1
|
Pérez-Valenzuela C, Vicencio-Jiménez S, Caballero M, Delano PH, Elgueda D. Wireless electrocochleography in awake chinchillas: A model to study crossmodal modulations at the peripheral level. Hear Res 2024; 451:109093. [PMID: 39094370 DOI: 10.1016/j.heares.2024.109093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The discovery and development of electrocochleography (ECochG) in animal models has been fundamental for its implementation in clinical audiology and neurotology. In our laboratory, the use of round-window ECochG recordings in chinchillas has allowed a better understanding of auditory efferent functioning. In previous works, we gave evidence of the corticofugal modulation of auditory-nerve and cochlear responses during visual attention and working memory. However, whether these cognitive top-down mechanisms to the most peripheral structures of the auditory pathway are also active during audiovisual crossmodal stimulation is unknown. Here, we introduce a new technique, wireless ECochG to record compound-action potentials of the auditory nerve (CAP), cochlear microphonics (CM), and round-window noise (RWN) in awake chinchillas during a paradigm of crossmodal (visual and auditory) stimulation. We compared ECochG data obtained from four awake chinchillas recorded with a wireless ECochG system with wired ECochG recordings from six anesthetized animals. Although ECochG experiments with the wireless system had a lower signal-to-noise ratio than wired recordings, their quality was sufficient to compare ECochG potentials in awake crossmodal conditions. We found non-significant differences in CAP and CM amplitudes in response to audiovisual stimulation compared to auditory stimulation alone (clicks and tones). On the other hand, spontaneous auditory-nerve activity (RWN) was modulated by visual crossmodal stimulation, suggesting that visual crossmodal simulation can modulate spontaneous but not evoked auditory-nerve activity. However, given the limited sample of 10 animals (4 wireless and 6 wired), these results should be interpreted cautiously. Future experiments are required to substantiate these conclusions. In addition, we introduce the use of wireless ECochG in animal models as a useful tool for translational research.
Collapse
Affiliation(s)
| | - Sergio Vicencio-Jiménez
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Johns Hopkins School of Medicine, Otolaryngology-Head and Neck Surgery Department, Baltimore, MD 21231, USA; Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mia Caballero
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paul H Delano
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Servicio Otorrinolaringología, Hospital Clínico de la Universidad de Chile, Santiago, Chile; Centro Avanzado de Ingeniería Eléctrica y Electrónica, AC3E, Universidad Técnica Federico Santa María, Valparaíso, Chile; Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diego Elgueda
- Departamento de Patología Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile 8820808, Santiago, Chile.
| |
Collapse
|
2
|
Ishizaka Y, Otsuka S, Nakagawa S. Relationships between the expectations based on the regularity of preceding sound sequences and the medial olivocochlear reflex. PLoS One 2024; 19:e0304027. [PMID: 39018315 PMCID: PMC11253965 DOI: 10.1371/journal.pone.0304027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/05/2024] [Indexed: 07/19/2024] Open
Abstract
Rhythms are the most natural cue for temporal anticipation because many sounds in our living environment have rhythmic structures. Humans have cortical mechanisms that can predict the arrival of the next sound based on rhythm and periodicity. Herein, we showed that temporal anticipation, based on the regularity of sound sequences, modulates peripheral auditory responses via efferent innervation. The medial olivocochlear reflex (MOCR), a sound-activated efferent feedback mechanism that controls outer hair cell motility, was inferred noninvasively by measuring the suppression of otoacoustic emissions (OAE). First, OAE suppression was compared between conditions in which sound sequences preceding the MOCR elicitor were presented at regular (predictable condition) or irregular (unpredictable condition) intervals. We found that OAE suppression in the predictable condition was stronger than that in the unpredictable condition. This implies that the MOCR is strengthened by the regularity of preceding sound sequences. In addition, to examine how many regularly presented preceding sounds are required to enhance the MOCR, we compared OAE suppression within stimulus sequences with 0-3 preceding tones. The OAE suppression was strengthened only when there were at least three regular preceding tones. This suggests that the MOCR was not automatically enhanced by a single stimulus presented immediately before the MOCR elicitor, but rather that it was enhanced by the regularity of the preceding sound sequences.
Collapse
Affiliation(s)
- Yuki Ishizaka
- Department of Medical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
| | - Sho Otsuka
- Department of Medical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Seiji Nakagawa
- Department of Medical Engineering, Graduate School of Science and Engineering, Chiba University, Chiba, Japan
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
- Med-Tech Link Center, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
3
|
Kersbergen CJ, Bergles DE. Priming central sound processing circuits through induction of spontaneous activity in the cochlea before hearing onset. Trends Neurosci 2024; 47:522-537. [PMID: 38782701 PMCID: PMC11236524 DOI: 10.1016/j.tins.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Sensory systems experience a period of intrinsically generated neural activity before maturation is complete and sensory transduction occurs. Here we review evidence describing the mechanisms and functions of this 'spontaneous' activity in the auditory system. Both ex vivo and in vivo studies indicate that this correlated activity is initiated by non-sensory supporting cells within the developing cochlea, which induce depolarization and burst firing of groups of nearby hair cells in the sensory epithelium, activity that is conveyed to auditory neurons that will later process similar sound features. This stereotyped neural burst firing promotes cellular maturation, synaptic refinement, acoustic sensitivity, and establishment of sound-responsive domains in the brain. While sensitive to perturbation, the developing auditory system exhibits remarkable homeostatic mechanisms to preserve periodic burst firing in deaf mice. Preservation of this early spontaneous activity in the context of deafness may enhance the efficacy of later interventions to restore hearing.
