1
|
Wei A, Diao G, Dai R, Shi L, Lin H, Li D, Yuan J. A new era for applications of multi-principal element alloys in the biomedical field. BIOMATERIALS ADVANCES 2025; 172:214244. [PMID: 40023085 DOI: 10.1016/j.bioadv.2025.214244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
In today's context of an aging population and the gradual decline of human physiological functions, we are increasingly confronted with health issues such as fractures and arthritis. The demand for implants has risen correspondingly, while traditional alloys have become insufficient to meet the developmental needs of this era. The emergence of multi-principal element alloys (or high-entropy alloys) in 2004 has attracted significant attention, leading to extensive research due to their remarkable four core effects. Currently, multi-principal element alloys are gradually demonstrating their potential in the biomedical field. Therefore, a review of multi-principal element alloys in biomedical applications is of high interest. This paper explores the key considerations in the design of biological multi-principal element alloys, focusing on the latest research advancements in areas such as orthopedic implants, dentistry, and cardiovascular stents. We analyze their advantages in mechanical properties and biocompatibility while introducing their preparation methods. Furthermore, the article discusses the challenges faced by biological multi-principal element alloys in current research and anticipates future development directions for these materials. The primary objective of this review is to show the potential applications of multi-principal element alloys in implants, ensuring that the discussion remains engaging and novel. We aim to provide a reference to facilitate development of multi-principal element alloys for practical applications in the biomedical field.
Collapse
Affiliation(s)
- Ao Wei
- School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, PR China.
| | - Guijiang Diao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2H5, Canada.
| | - Ruirui Dai
- School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, PR China.
| | - Lingbing Shi
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, PR China.
| | - Hai Lin
- College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China; Guangxi Natural Gas Pipeline Co., Ltd., Beihai 536000, PR China.
| | - Dongyang Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2H5, Canada.
| | - Junfeng Yuan
- School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, PR China.
| |
Collapse
|
2
|
Korhonen E, Kumpulainen T, Pamula M, Valkonen A, See E, Pettersson M, Nissinen M. Photocleavage and Photophysical Properties of Amine Releasing BODIPY Derivatives. Chemistry 2025; 31:e202500530. [PMID: 40085011 DOI: 10.1002/chem.202500530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/16/2025]
Abstract
To date, there is still a lack of suitable methods for chemical modification of graphene surfaces in situ. Photocleavable compounds have great potential for in situ modification of chemical species with visible light, leaving desired chemical functionalities on the surface. Green light-sensitive boron dipyrromethene (BODIPY) derivatives can release diverse cargos, including biologically important amines. In this study, green light-sensitive photocleavable BODIPY derivatives with different aromatic anchors for surface binding were designed and synthesized with the ultimate goal of selective graphene surface patterning. The effects of different aromatic anchor groups on photocleaving capability, their structural and photophysical properties and photocleavage in different conditions were studied. Photocleavage was significantly faster, and more controllable photoreaction was achieved in inert conditions than in the presence of oxygen (ambient air). In addition, pyrene as an anchor lowered fluorescence quantum yield and intensities of absorption and emission maxima of the entire BODIPY derivative, making it a poorer fluorophore than the derivatives with the naphthalene and phenyl anchors.
Collapse
Affiliation(s)
- Elsa Korhonen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Tatu Kumpulainen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Malgorzata Pamula
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Arto Valkonen
- Department of Chemistry, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Erich See
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Mika Pettersson
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Maija Nissinen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| |
Collapse
|
3
|
Wu Z, Mo L, Wang Z, Song L, Kobatake E, Ito Y, Wang Y, Zhang P. Biointerface engineering through amalgamation of gene technology and site-specific growth factor conjugation for efficient osteodifferentiation. Biotechnol Bioeng 2025; 122:80-94. [PMID: 39300684 DOI: 10.1002/bit.28852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/21/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The development of bone implants through bioinspired immobilization of growth factors remains a key issue in the generation of biological interfaces, especially in enhancing osteodifferentiation ability. In this study, we developed a strategy for surface functionalization of poly(lactide-glycolide) (PLGA) and hydroxyapatite (HA) composite substrates through site-specific conjugation of bone morphogenetic protein 2 containing 3,4-hydroxyphenalyalanine (DOPA-BMP2) mediated by tyrosinase and sortase A (SrtA). Firstly, the growth factor BMP2-LPETG containing LPETG motif was successfully expressed in Escherichia coli through recombinant DNA technology. The excellent binding affinity of binding growth factor (DOPA-BMP2) was achieved by converting the tyrosine residue (Y) of YKYKY-GGG peptide into DOPA (X) by tyrosinase, which bound to the substrates. Then its GGG motif was specifically bound to the end of BMP2-LPETG mediated by SrtA. Therefore, the generated bioactive DOPA-BMP2/PLGA/HA substrates significantly promoted the osteogenic differentiation of MC3T3-E1 cells. Thanks to this microbial-assisted engineering approach, our work presents a facile and highly site-specific strategy to engineer biomimetic materials for orthopedics and dentistry by effectively delivering growth factors, peptides, and other biomacromolecules.
