1
|
Gao Z, Yang J. GNB4 Silencing Promotes Pyroptosis to Inhibit the Development of Glioma by Activating cGAS-STING Pathway. Mol Biotechnol 2025; 67:2262-2276. [PMID: 38814382 DOI: 10.1007/s12033-024-01194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/06/2024] [Indexed: 05/31/2024]
Abstract
The induction of immunogenic cell death is a promising therapeutic option for gliomas. Pyroptosis is a type of programmed immunogenic cell death and its role in gliomas remains unclear. Differentially expressed genes (DEGs) were obtained from GSE4290 and GSE31262 datasets. Hub genes were screened from protein-protein interaction networks and assessed using principal component analysis and receiver operating characteristic curves. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the mRNA expression of hub genes. Pyroptosis and pathway-related proteins were assessed using western blotting. Inflammatory factor levels were determined using enzyme-linked immunosorbent assay. The effect of guanine nucleotide-binding protein-4 (GNB4) on proliferation, migration, and invasion was evaluated using a cell viability test kit and wound-healing and transwell assays. In total, 202 DEGs were identified. Among them, F2R, GNG4, GNG3, PRKCB, and GNB4 were identified as hub genes in gliomas after comprehensive bioinformatics analysis. GNB4 was significantly upregulated in glioma cells compared to normal brain glial cells. Silencing GNB4 significantly inhibited proliferation, invasion, and migration of glioma cells. The expression of pyroptosis-related proteins increased after GNB4 silencing, with elevated levels of inflammatory factors. Pyroptosis inhibitors reversed the inhibitory effects of GNB4 silencing on cell proliferation, migration, and invasion. Additionally, GNB4 silencing activated the cGAS-STING pathway. Treatment with a cGAS-STING pathway inhibitor reversed the inhibition of proliferation, migration, and invasion while downregulating the expression of pyroptosis-related proteins. Silencing GNB4 promotes pyroptosis and thus inhibits the proliferation, migration, and invasion of glioma cells by activating the cGAS-STING pathway, which is a promising biomarker and therapeutic target for glioma.
Collapse
Affiliation(s)
- Zhiqiang Gao
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Ganzhou City, 341000, Jiangxi Province, China
| | - Jing Yang
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
2
|
Kennedy A, Richardson E, Higham J, Kotsantis P, Mort R, Shih BBJ. Evergene: an interactive webtool for large-scale gene-centric analysis of primary tumours. BIOINFORMATICS ADVANCES 2024; 4:vbae092. [PMID: 38948009 PMCID: PMC11213629 DOI: 10.1093/bioadv/vbae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/24/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Motivation The data sharing of large comprehensive cancer research projects, such as The Cancer Genome Atlas (TCGA), has improved the availability of high-quality data to research labs around the world. However, due to the volume and inherent complexity of high-throughput omics data, analysis of this is limited by the capacity for performing data processing through programming languages such as R or Python. Existing webtools lack functionality that supports large-scale analysis; typically, users can only input one gene, or a gene list condensed into a gene set, instead of individual gene-level analysis. Furthermore, analysis results are usually displayed without other sample-level molecular or clinical annotations. To address these gaps in the existing webtools, we have developed Evergene using R and Shiny. Results Evergene is a user-friendly webtool that utilizes RNA-sequencing data, alongside other sample and clinical annotation, for large-scale gene-centric analysis, including principal component analysis (PCA), survival analysis (SA), and correlation analysis (CA). Moreover, Evergene achieves in-depth analysis of cancer transcriptomic data which can be explored through dimensional reduction methods, relating gene expression with clinical events or other sample information, such as ethnicity, histological classification, and molecular indices. Lastly, users can upload custom data to Evergene for analysis. Availability and implementation Evergene webtool is available at https://bshihlab.shinyapps.io/evergene/. The source code and example user input dataset are available at https://github.com/bshihlab/evergene.