Collapse
Affiliation(s)
- Calvin J Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Fernández Del Campo IS, Carmona-Barrón VG, Diaz I, Plaza I, Alvarado JC, Merchán MA. Multisession anodal epidural direct current stimulation of the auditory cortex delays the progression of presbycusis in the Wistar rat. Hear Res 2024; 444:108969. [PMID: 38350175 DOI: 10.1016/j.heares.2024.108969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
Presbycusis or age-related hearing loss (ARHL) is one of the most prevalent chronic health problems facing aging populations. Along the auditory pathway, the stations involved in transmission and processing, function as a system of interconnected feedback loops. Regulating hierarchically auditory processing, auditory cortex (AC) neuromodulation can, accordingly, activate both peripheral and central plasticity after hearing loss. However, previous ARHL-prevention interventions have mainly focused on preserving the structural and functional integrity of the inner ear, overlooking the central auditory system. In this study, using an animal model of spontaneous ARHL, we aim at assessing the effects of multisession epidural direct current stimulation of the AC through stereotaxic implantation of a 1-mm silver ball anode in Wistar rats. Consisting of 7 sessions (0.1 mA/10 min), on alternate days, in awake animals, our stimulation protocol was applied at the onset of hearing loss (threshold shift detection at 16 months). Click- and pure-tone auditory brainstem responses (ABRs) were analyzed in two animal groups, namely electrically stimulated (ES) and non-stimulated (NES) sham controls, comparing recordings at 18 months of age. At 18 months, NES animals showed significantly increased threshold shifts, decreased wave amplitudes, and increased wave latencies after click and tonal ABRs, reflecting a significant, spontaneous ARHL evolution. Conversely, in ES animals, no significant differences were detected in any of these parameters when comparing 16 and 18 months ABRs, indicating a delay in ARHL progression. Electrode placement in the auditory cortex was accurate, and the stimulation did not cause significant damage, as shown by the limited presence of superficial reactive microglial cells after IBA1 immunostaining. In conclusion, multisession DC stimulation of the AC has a protective effect on auditory function, delaying the progression of presbycusis.
Collapse
Affiliation(s)
- Inés S Fernández Del Campo
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León. University of Salamanca. Salamanca, Spain
| | - Venezia G Carmona-Barrón
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León. University of Salamanca. Salamanca, Spain
| | - I Diaz
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León. University of Salamanca. Salamanca, Spain
| | - I Plaza
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León. University of Salamanca. Salamanca, Spain
| | - J C Alvarado
- Facultad de Medicina, IDINE, Universidad de Castilla la Mancha, Albacete, Spain
| | - M A Merchán
- Lab.4 Auditory Neuroplasticity, Institute for Neuroscience of Castilla y León. University of Salamanca. Salamanca, Spain.
| |
Collapse
|
5
|
Beebe NL, Herrera YN, Noftz WA, Roberts MT, Schofield BR. Characterization of three cholinergic inputs to the cochlear nucleus. J Chem Neuroanat 2023; 131:102284. [PMID: 37164181 PMCID: PMC10330717 DOI: 10.1016/j.jchemneu.2023.102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Acetylcholine modulates responses throughout the auditory system, including at the earliest brain level, the cochlear nucleus (CN). Previous studies have shown multiple sources of cholinergic input to the CN but information about their relative contributions and the distribution of inputs from each source is lacking. Here, we used staining for cholinergic axons and boutons, retrograde tract tracing, and acetylcholine-selective anterograde tracing to characterize three sources of acetylcholine input to the CN in mice. Staining for cholinergic axons showed heavy cholinergic inputs to granule cell areas and the dorsal CN with lighter input to the ventral CN. Retrograde tract tracing revealed that cholinergic cells from the superior olivary complex, pontomesencephalic tegmentum, and lateral paragigantocellular nucleus send projections to the CN. When we selectively labeled cholinergic axons from each source to the CN, we found surprising similarities in their terminal distributions, with patterns that were overlapping rather than complementary. Each source heavily targeted granule cell areas and the dorsal CN (especially the deep dorsal CN) and sent light input into the ventral CN. Our results demonstrate convergence of cholinergic inputs from multiple sources in most regions of the CN and raise the possibility of convergence onto single CN cells. Linking sources of acetylcholine and their patterns of activity to modulation of specific cell types in the CN will be an important next step in understanding cholinergic modulation of early auditory processing.
Collapse
Affiliation(s)
- Nichole L Beebe
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Yoani N Herrera
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA
| | - William A Noftz
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Brett R Schofield
- Hearing Research Group, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA.
