unclear. This study explored the response of E. tenella to NZL and EZL by the study of changes in protein composition of the second-generation merozoites. Methods Label-free quantification (LFQ) proteomics of the second-generation merozoites of E. tenella following NZL and EZL treatment were studied by LC-MS/MS to explore the mechanisms of action. The identified proteins were annotated and analyzed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and protein-protein interaction (PPI) networks analysis. Results A total of 1430 proteins were identified by LC-MS/MS, of which 375 were considered as differential proteins in response to drug treatment (DPs). There were 26 only found in the NZL treatment group (N-group), 63 exclusive to the EZL treatment group (E-group), and 80 proteins were present in both drug groups. In addition, among the DPs, the abundant proteins with significantly altered expression in response to drug treatment (SDPs) were found compared with the C-group, of which 49 were upregulated and 51 were downregulated in the N-group, and 66 upregulated and 79 downregulated in the E-group. Many upregulated proteins after drug treatment were involved in transcription and protein metabolism, and surface antigen proteins (SAGs) were among the largest proportion of the downregulated SDPs. Results showed the top two enriched GO terms and the top one enriched pathway treated with EZL and NZL were related, which indicated that these two compounds had similar modes of action. Conclusions LFQ proteomic analysis is a feasible method for screening drug-related proteins. Drug treatment affected transcription and protein metabolism, and SAGs were also affected significantly. This study provided new insights into the effects of triazine anticoccidials against E. tenella.![]()
Collapse
Affiliation(s)
- Xue-Yan Li
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Li-Li Liu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Min Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Li-Fang Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Xiao-Yang Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Ke-Yu Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Ying-Chun Liu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Chun-Mei Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Fei-Qun Xue
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China.
| | - Chen-Zhong Fei
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
8
|
Blake DP. Eimeria genomics: Where are we now and where are we going? Vet Parasitol 2015; 212:68-74. [DOI: 10.1016/j.vetpar.2015.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/01/2015] [Accepted: 05/09/2015] [Indexed: 11/25/2022]
|