Collapse
Affiliation(s)
- Anna Kennedy
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, United Kingdom
| | - Ella Richardson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, United Kingdom
| | - Jonathan Higham
- Department of Mathematics and Statistics, Faculty of Science and Technology, Lancaster University, Lancaster LA1 4YF, United Kingdom
| | - Panagiotis Kotsantis
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, United Kingdom
| | - Richard Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, United Kingdom
| | - Barbara Bo-Ju Shih
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, United Kingdom
| |
Collapse
|
3
|
Chen H, Wang X, Cheng H, Deng Y, Chen J, Wang B. CircRNA circRREB1 promotes tumorigenesis and progression of breast cancer by activating Erk1/2 signaling through interacting with GNB4. Heliyon 2024; 10:e28785. [PMID: 38617926 PMCID: PMC11015410 DOI: 10.1016/j.heliyon.2024.e28785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
Current investigations have illuminated the essential roles played by circular RNAs (circRNAs) in driving breast cancer (BC) tumorigenesis. However, the functional implications and molecular underpinnings of most circRNAs in BC are not well characterized. Here, Circular RNA (circRNA) expression profiles were analyzed in four surgically resected BC cases along with adjacent non-cancerous tissues applying RNA microarray analysis. The levels and prognostic implications of circRREB1 in BC were subjected to quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). Experimental manipulation of circRREB1 levels in both in vivo and in vitro settings further delineated its role in BC cell growth, invasion, and metastasis. The mechanical verification of circRREB1's interaction with GNB4 was established through RNA pull-down, mass spectrometry, Western blot analysis, RNA immunoprecipitation assays (RIP), fluorescence ISH (FISH), and rescue experiments. We found that circRREB1 exhibited significant upregulation in BC tissues and cells, implicating its association with an unfavorable prognosis in BC patients. CircRREB1 knockdown elicited anti-proliferative, anti-migratory, anti-invasive, and pro-apoptotic effects in BC cells, whereas its upregulation exerted opposing influences. Follow-up mechanistic examinations suggested that circRREB1 might interact with GNB4 directly, inducing the activation of Erk1/2 signaling and driving BC progression. Our findings collectively indicate that the interplay of circRREB1 with GNB4 promotes Erk1/2 signaling, thereby fostering BC progression, and positioning circRREB1 as a candidate therapeutic target for intervention in BC.
Collapse
Affiliation(s)
- Hong Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Xiaosong Wang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Hang Cheng
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Yumei Deng
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Junxia Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 400054, China
| |
Collapse
|
4
|
Sunaga N, Kaira K, Shimizu K, Tanaka I, Miura Y, Nakazawa S, Ohtaki Y, Kawabata‐Iwakawa R, Sato M, Girard L, Minna JD, Hisada T. The oncogenic role of LGR6 overexpression induced by aberrant Wnt/β-catenin signaling in lung cancer. Thorac Cancer 2024; 15:131-141. [PMID: 38014454 PMCID: PMC10788478 DOI: 10.1111/1759-7714.15169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Molecular abnormalities in the Wnt/β-catenin pathway confer malignant phenotypes in lung cancer. Previously, we identified the association of leucine-rich repeat-containing G protein-coupled receptor 6 (LGR6) with oncogenic Wnt signaling, and its downregulation upon β-catenin knockdown in non-small cell lung cancer (NSCLC) cells carrying CTNNB1 mutations. The aim of this study was to explore the mechanisms underlying this association and the accompanying phenotypes. METHODS LGR6 expression in lung cancer cell lines and surgical specimens was analyzed using quantitative RT-PCR and immunohistochemistry. Cell growth was assessed using colony formation assay. Additionally, mRNA sequencing was performed to compare the expression profiles of cells subjected to different treatments. RESULTS LGR6 was overexpressed in small cell lung cancer (SCLC) and NSCLC cell lines, including the CTNNB1-mutated NSCLC cell lines HCC15 and A427. In both cell lines, LGR6 knockdown inhibited cell growth. LGR6 expression was upregulated in spheroids compared to adherent cultures of A427 cells, suggesting that LGR6 participates in the acquisition of cancer stem cell properties. Immunohistochemical analysis of lung cancer specimens revealed that the LGR6 protein was predominantly overexpressed in SCLCs, large cell neuroendocrine carcinomas, and lung adenocarcinomas, wherein LGR6 overexpression was associated with vascular invasion, the wild-type EGFR genotype, and an unfavorable prognosis. Integrated mRNA sequencing analysis of HCC15 and A427 cells with or without LGR6 knockdown revealed LGR6-related pathways and genes associated with cancer development and stemness properties. CONCLUSIONS Our findings highlight the oncogenic roles of LGR6 overexpression induced by aberrant Wnt/β-catenin signaling in lung cancer.