| |
Collapse
|
6
|
Thai-Van H, Veuillet E, Le Normand MT, Damien M, Joly CA, Reynard P. The Magnitude of Contralateral Suppression of Otoacoustic Emissions Is Ear- and Age-Dependent. J Clin Med 2023; 12:4553. [PMID: 37445587 DOI: 10.3390/jcm12134553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The maturation of the uncrossed medial olivocochlear (UMOC) efferent remains poorly documented to date. The UMOC efferent system allows listeners to not only detect but also to process, recognize, and discriminate auditory stimuli. Its fibers can be explored non-invasively by recording the effect of contralateral acoustic stimulation (CAS), resulting in a decrease in the amplitude of transient evoked otoacoustic emissions (TEOAE). The objective of the present cross-sectional study was to investigate how the effectiveness of this system varies with age in healthy subjects aged 8 years to adulthood. For this purpose, 120 right-handed native French-speaking subjects (57 females and 63 males) were divided into five age groups of 24 subjects each: 8y-10y, 10y-11y6m, 11y6m-13y, 13y-17y, and ≥18y. TEOAE amplitudes with and without CAS were recorded. The equivalent attenuation (EA) was calculated, corresponding to the change in TEOAE amplitude equivalent to the effect generated by CAS. General linear models were performed to control for the effect of ear, sex, and age on EA. No sex effect was found. A stronger EA was consistently found regardless of age group in the right ear compared to the left. In contrast to the right ear, for which, on average, EA remained constant across age groups, an increasingly weaker TEOAE suppression effect with age was found in the left ear, reinforcing the asymmetrical functioning of the UMOC efferent system in favor of the right ear in adulthood. Further studies are needed to investigate the lateralization of the UMOC efferent system and its changes over time in cases of atypical or reversed cortical asymmetries, especially in subjects with specific learning disorders.
Collapse
Affiliation(s)
- Hung Thai-Van
- Institut de l'Audition, Institut Pasteur, Inserm, 75012 Paris, France
- Service d'Audiologie et d'Explorations Oto-Neurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France
- Faculty of Medicine, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Evelyne Veuillet
- Institut de l'Audition, Institut Pasteur, Inserm, 75012 Paris, France
- Service d'Audiologie et d'Explorations Oto-Neurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France
- Faculty of Medicine, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Marie-Thérèse Le Normand
- Institut de l'Audition, Institut Pasteur, Inserm, 75012 Paris, France
- Laboratoire Psychopathologie et Processus de Santé, URP 4057, Université Paris Cité, 92100 Boulogne Billancourt, France
| | - Maxime Damien
- Institut de l'Audition, Institut Pasteur, Inserm, 75012 Paris, France
- Service d'Audiologie et d'Explorations Oto-Neurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France
- Faculty of Medicine, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Charles-Alexandre Joly
- Institut de l'Audition, Institut Pasteur, Inserm, 75012 Paris, France
- Service d'Audiologie et d'Explorations Oto-Neurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France
- Faculty of Medicine, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Pierre Reynard
- Institut de l'Audition, Institut Pasteur, Inserm, 75012 Paris, France
- Service d'Audiologie et d'Explorations Oto-Neurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France
- Faculty of Medicine, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
7
|
Reynard P, Joly CA, Damien M, Le Normand MT, Veuillet E, Thai-Van H. Age-Related Dichotic Listening Skills in Impaired and Non-Impaired Readers: A Comparative Study. J Clin Med 2023; 12:jcm12020666. [PMID: 36675595 PMCID: PMC9865678 DOI: 10.3390/jcm12020666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Dichotic listening is the high-level auditory process which enables the perception of different verbal stimuli delivered simultaneously to the right and left ears (binaural integration), as well as the perception of a verbal stimulus presented to one ear while ignoring a different stimulus in the other ear (binaural separation). Deficits in central auditory processing have been reported in children with learning disabilities. The present study aimed to compare dichotic listening performances in right-handed impaired readers (IR) and non-impaired readers (non-IR) according to age. For this, a cross-sectional study was conducted in 120 IR (56 males and 64 females) divided into five age groups and 120 non-IR (63 male and 57 female) matched on chronological age (8 to 9 years; 9 to 10 years; 10 to 12 years; 12 to 18 years; adult). They were tested for binaural integration and binaural separation, allowing for the calculation of dichotic aptitude (DA), ear prevalence (EP), and attentional shift index (ASI). A series of ANOVAs showed an effect of age and of the reading group for all the dichotic-related measures, except for EP. Binaural separation scores were lower in IR who also showed more intrusive responses compared to non-IR. These intrusive responses, which were more frequent on the right ear for IR, decreased with age in both groups. Overall, these results suggest that dichotic listening scores improve with age as the central auditory pathways mature. However, whatever the age, performances are lower in IR than in non-IR. This might be explained by an incomplete maturation of the auditory pathways in IR; an early start for long-term follow-up and auditory training is suggested.
Collapse
Affiliation(s)
- Pierre Reynard
- Institut de l’Audition, Institut Pasteur, INSERM U1120, 75012 Paris, France
- Faculty of Medicine, University Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Service d’Audiologie et d’Explorations Oto-Neurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France
- Correspondence: (P.R.); (H.T.-V.)
| | - Charles-Alexandre Joly
- Institut de l’Audition, Institut Pasteur, INSERM U1120, 75012 Paris, France
- Service d’Audiologie et d’Explorations Oto-Neurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France
| | - Maxime Damien
- Faculty of Medicine, University Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Service d’Audiologie et d’Explorations Oto-Neurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France
| | - Marie-Thérèse Le Normand
- Institut de l’Audition, Institut Pasteur, INSERM U1120, 75012 Paris, France
- Laboratoire de Psychopathologie et Processus de Santé, Université de Paris Cité, 92100 Boulogne-Billancourt, France
| | - Evelyne Veuillet
- Institut de l’Audition, Institut Pasteur, INSERM U1120, 75012 Paris, France
- Faculty of Medicine, University Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Service d’Audiologie et d’Explorations Oto-Neurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France
| | - Hung Thai-Van
- Institut de l’Audition, Institut Pasteur, INSERM U1120, 75012 Paris, France
- Faculty of Medicine, University Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Service d’Audiologie et d’Explorations Oto-Neurologiques, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69003 Lyon, France
- Correspondence: (P.R.); (H.T.-V.)