Collapse
Affiliation(s)
- Zhenxu Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Li Mo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Liangsong Song
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Eiry Kobatake
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Yi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| |
Collapse
|
4
|
Yang Y, Wang Y, Li Y, Hu X, Tong C, Xue C, Qin K. Micro-fluidic covalent immobilization of multi-gradient RGD peptides on a gelatin surface for studying endothelial cell migration. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7965-7976. [PMID: 39453678 DOI: 10.1039/d4ay01409j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Collective endothelial migration is a hallmark of wound healing, which is regulated by spatial concentration gradients of extracellular biochemical factors. Arginine-glycine-aspartate (RGD) peptides play a vital role in regulating cell migration through specific binding to integrins. In this study, a micro-fluidic technology combined with a photopolymerization technique is developed to create gelatin methacryloyl (GelMA)-based substrates with various concentration gradients of RGD peptides. The capability of generating linear and nonlinear RGD concentration gradients was quantitatively verified through numerical simulation and immunohistochemical quantitative experiments. The results of the concentration gradients show a strong concurrence between the immunohistochemical quantification experiments and numerical simulations. Furthermore, endothelial migration experiments were conducted with various concentration gradients of RGD peptides. We have observed that endothelial cells on the surface of gels with a linear concentration gradient exhibit a larger cell area, a longer cell perimeter, and more stress fiber density. Furthermore, the cells demonstrate directional alignment and migration towards regions with a higher RGD concentration. High concentration gradients significantly enhance endothelial cell migration, consistent with observations on surfaces of gels with nonlinear concentration gradients. In brief, we proposed a simple and effective micro-fluidic photopolymerization technique capable of generating diverse concentration gradients of RGD and probing their effects on cell migration. The results suggest that regulating the RGD peptide concentration gradients can alter the migration of endothelial cells, showing potential for promoting wound healing.
Collapse
Affiliation(s)
- Yunong Yang
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| | - Yanxia Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, No. 7166, Bao Tong West Str., Weifang 261053, Shandong Province, China
| | - Yongjiang Li
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| | - Xuqu Hu
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| | - Changgui Tong
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| | - Chundong Xue
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| | - Kairong Qin
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian, 116033, Liaoning, P.R. China.
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, No. 2, Linggong Rd, Dalian 116024, Liaoning Province, China
| |
Collapse
|
5
|
Korzhikov-Vlakh V, Mikhailova A, Sinitsyna E, Korzhikova-Vlakh E, Tennikova T. Gradient Functionalization of Poly(lactic acid)-Based Materials with Polylysine for Spatially Controlled Cell Adhesion. Polymers (Basel) 2024; 16:2888. [PMID: 39458716 PMCID: PMC11511340 DOI: 10.3390/polym16202888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The development of biomaterials with gradient surface modification capable of spatially controlled cell adhesion and migration is of great importance for tissue engineering and regeneration. In this study, we proposed a method for the covalent modification of PLA-based materials with a cationic polypeptide (polylysine, PLys) via a thiol-ene click reaction carried out under a light gradient. With this aim, PLA-based films were fabricated and modified with 2-aminoethyl methacrylate (AEMA) as a double bond source. The latter was introduced by reacting pre-formed and activated surface carboxyl groups with the amino group of AEMA. The success of the modification was confirmed by 1H NMR, Raman and X-ray photoelectron spectroscopy data. A further photoinduced thiol-ene click reaction in the presence of a photosensitive initiator as a radical source was further optimized using cysteine. For grafting of PLys via the thiol-ene click reaction, PLys with a terminal thiol group was synthesized by ring-opening polymerization using Cys(Acm) as an amine initiator. Deprotection of the polypeptide resulted in the formation of free thiol groups of Cys-PLys. Successful gradient grafting of Cys-PLys was evidenced by covalent staining with the fluorescent dye Cy3-NHS. In addition, PLys gradient-dependent adhesion and migration of HEK 293 cells on PLys-PLA-based surfaces was confirmed.