Collapse
Affiliation(s)
- Noriaki Sunaga
- Department of Respiratory MedicineGunma University Graduate School of MedicineMaebashiJapan
| | - Kyoichi Kaira
- Department of Respiratory Medicine, Comprehensive Cancer Center, International Medical CenterSaitama Medical UniversitySaitamaJapan
| | - Kimihiro Shimizu
- Division of General Thoracic Surgery, Department of SurgeryShinshu University School of MedicineNaganoJapan
| | - Ichidai Tanaka
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Yosuke Miura
- Department of Respiratory MedicineGunma University Graduate School of MedicineMaebashiJapan
| | - Seshiru Nakazawa
- Division of General Thoracic Surgery, Integrative Center of General SurgeryGunma University Graduate School of MedicineMaebashiJapan
| | - Yoichi Ohtaki
- Division of General Thoracic Surgery, Integrative Center of General SurgeryGunma University Graduate School of MedicineMaebashiJapan
| | - Reika Kawabata‐Iwakawa
- Division of Integrated Oncology ResearchGunma University Initiative for Advanced Research, Gunma UniversityMaebashiJapan
| | - Mitsuo Sato
- Division of Host Defense Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Luc Girard
- Hamon Center for Therapeutic Oncology ResearchUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology ResearchUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
- Pharmacology, University of Texas Southwestern Medical Center at DallasDallasTexasUSA
- Internal MedicineUniversity of Texas Southwestern Medical Center at DallasDallasTexasUSA
| | - Takeshi Hisada
- Gunma University Graduate School of Health SciencesMaebashiJapan
| |
Collapse
|
5
|
Feliz Morel ÁJ, Hasanovic A, Morin A, Prunier C, Magnone V, Lebrigand K, Aouad A, Cogoluegnes S, Favier J, Pasquier C, Mus-Veteau I. Persistent Properties of a Subpopulation of Cancer Cells Overexpressing the Hedgehog Receptor Patched. Pharmaceutics 2022; 14:pharmaceutics14050988. [PMID: 35631574 PMCID: PMC9146430 DOI: 10.3390/pharmaceutics14050988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the development of new therapeutic strategies, cancer remains one of the leading causes of mortality worldwide. One of the current major challenges is the resistance of cancers to chemotherapy treatments inducing metastases and relapse of the tumor. The Hedgehog receptor Patched (Ptch1) is overexpressed in many types of cancers. We showed that Ptch1 contributes to the efflux of doxorubicin and plays an important role in the resistance to chemotherapy in adrenocortical carcinoma (ACC), a rare cancer which presents strong resistance to the standard of care chemotherapy treatment. In the present study, we isolated and characterized a subpopulation of the ACC cell line H295R in which Ptch1 is overexpressed and more present at the cell surface. This cell subpopulation is more resistant to doxorubicin, grows as spheroids, and has a greater capability of clonogenicity, migration, and invasion than the parental cells. Xenograft experiments performed in mice and in ovo showed that this cell subpopulation is more tumorigenic and metastatic than the parental cells. These results suggest that this cell subpopulation has cancer stem-like or persistent cell properties which were strengthened by RNA-seq. If present in tumors from ACC patients, these cells could be responsible for therapy resistance, relapse, and metastases.
Collapse
Affiliation(s)
- Álvaro Javier Feliz Morel
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Anida Hasanovic
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Aurélie Morin
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue Contre le Cancer, CEDEX 15, 75737 Paris, France; (A.M.); (J.F.)
| | - Chloé Prunier
- INOVOTION, Biopolis-5 Av. du Grand Sablon, 38700 La Tronche, France;
| | - Virginie Magnone
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Kevin Lebrigand
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Amaury Aouad
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Sarah Cogoluegnes
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
| | - Judith Favier
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue Contre le Cancer, CEDEX 15, 75737 Paris, France; (A.M.); (J.F.)
| | - Claude Pasquier
- Université Côte d’Azur, CNRS-UMR7271, Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis (I3S), 06560 Valbonne, France;
| | - Isabelle Mus-Veteau
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), 06560 Valbonne, France; (Á.J.F.M.); (A.H.); (V.M.); (K.L.); (A.A.); (S.C.)
- Correspondence:
| |
Collapse
|