| |
Collapse
|
8
|
Rahimi V, Mohammadkhani G, Alaghband Rad J, Mousavi SZ, Khalili ME. Modulation of auditory temporal processing, speech in noise perception, auditory-verbal memory, and reading efficiency by anodal tDCS in children with dyslexia. Neuropsychologia 2022; 177:108427. [PMID: 36410540 DOI: 10.1016/j.neuropsychologia.2022.108427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Dyslexia is a neurodevelopmental disorder that is prevalent in children. It is estimated that 30-50% of individuals diagnosed with dyslexia also manifest an auditory perceptual deficit characteristic of auditory processing disorder (APD). Some studies suggest that defects in basic auditory processing can lead to phonological defects as the most prominent cause of dyslexia. Thus, in some cases, there may be interrelationships between dyslexia and some of the aspects of central auditory processing. In recent years, transcranial direct current stimulation (tDCS) has been used as a safe method for the modulation of central auditory processing aspects in healthy adults and reading skills in children with dyslexia. Therefore, the objectives of our study were to investigate the effect of tDCS on the modulation of different aspects of central auditory processing, aspects of reading, and the relationship between these two domains in dyslexic children with APD. A within-subjects design was employed to investigate the effect of two electrode arrays (the anode on the left STG (AC)/cathode on the right shoulder and anode on the left STG/cathode on the right STG) on auditory temporal processing; speech-in-noise perception, short-term auditory memory; and high-frequency word, low-frequency word, pseudoword, and text reading. The results of this clinical trial showed the modulation of the studied variables in central auditory processing and the accuracy and speed of reading variables compared to the control and sham statuses in both electrode arrays. Our results also showed that the improvement of the accuracy and speed of text reading, as well as the accuracy of pseudoword reading were related to the improvement of speech in noise perception and temporal processing. The results of this research can be effective in clarifying the basis of the neurobiology of dyslexia and, in particular, the hypothesis of the role of basic auditory processing and subsequently the role of the auditory cortex in dyslexia. These results might provide a framework to facilitate behavioral rehabilitation in dyslexic children with APD.
Collapse
Affiliation(s)
- Vida Rahimi
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran.
| | - Javad Alaghband Rad
- Department of Psychiatry, Tehran University of Medical Sciences, Roozbeh Hospital, Tehran, Iran
| | - Seyyedeh Zohre Mousavi
- Department of Speech Therapy, School of Rehabilitation, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Ehsan Khalili
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
9
|
Easy and Hard Auditory Tasks Distinguished by Otoacoustic Emissions and Event-related Potentials: Insights into Efferent System Activity. Neuroscience 2022; 491:87-97. [DOI: 10.1016/j.neuroscience.2022.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
|
10
|
Otsuka S, Nakagawa S, Furukawa S. Expectations of the timing and intensity of a stimulus propagate to the auditory periphery through the medial olivocochlear reflex. Cereb Cortex 2022; 32:5121-5131. [PMID: 35094068 PMCID: PMC9667176 DOI: 10.1093/cercor/bhac002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/27/2022] Open
Abstract
Expectations concerning the timing of a stimulus enhance attention at the time at which the event occurs, which confers significant sensory and behavioral benefits. Herein, we show that temporal expectations modulate even the sensory transduction in the auditory periphery via the descending pathway. We measured the medial olivocochlear reflex (MOCR), a sound-activated efferent feedback that controls outer hair cell motility and optimizes the dynamic range of the sensory system. MOCR was noninvasively assessed using otoacoustic emissions. We found that the MOCR was enhanced by a visual cue presented at a fixed interval before a sound but was unaffected if the interval was changing between trials. The MOCR was also observed to be stronger when the learned timing expectation matched with the timing of the sound but remained unvaried when these two factors did not match. This implies that the MOCR can be voluntarily controlled in a stimulus- and goal-directed manner. Moreover, we found that the MOCR was enhanced by the expectation of a strong but not a weak, sound intensity. This asymmetrical enhancement could facilitate antimasking and noise protective effects without disrupting the detection of faint signals. Therefore, the descending pathway conveys temporal and intensity expectations to modulate auditory processing.
Collapse
Affiliation(s)
- Sho Otsuka
- Address correspondence to Sho Otsuka, Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inageku, Chiba 263-8522, Japan.
| | - Seiji Nakagawa
- Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Shigeto Furukawa
- NTT Communication Science Laboratoires, NTT Corporation, Kanagawa, Japan
| |
Collapse
|
11
|
Raiza Fontes Barros Bomfim J, Orge Anunciação Bacelar C, Marques da Silva Neto M, Salles C, Marice Teixeira Ladeia A, Renata Rissatto-Lago M. Association between hearing impairment, school performance and cognitive function in children and adolescents with sickle cell disease. Trop Med Int Health 2022; 27:244-250. [PMID: 35048475 DOI: 10.1111/tmi.13722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the association among hearing impairment, school performance, and cognitive function in children and adolescents with sickle cell disease. METHODS Thirty-one participants with sickle cell disease (SCD) and 31 healthy participants in the control-comparison group (CG), both aged 8-17 years underwent auditory system evaluation (pure tone audiometry and acoustic reflex), were screened for the risks of (central) auditory processing disorder and dysfunction of cognitive function using the Scale of Auditory Behaviors (SAB) and the Mini-Mental State Examination (MMSE), respectively, and were interviewed to obtain clinical data and data on school performance. RESULTS In the SCD group, eight (25.8%) participants presented with sensorineural hearing loss (SNHL). The group with SCD and SNHL presented a higher occurrence of poor school performance than the group of participants with SCD without SNHL (p= 0.016). The MMSE score for aspects related to attention and calculation in the SCD group with SNHL was lower than in the SCD group without SNHL (p= 0.016). In the SAB, the SCD group with SNHL presented a lower score than the SCD group without SNHL in aspects related to academic performance and attention. CONCLUSION Hearing impairment in children and adolescents with SCD, specifically SNHL, is associated with poor school performance and enhances the risk of cognitive impairment in terms of attention and calculation.