Collapse
Affiliation(s)
- Viktor Korzhikov-Vlakh
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
- St. Petersburg State University Hospital, 199034 St. Petersburg, Russia
| | - Aleksandra Mikhailova
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
- Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 St. Petersburg, Russia
| | - Ekaterina Sinitsyna
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
| | - Evgenia Korzhikova-Vlakh
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
| | - Tatiana Tennikova
- Institute of Chemistry, St. Petersburg, St. Petersburg State University, 198504 St. Petersburg, Russia; (A.M.); (E.S.); (T.T.)
| |
Collapse
|
6
|
Fan D, Liu X, Chen H. Endothelium-Mimicking Materials: A "Rising Star" for Antithrombosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53343-53371. [PMID: 39344055 DOI: 10.1021/acsami.4c12117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The advancement of antithrombotic materials has significantly mitigated the thrombosis issue in clinical applications involving various medical implants. Extensive research has been dedicated over the past few decades to developing blood-contacting materials with complete resistance to thrombosis. However, despite these advancements, the risk of thrombosis and other complications persists when these materials are implanted in the human body. Consequently, the modification and enhancement of antithrombotic materials remain pivotal in 21st-century hemocompatibility studies. Previous research indicates that the healthy endothelial cells (ECs) layer is uniquely compatible with blood. Inspired by bionics, scientists have initiated the development of materials that emulate the hemocompatible properties of ECs by replicating their diverse antithrombotic mechanisms. This review elucidates the antithrombotic mechanisms of ECs and examines the endothelium-mimicking materials developed through single, dual-functional and multifunctional strategies, focusing on nitric oxide release, fibrinolytic function, glycosaminoglycan modification, and surface topography modification. These materials have demonstrated outstanding antithrombotic performance. Finally, the review outlines potential future research directions in this dynamic field, aiming to advance the development of antithrombotic materials.
Collapse
Affiliation(s)
- Duanqi Fan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
7
|
Cheng Y, Pang SW. Biointerfaces with ultrathin patterns for directional control of cell migration. J Nanobiotechnology 2024; 22:158. [PMID: 38589901 PMCID: PMC11000378 DOI: 10.1186/s12951-024-02418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
In the context of wound healing and tissue regeneration, precise control of cell migration direction is deemed crucial. To address this challenge, polydimethylsiloxane (PDMS) platforms with patterned 10 nm thick TiOx in arrowhead shape were designed and fabricated. Remarkably, without tall sidewall constraints, MC3T3-E1 cells seeded on these platforms were constrained to migrate along the tips of the arrowheads, as the cells were guided by the asymmetrical arrowhead tips which provided large contact areas. To the best of our knowledge, this is the first study demonstrating the use of thin TiOx arrowhead pattern in combination with a cell-repellent PDMS surface to provide guided cell migration unidirectionally without tall sidewall constraints. Additionally, high-resolution fluorescence imaging revealed that the asymmetrical distribution of focal adhesions, triggered by the patterned TiOx arrowheads with arm lengths of 10, 20, and 35 μm, promoted cell adhesion and protrusion along the arrowhead tip direction, resulting in unidirectional cell migration. These findings have important implications for the design of biointerfaces with ultrathin patterns to precisely control cell migration. Furthermore, microelectrodes were integrated with the patterned TiOx arrowheads to enable dynamic monitoring of cell migration using impedance measurement. This microfluidic device integrated with thin layer of guiding pattern and microelectrodes allows simultaneous control of directional cell migration and characterization of the cell movement of individual MC3T3-E1 cells, offering great potential for the development of biosensors for single-cell monitoring.
