1
|
Huang J, Ji H, Zhang J, Wang Z. Simulation study of the conformation and dynamics of substrate-supported ring and linear polymer films. Phys Chem Chem Phys 2024; 26:28724-28732. [PMID: 39530253 DOI: 10.1039/d4cp02794a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The effects of chain topology on the conformational and dynamic properties of substrate-supported ring and linear polymer films were investigated by molecular dynamics simulations. The study reveals that the adsorbed ring polymer chains exhibit stronger adsorbability but less deformation than the linear ones. This results in a slower desorption of ring chains in a short time. However, over a long time, the desorption rate of the ring chain is larger because of the faster diffusion of the ring chain in bulk. In addition, the non-adsorbed chains in the interface region also exhibit obvious deformation and suppressed diffusivity due to the interchain interaction between non-adsorbed chains and adsorbed ones. The suppression degree of diffusivity is approximately the same for both films. The possible underlying physics is that the interchain interaction between non-adsorbed chains and adsorbed ones in the linear polymer films is overall stronger, but each non-adsorbed ring chain experiences stronger interchain interactions with the adsorbed chains. The results show that tails in the linear polymer film and loops in the ring polymer film play an important role in the interchain interaction.
Collapse
Affiliation(s)
- Jianhua Huang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Hongzhu Ji
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jin Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Zhunpeng Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Mendrek B, Oleszko-Torbus N, Teper P, Kowalczuk A. Towards a modern generation of polymer surfaces: nano- and microlayers of star macromolecules and their design for applications in biology and medicine. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
3
|
Supramolecular Self-assembly Behaviors of Asymmetric Diblock Copolymer Blends with Hydrogen Bonding Interactions between Shorter Blocks Modelled by Yukawa Potentials. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2591-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Ma B, Wang X, He Y, Dong Z, Zhang X, Chen X, Liu T. Effect of poly(lactic acid) crystallization on its mechanical and heat resistance performances. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Xu L, Shi TF, An LJ, Lu YY, Wang LN. Effect of Interfacial Adsorption on the Stability of Thin Polymer Films in a Solvent-induced Process. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2493-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Jiang N, Chen J, Yu T, Chao A, Kang L, Wu Y, Niu K, Li R, Fukuto M, Zhang D. Cyclic Topology Enhancing Structural Ordering and Stability of Comb-Shaped Polypeptoid Thin Films against Melt-Induced Dewetting. Macromolecules 2020; 53:7601-7612. [PMID: 32952217 PMCID: PMC7498153 DOI: 10.1021/acs.macromol.0c01205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Indexed: 12/03/2022]
Abstract
We investigated the effect of cyclic chain topology on the molecular ordering and thermal stability of comb-shaped polypeptoid thin films on silicon (Si) substrates. Cyclic and linear poly(N-decylglycine) (PNDG) bearing long n-decyl side chains were synthesized by ring-opening polymerization of N-decylglycine-derived N-carboxyanhydrides. When the spin-coated thin films were subjected to thermal annealing at temperatures above the melting temperature (T > T m), the cyclic PNDG films exhibited significantly enhanced stability against melt-induced dewetting than the linear counterparts (l-PNDG). When recrystallized at temperatures below the crystallization temperature (T < T c), the homogeneous c-PNDG films exhibit enhanced crystalline ordering relative to the macroscopically dewetted l-PNDG films. Both cyclic and linear PNDG molecules adopt cis-amide conformations in the crystalline film, which transition into trans-amide conformations upon melting. A top-down solvent leaching treatment of both l/c-PNDG films revealed the formation of an irreversibly physisorbed monolayer with similar thickness (ca. 3 nm) on the Si substrate. The physisorbed monolayers are more disordered relative to the respective thicker crystalline films for both cyclic and linear PNDGs. Upon heating above T m, the adsorbed c-PNDG chains adopt trans-amide backbone conformation identical with the free c-PNDG molecules in the molten film. By contrast, the backbone conformations of l-PNDG chains in the adsorbed layers are notably different from those of the free chains in the molten film. We postulate that the conformational disparity between the chains in the physically adsorbed layers versus the free chains in the molten film is an important factor to account for the difference in the thermal stability of PNDG thin films. These findings highlight the use of cyclic chain topology to suppress the melt-induced dewetting in polymer thin films.
Collapse
Affiliation(s)
- Naisheng Jiang
- Department of Chemistry
and Macromolecular Studies Group, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianxia Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyi Yu
- Department of Chemistry
and Macromolecular Studies Group, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Albert Chao
- Department of Chemistry
and Macromolecular Studies Group, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Liying Kang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kangmin Niu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Masafumi Fukuto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Donghui Zhang
- Department of Chemistry
and Macromolecular Studies Group, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
7
|
Li J, Zhang R, Ding M, Shi T. Inconsistency of Diffusion and Relaxation of Ring Polymers Adsorbed on Rough Surfaces. J Phys Chem B 2019; 123:9712-9718. [PMID: 31622102 DOI: 10.1021/acs.jpcb.9b07473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore the diffusion and relaxation dynamics of a single ring polymer strongly adsorbed on rough surfaces with different roughnesses by means of molecular dynamics simulations. Our simulations demonstrate that on rough surfaces the intrachain topological constraint deriving from the closed architecture induces the inconsistency of diffusion and relaxation of ring polymers. When the lateral chain size is larger than the obstacle distance (2Rg∥,r > d), the ring closure induces the polymers to anchor on a single obstacle and dramatically reduces their diffusivity, where Rg∥,r and d are the lateral components of the mean-square radius of gyration and the obstacle distance, respectively. However, the single obstacle anchoring has no effect on the relaxation of ring polymers, which implies a deviation between the diffusion and the relaxation. With the lateral chain size beyond twice of the obstacle distance (Rg∥,r > d), the ring polymers are totally confined in the array of obstacles and can only diffuse through hopping over the obstacles, resulting in an exponential reduction of their diffusion coefficient. However, the relaxation of ring polymers mainly depends on their rotating reptation and satisfies the reptation-like dynamics, which means that the diffusion and the relaxation are nearly irrelevant. This inconsistency between the diffusion and relaxation is a unique property of adsorbed ring polymers, which would be meaningful to understand the physical nature of polymers with ring closure and significant to develop the corresponding applications.
Collapse
Affiliation(s)
- Jiaxiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China.,School of Applied Chemistry and Engineering , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Ran Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Mingming Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China.,School of Applied Chemistry and Engineering , University of Science and Technology of China , Hefei 230026 , P. R. China
| |
Collapse
|