Collapse
Affiliation(s)
| | | | | | - Cristina Salles
- Postgraduate Course in Medicine and Human Health, Bahiana School of Medicine and Public Health, Salvador, Brazil.,Department of Otolaryngology, University Hospital Professor Edgar Santos, Federal University of Bahia, Salvador, Brazil
| | - Ana Marice Teixeira Ladeia
- Postgraduate Course in Medicine and Human Health, Bahiana School of Medicine and Public Health, Salvador, Brazil
| | - Mara Renata Rissatto-Lago
- College of Speech Therapy, Department of the Life Science, State University of Bahia, Salvador, Brazil
| |
Collapse
|
12
|
Cheng FY, Xu C, Gold L, Smith S. Rapid Enhancement of Subcortical Neural Responses to Sine-Wave Speech. Front Neurosci 2022; 15:747303. [PMID: 34987356 PMCID: PMC8721138 DOI: 10.3389/fnins.2021.747303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/02/2021] [Indexed: 01/15/2023] Open
Abstract
The efferent auditory nervous system may be a potent force in shaping how the brain responds to behaviorally significant sounds. Previous human experiments using the frequency following response (FFR) have shown efferent-induced modulation of subcortical auditory function online and over short- and long-term time scales; however, a contemporary understanding of FFR generation presents new questions about whether previous effects were constrained solely to the auditory subcortex. The present experiment used sine-wave speech (SWS), an acoustically-sparse stimulus in which dynamic pure tones represent speech formant contours, to evoke FFRSWS. Due to the higher stimulus frequencies used in SWS, this approach biased neural responses toward brainstem generators and allowed for three stimuli (/bɔ/, /bu/, and /bo/) to be used to evoke FFRSWSbefore and after listeners in a training group were made aware that they were hearing a degraded speech stimulus. All SWS stimuli were rapidly perceived as speech when presented with a SWS carrier phrase, and average token identification reached ceiling performance during a perceptual training phase. Compared to a control group which remained naïve throughout the experiment, training group FFRSWS amplitudes were enhanced post-training for each stimulus. Further, linear support vector machine classification of training group FFRSWS significantly improved post-training compared to the control group, indicating that training-induced neural enhancements were sufficient to bolster machine learning classification accuracy. These results suggest that the efferent auditory system may rapidly modulate auditory brainstem representation of sounds depending on their context and perception as non-speech or speech.
Collapse
Affiliation(s)
- Fan-Yin Cheng
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX, United States
| | - Can Xu
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX, United States
| | - Lisa Gold
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX, United States
| | - Spencer Smith
- Department of Speech, Language, and Hearing Sciences, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
13
|
Hernández-Pérez H, Mikiel-Hunter J, McAlpine D, Dhar S, Boothalingam S, Monaghan JJM, McMahon CM. Understanding degraded speech leads to perceptual gating of a brainstem reflex in human listeners. PLoS Biol 2021; 19:e3001439. [PMID: 34669696 PMCID: PMC8559948 DOI: 10.1371/journal.pbio.3001439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/01/2021] [Accepted: 10/07/2021] [Indexed: 11/19/2022] Open
Abstract
The ability to navigate "cocktail party" situations by focusing on sounds of interest over irrelevant, background sounds is often considered in terms of cortical mechanisms. However, subcortical circuits such as the pathway underlying the medial olivocochlear (MOC) reflex modulate the activity of the inner ear itself, supporting the extraction of salient features from auditory scene prior to any cortical processing. To understand the contribution of auditory subcortical nuclei and the cochlea in complex listening tasks, we made physiological recordings along the auditory pathway while listeners engaged in detecting non(sense) words in lists of words. Both naturally spoken and intrinsically noisy, vocoded speech-filtering that mimics processing by a cochlear implant (CI)-significantly activated the MOC reflex, but this was not the case for speech in background noise, which more engaged midbrain and cortical resources. A model of the initial stages of auditory processing reproduced specific effects of each form of speech degradation, providing a rationale for goal-directed gating of the MOC reflex based on enhancing the representation of the energy envelope of the acoustic waveform. Our data reveal the coexistence of 2 strategies in the auditory system that may facilitate speech understanding in situations where the signal is either intrinsically degraded or masked by extrinsic acoustic energy. Whereas intrinsically degraded streams recruit the MOC reflex to improve representation of speech cues peripherally, extrinsically masked streams rely more on higher auditory centres to denoise signals.