Collapse
Grants
- CityU11207620, CityU11207821, CityU11205423 Research Grants Council of the Hong Kong Special Administrative Region, China
- CityU11207620, CityU11207821, CityU11205423 Research Grants Council of the Hong Kong Special Administrative Region, China
- 9360148, 9380062 Center for Biosystems, Neuroscience, and Nanotechnology (CBNN) of City University of Hong Kong
- 9360148, 9380062 Center for Biosystems, Neuroscience, and Nanotechnology (CBNN) of City University of Hong Kong
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Stella W Pang
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
8
|
Hu H, Chen X, Zhao K, Zheng W, Gao C. Recent Advances in Biomaterials-Based Therapies for Alleviation and Regeneration of Traumatic Brain Injury. Macromol Biosci 2023; 23:e2200577. [PMID: 36758541 DOI: 10.1002/mabi.202200577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Traumatic brain injury (TBI), a major public health problem accompanied with numerous complications, usually leads to serve disability and huge financial burden. The adverse and unfavorable pathological environment triggers a series of secondary injuries, resulting in serious loss of nerve function and huge obstacle of endogenous nerve regeneration. With the advances in adaptive tissue regeneration biomaterials, regulation of detrimental microenvironment to reduce the secondary injury and to promote the neurogenesis becomes possible. The adaptive biomaterials could respond and regulate biochemical, cellular, and physiological events in the secondary injury, including excitotoxicity, oxidative stress, and neuroinflammation, to rebuild circumstances suitable for regeneration. In this review, the development of pathology after TBI is discussed, followed by the introduction of adaptive biomaterials based on various pathological characteristics. The adaptive biomaterials carried with neurotrophic factors and stem cells for TBI treatment are then summarized. Finally, the current drawbacks and future perspective of biomaterials for TBI treatment are suggested.
Collapse
Affiliation(s)
- Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiping Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Kefei Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weiwei Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China
| |
Collapse
|
9
|
A Biosurfactant-containing TSD Strategy to Modify Bovine Pericardial Bioprosthetic Valves for Anticalcification. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
He J, Shen R, Liu Q, Zheng S, Wang X, Gao J, Wang Q, Huang J, Ding J. RGD Nanoarrays with Nanospacing Gradient Selectively Induce Orientation and Directed Migration of Endothelial and Smooth Muscle Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37436-37446. [PMID: 35943249 DOI: 10.1021/acsami.2c10006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Directed migration of cells through cell-surface interactions is a paramount prerequisite in biomaterial-induced tissue regeneration. However, whether and how the nanoscale spatial gradient of adhesion molecules on a material surface can induce directed migration of cells is not sufficiently known. Herein, we employed block copolymer micelle nanolithography to prepare gold nanoarrays with a nanospacing gradient, which were prepared by continuously changing the dipping velocity. Then, a self-assembly monolayer technique was applied to graft arginine-glycine-aspartate (RGD) peptides on the nanodots and poly(ethylene glycol) (PEG) on the glass background. Since RGD can trigger specific cell adhesion via conjugating with integrin (its receptor in the cell membrane) and PEG can resist protein adsorption and nonspecific cell adhesion, a nanopattern with cell-adhesion contrast and a gradient of RGD nanospacing was eventually prepared. In vitro cell behaviors were examined using endothelial cells (ECs) and smooth muscle cells (SMCs) as a demonstration. We found that SMCs exhibited significant orientation and directed migration along the nanospacing gradient, while ECs exhibited only a weak spontaneously anisotropic migration. The gradient response was also dependent upon the RGD nanospacing ranges, namely, the start and end nanospacings under a given distance and gradient. The different responses of these two cell types to the RGD nanospacing gradient provide new insights for designing cell-selective nanomaterials potentially used in cell screening, wound healing, etc.
Collapse
Affiliation(s)
- Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Runjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Clinical Research Center for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai 200434, China
| | - Shuang Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xinlei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiale Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
11
|
Chen WH, Chen QW, Chen Q, Cui C, Duan S, Kang Y, Liu Y, Liu Y, Muhammad W, Shao S, Tang C, Wang J, Wang L, Xiong MH, Yin L, Zhang K, Zhang Z, Zhen X, Feng J, Gao C, Gu Z, He C, Ji J, Jiang X, Liu W, Liu Z, Peng H, Shen Y, Shi L, Sun X, Wang H, Wang J, Xiao H, Xu FJ, Zhong Z, Zhang XZ, Chen X. Biomedical polymers: synthesis, properties, and applications. Sci China Chem 2022; 65:1010-1075. [PMID: 35505924 PMCID: PMC9050484 DOI: 10.1007/s11426-022-1243-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Biomedical polymers have been extensively developed for promising applications in a lot of biomedical fields, such as therapeutic medicine delivery, disease detection and diagnosis, biosensing, regenerative medicine, and disease treatment. In this review, we summarize the most recent advances in the synthesis and application of biomedical polymers, and discuss the comprehensive understanding of their property-function relationship for corresponding biomedical applications. In particular, a few burgeoning bioactive polymers, such as peptide/biomembrane/microorganism/cell-based biomedical polymers, are also introduced and highlighted as the emerging biomaterials for cancer precision therapy. Furthermore, the foreseeable challenges and outlook of the development of more efficient, healthier and safer biomedical polymers are discussed. We wish this systemic and comprehensive review on highlighting frontier progress of biomedical polymers could inspire and promote new breakthrough in fundamental research and clinical translation.