Collapse
Affiliation(s)
- Heivet Hernández-Pérez
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
| | - Jason Mikiel-Hunter
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
| | - David McAlpine
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
| | - Sumitrajit Dhar
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
| | - Sriram Boothalingam
- University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jessica J. M. Monaghan
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
- National Acoustic Laboratories, Sydney, Australia
| | - Catherine M. McMahon
- Department of Linguistics, The Australian Hearing Hub, Macquarie University, Sydney, Australia
| |
Collapse
|
14
|
Díaz I, Colmenárez-Raga AC, Pérez-González D, Carmona VG, Plaza Lopez I, Merchán MA. Effects of Multisession Anodal Electrical Stimulation of the Auditory Cortex on Temporary Noise-Induced Hearing Loss in the Rat. Front Neurosci 2021; 15:642047. [PMID: 34393701 PMCID: PMC8358804 DOI: 10.3389/fnins.2021.642047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
The protective effect of the efferent system against acoustic trauma (AT) has been shown by several experimental approaches, including damage to one ear, sectioning of the olivocochlear bundle (OCB) in the floor of the IV ventricle, and knock-in mice overexpressing outer hair cell (OHC) cholinergic receptors, among others. Such effects have been related to changes in the regulation of the cholinergic efferent system and in cochlear amplification, which ultimately reverse upon protective hearing suppression. In addition to well-known circuits of the brainstem, the descending corticofugal pathway also regulates efferent neurons of the olivary complex. In this study, we applied our recently developed experimental paradigm of multiple sessions of electrical stimulation (ES) to activate the efferent system in combination with noise overstimulation. ABR thresholds increased 1 and 2 days after AT (8-16 kHz bandpass noise at 107 dB for 90 min) recovering at AT + 14 days. However, after multiple sessions of epidural anodal stimulation, no changes in thresholds were observed following AT. Although an inflammatory response was also observed 1 day after AT in both groups, the counts of reactive macrophages in both experimental conditions suggest decreased inflammation in the epidural stimulation group. Quantitative immunocytochemistry for choline acetyltransferase (ChAT) showed a significant decrease in the size and optical density of the efferent terminals 1 day after AT and a rebound at 14 days, suggesting depletion of the terminals followed by a long-term compensatory response. Such a synthesis recovery was significantly higher upon cortical stimulation. No significant correlation was found between ChAT optical density and size of the buttons in sham controls (SC) and ES/AT + 1day animals; however, significant negative correlations were shown in all other experimental conditions. Therefore, our comparative analysis suggests that cochleotopic cholinergic neurotransmission is also better preserved after multisession epidural stimulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Miguel A. Merchán
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
15
|
Jennings SG. The role of the medial olivocochlear reflex in psychophysical masking and intensity resolution in humans: a review. J Neurophysiol 2021; 125:2279-2308. [PMID: 33909513 PMCID: PMC8285664 DOI: 10.1152/jn.00672.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 02/01/2023] Open
Abstract
This review addresses the putative role of the medial olivocochlear (MOC) reflex in psychophysical masking and intensity resolution in humans. A framework for interpreting psychophysical results in terms of the expected influence of the MOC reflex is introduced. This framework is used to review the effects of a precursor or contralateral acoustic stimulation on 1) simultaneous masking of brief tones, 2) behavioral estimates of cochlear gain and frequency resolution in forward masking, 3) the buildup and decay of forward masking, and 4) measures of intensity resolution. Support, or lack thereof, for a role of the MOC reflex in psychophysical perception is discussed in terms of studies on estimates of MOC strength from otoacoustic emissions and the effects of resection of the olivocochlear bundle in patients with vestibular neurectomy. Novel, innovative approaches are needed to resolve the dissatisfying conclusion that current results are unable to definitively confirm or refute the role of the MOC reflex in masking and intensity resolution.
Collapse
Affiliation(s)
- Skyler G Jennings
- Department of Communication Sciences and Disorders, The University of Utah, Salt Lake City, Utah
| |
Collapse
|
16
|
Marcenaro B, Leiva A, Dragicevic C, López V, Delano PH. The medial olivocochlear reflex strength is modulated during a visual working memory task. J Neurophysiol 2021; 125:2309-2321. [PMID: 33978484 DOI: 10.1152/jn.00032.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Top-down modulation of sensory responses to distracting stimuli by selective attention has been proposed as an important mechanism by which our brain can maintain relevant information during working memory tasks. Previous works in visual working memory (VWM) have reported modulation of neural responses to distracting sounds at different levels of the central auditory pathways. Whether these modulations occur also at the level of the auditory receptor is unknown. Here, we hypothesize that cochlear responses to irrelevant auditory stimuli can be modulated by the medial olivocochlear system during VWM. Twenty-one subjects (13 males, mean age 25.3 yr) with normal hearing performed a visual change detection task with different VWM load conditions (high load = 4 visual objects; low load = 2 visual objects). Auditory stimuli were presented as distractors and allowed the measurement of distortion product otoacoustic emissions (DPOAEs) and scalp auditory evoked potentials. In addition, the medial olivocochlear reflex strength was evaluated by adding contralateral acoustic stimulation. We found larger contralateral acoustic suppression of DPOAEs during the visual working memory period (n = 21) compared with control experiments (n = 10), in which individuals were passively exposed to the same experimental conditions. These results show that during the visual working memory period there is a modulation of the medial olivocochlear reflex strength, suggesting a possible common mechanism for top-down filtering of auditory responses during cognitive processes.NEW & NOTEWORTHY The auditory efferent system has been proposed to function as a biological filter of cochlear responses during selective attention. Here, we recorded electroencephalographic activity and otoacoustic emissions in response to auditory distractors during a visual working memory task in humans. We found that the olivocochlear efferent activity is modulated during the visual working memory period suggesting a common mechanism for suppressing cochlear responses during selective attention and working memory.
Collapse
Affiliation(s)
- Bruno Marcenaro
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Centro Avanzado de Ingeniería Eléctrica y Electrónica, AC3E, Universidad Técnica Federico Santa María, Valparaiso, Chile.,Interdisciplinary Center of Neuroscience, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Leiva
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, BNI, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Constantino Dragicevic
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, BNI, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Vladimir López
- Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paul H Delano
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Otolaryngology Department, Hospital Clínico de la Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, BNI, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Centro Avanzado de Ingeniería Eléctrica y Electrónica, AC3E, Universidad Técnica Federico Santa María, Valparaiso, Chile
| |
Collapse
|
17
|
Köhler MHA, Demarchi G, Weisz N. Cochlear activity in silent cue-target intervals shows a theta-rhythmic pattern and is correlated to attentional alpha and theta modulations. BMC Biol 2021; 19:48. [PMID: 33726746 PMCID: PMC7968255 DOI: 10.1186/s12915-021-00992-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND A long-standing debate concerns where in the processing hierarchy of the central nervous system (CNS) selective attention takes effect. In the auditory system, cochlear processes can be influenced via direct and mediated (by the inferior colliculus) projections from the auditory cortex to the superior olivary complex (SOC). Studies illustrating attentional modulations of cochlear responses have so far been limited to sound-evoked responses. The aim of the present study is to investigate intermodal (audiovisual) selective attention in humans simultaneously at the cortical and cochlear level during a stimulus-free cue-target interval. RESULTS We found that cochlear activity in the silent cue-target intervals was modulated by a theta-rhythmic pattern (~ 6 Hz). While this pattern was present independently of attentional focus, cochlear theta activity was clearly enhanced when attending to the upcoming auditory input. On a cortical level, classical posterior alpha and beta power enhancements were found during auditory selective attention. Interestingly, participants with a stronger release of inhibition in auditory brain regions show a stronger attentional modulation of cochlear theta activity. CONCLUSIONS These results hint at a putative theta-rhythmic sampling of auditory input at the cochlear level. Furthermore, our results point to an interindividual variable engagement of efferent pathways in an attentional context that are linked to processes within and beyond processes in auditory cortical regions.
Collapse
Affiliation(s)
- Moritz Herbert Albrecht Köhler
- Centre for Cognitive Neuroscience, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.
- Department of Psychology, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria.
| | - Gianpaolo Demarchi
- Centre for Cognitive Neuroscience, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
- Department of Psychology, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| | - Nathan Weisz
- Centre for Cognitive Neuroscience, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
- Department of Psychology, University of Salzburg, Hellbrunner Straße 34, 5020, Salzburg, Austria
| |
Collapse
|
18
|
Lauer AM, Jimenez SV, Delano PH. Olivocochlear efferent effects on perception and behavior. Hear Res 2021; 419:108207. [PMID: 33674070 DOI: 10.1016/j.heares.2021.108207] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 01/13/2023]
Abstract
The role of the mammalian auditory olivocochlear efferent system in hearing has long been the subject of debate. Its ability to protect against damaging noise exposure is clear, but whether or not this is the primary function of a system that evolved in the absence of industrial noise remains controversial. Here we review the behavioral consequences of olivocochlear activation and diminished olivocochlear function. Attempts to demonstrate a role for hearing in noise have yielded conflicting results in both animal and human studies. A role in selective attention to sounds in the presence of distractors, or attention to visual stimuli in the presence of competing auditory stimuli, has been established in animal models, but again behavioral studies in humans remain equivocal. Auditory processing deficits occur in models of congenital olivocochlear dysfunction, but these deficits likely reflect abnormal central auditory development rather than direct effects of olivocochlear feedback. Additional proposed roles in age-related hearing loss, tinnitus, hyperacusis, and binaural or spatial hearing, are intriguing, but require additional study. These behavioral studies almost exclusively focus on medial olivocochlear effects, and many relied on lesioning techniques that can have unspecific effects. The consequences of lateral olivocochlear and of corticofugal pathway activation for perception remain unknown. As new tools for targeted manipulation of olivocochlear neurons emerge, there is potential for a transformation of our understanding of the role of the olivocochlear system in behavior across species.
Collapse
Affiliation(s)
- Amanda M Lauer
- David M. Rubenstein Center for Hearing Research and Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, 515 Traylor Building, 720 Rutland Ave, Baltimore, MD 21205, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States.