Collapse
Affiliation(s)
- Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Shun Duan
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Yun Liu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Chengqiang Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Meng-Hua Xiong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123 China
| | - Kuo Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Zhanzhan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xu Zhen
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Xiqun Jiang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093 China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350 China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123 China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart BioMaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215 China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438 China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nano-science, National Center for Nanoscience and Technology (NCNST), Beijing, 100190 China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006 China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123 China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| |
Collapse
|
12
|
Xie J, Yao Y, Wang S, Fan L, Ding J, Gao Y, Li S, Shen L, Zhu Y, Gao C. Alleviating Oxidative Injury of Myocardial Infarction by a Fibrous Polyurethane Patch with Condensed ROS-Scavenging Backbone Units. Adv Healthc Mater 2022; 11:e2101855. [PMID: 34811967 DOI: 10.1002/adhm.202101855] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Excessive reactive oxygen species (ROS) generated after myocardial infarction (MI) result in the oxidative injury in myocardium. Implantation of antioxidant biomaterials, without the use of any type of drugs, is very appealing for clinical translation, leading to the great demand of novel biomaterials with high efficiency of ROS elimination. In this study, a segmented polyurethane (PFTU) with a high density of ROS-scavenging backbone units is synthesized by the reaction of poly(thioketal) dithiol (PTK) and poly(propylene fumarate) diol (PPF) (soft segments), thioketal diamine (chain extender), and 1,6-hexamethylene diisocyanate (HDI). Its chemical structure is verified by gel permeation chromatography (GPC), 1 H nuclear magnetic resonance (1 H NMR) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The electrospun composite PFTU/gelatin (PFTU/Gt) fibrous patches show good antioxidation capacity and ROS-responsive degradation in vitro. Implantation of the PFTU/gelatin patches on the heart tissue surface in MI rats consistently decreases the ROS level, membrane peroxidation, and cell apoptosis at the earlier stage, which are not observed in the non-ROS-responsive polyurethane patch. Inflammation and fibrosis are also reduced in the PFTU/gelatin-treated hearts, resulting in the reduced left ventricular remodeling and better cardiac functions postimplantation for 28 d.
Collapse
Affiliation(s)
- Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Linge Fan
- College of Life Sciences Institute of Genetics and Regenerative Biology Zhejiang University Hangzhou Zhejiang 310058 China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yun Gao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province Department of Cardiology Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310000 China
| | - Shifen Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Liyin Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University Hangzhou 310058 China
| |
Collapse
|
13
|
He Y, Wang X, He Y, Zhao X, Lin J, Feng Y, Chen J, Luo F, Li Z, Li J, Tan H. A bioinspired Janus polyurethane membrane for potential periodontal tissue regeneration. J Mater Chem B 2022; 10:2602-2616. [PMID: 34989756 DOI: 10.1039/d1tb02068d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Guided tissue regeneration (GTR) is the main therapeutic method for periodontal tissue regeneration. The key to the GTR strategy is the membrane which can assist the reconstruction of bone tissue in the periodontal defect and prevent the migration of epithelium and fibroblasts to the defect. However, the existing periodontal membrane cannot effectively promote periodontal tissue regeneration due to the limited bioactivity and physicochemical function. Here, we developed a bioinspired degradable polyurethane membrane with Janus surface morphology by integrating bioactive dopamine (DA) and an antibacterial Gemini quaternary ammonium salt (QAS). The Janus surface of the membrane is fabricated through spontaneous microphase separation, resulting from the different migration of functional segments between the air-contact upper surface with enriched antibacterial QAS and the substrate-contact bottom with enriched bioactive DA. The smooth surface of the upper membrane used to face the soft tissues can reduce cell adhesion to suppress the migration of fibroblasts, while the rough surface with a topological micro-pit structure of the bottom side facing the bone has excellent function of autonomic mineralization and cell adhesion to promote bone tissue reconstruction. In addition, the membrane containing the antibacterial QAS shows excellent antibacterial effect on common oral pathogens, such as S. aureus and S. mutans. Moreover, the specific dopamine group also endows the membrane with excellent antioxidant efficiency. In vivo research shows that this Janus polyurethane membrane can effectively promote periodontal tissue regeneration in a rat periodontal defect model. Combined with its excellent mechanical properties and biocompatibility, the polyurethane membrane is a promising material for potential periodontal tissue regeneration.
Collapse
Affiliation(s)
- Yushui He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuanyuan He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Xin Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jingjing Lin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuan Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jie Chen
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610065, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|