| | - Sergio Vicencio Jimenez
- David M. Rubenstein Center for Hearing Research and Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, 515 Traylor Building, 720 Rutland Ave, Baltimore, MD 21205, United States; Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paul H Delano
- Departments of Otolaryngology and Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile; Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Advanced Center for Electrical and Electronic Engineer, AC3E, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
19
|
Asilador A, Llano DA. Top-Down Inference in the Auditory System: Potential Roles for Corticofugal Projections. Front Neural Circuits 2021; 14:615259. [PMID: 33551756 PMCID: PMC7862336 DOI: 10.3389/fncir.2020.615259] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/17/2020] [Indexed: 01/28/2023] Open
Abstract
It has become widely accepted that humans use contextual information to infer the meaning of ambiguous acoustic signals. In speech, for example, high-level semantic, syntactic, or lexical information shape our understanding of a phoneme buried in noise. Most current theories to explain this phenomenon rely on hierarchical predictive coding models involving a set of Bayesian priors emanating from high-level brain regions (e.g., prefrontal cortex) that are used to influence processing at lower-levels of the cortical sensory hierarchy (e.g., auditory cortex). As such, virtually all proposed models to explain top-down facilitation are focused on intracortical connections, and consequently, subcortical nuclei have scarcely been discussed in this context. However, subcortical auditory nuclei receive massive, heterogeneous, and cascading descending projections at every level of the sensory hierarchy, and activation of these systems has been shown to improve speech recognition. It is not yet clear whether or how top-down modulation to resolve ambiguous sounds calls upon these corticofugal projections. Here, we review the literature on top-down modulation in the auditory system, primarily focused on humans and cortical imaging/recording methods, and attempt to relate these findings to a growing animal literature, which has primarily been focused on corticofugal projections. We argue that corticofugal pathways contain the requisite circuitry to implement predictive coding mechanisms to facilitate perception of complex sounds and that top-down modulation at early (i.e., subcortical) stages of processing complement modulation at later (i.e., cortical) stages of processing. Finally, we suggest experimental approaches for future studies on this topic.
Collapse
Affiliation(s)
- Alexander Asilador
- Neuroscience Program, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
| | - Daniel A. Llano
- Neuroscience Program, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, Urbana, IL, United States
- Molecular and Integrative Physiology, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
20
|
Auditory attentional filter in the absence of masking noise. Atten Percept Psychophys 2021; 83:1737-1751. [PMID: 33389676 DOI: 10.3758/s13414-020-02210-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
Signals containing attended frequencies are facilitated while those with unexpected frequencies are suppressed by an auditory filtering process. The neurocognitive mechanism underlying the auditory attentional filter is, however, poorly understood. The olivocochlear bundle (OCB), a brainstem neural circuit that is part of the efferent system, has been suggested to be partly responsible for the filtering via its noise-dependent antimasking effect. The current study examined the role of the OCB in attentional filtering, particularly the validity of the antimasking hypothesis, by comparing attentional filters measured in quiet and in the presence of background noise in a group of normal-hearing listeners. Filters obtained in both conditions were comparable, suggesting that the presence of background noise is not crucial for attentional filter generation. In addition, comparison of frequency-specific changes of the cue-evoked enhancement component of filters in quiet and noise also did not reveal any major contribution of background noise to the cue effect. These findings argue against the involvement of an antimasking effect in the attentional process. Instead of the antimasking effect mediated via medial olivocochlear fibers, results from current and earlier studies can be explained by frequency-specific modulation of afferent spontaneous activity by lateral olivocochlear fibers. It is proposed that the activity of these lateral fibers could be driven by top-down cortical control via a noise-independent mechanism. SIGNIFICANCE: The neural basis for auditory attentional filter remains a fundamental but poorly understood area in auditory neuroscience. The efferent olivocochlear pathway that projects from the brainstem back to the cochlea has been suggested to mediate the attentional effect via its noise-dependent antimasking effect. The current study demonstrates that the filter generation is mostly independent of the background noise, and therefore is unlikely to be mediated by the olivocochlear brainstem reflex. It is proposed that the entire cortico-olivocochlear system might instead be used to alter the hearing sensitivity during focus attention via frequency-specific modulation of afferent spontaneous activity.
Collapse
|
21
|
|
22
|
Twin study of neonatal transient-evoked otoacoustic emissions. Hear Res 2020; 398:108108. [PMID: 33212398 DOI: 10.1016/j.heares.2020.108108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023]
Abstract
Our knowledge of which physiological mechanisms shape transient evoked otoacoustic emissions (TEOAEs) is incomplete, although thousands of TEOAEs are recorded each day as part of universal newborn hearing-screening (UNHS). TEOAE heritability may explain some of the large TEOAE variability observed in neonates, and give insights into the TEOAE generators and modulators, and why TEOAEs are generally larger in females and right ears. The aim was to estimate TEOAE heritability and describe ear and sex effects in a consecutive subset of all twins that passed UNHS at the same occasion at two hospitals during a six-year period (more than 30 000 neonates screened in total). TEOAEs were studied and TEOAE level correlations compared in twin sets of same-sex (SS, 302 individual twins, 151 twin pairs) and opposite-sex (OS, 152 individual twins, 76 twin pairs). A mathematical model was used to estimate and compare monozygotic (MZ) and dizygotic (DZ) intra-twin pair TEOAE level correlations, based on the data from the SS and OS twin sets. For both SS and OS twin pairs TEOAE levels were significantly higher in right ears and females, compared to left ears and males, as previously demonstrated in young adult twins and large groups of neonates. Neonatal females in OS twin pairs did not demonstrate masculinized TEOAEs, as has been demonstrated for OAEs in young adult females in OS twin pairs. The within-twin pair TEOAE level correlations were higher for SS twin pairs than for OS twin pairs, whereas the within-pair correlation coefficients could not be distinguished from zero when twins were randomly paired. These results reflect heredity as a key factor in TEOAE level variability. Additionally, the estimated MZ within-twin pair TEOAE level correlations were higher than those for DZ twin pairs. The heritability estimates reached up to 100% TEOAE heritability, which is numerically larger than previous estimates of about 75% in young adult twins.
Collapse
|
23
|
Sisto R, Viziano A, Stefani A, Moleti A, Cerroni R, Liguori C, Garasto E, Pierantozzi M. Lateralization of cochlear dysfunction as a specific biomarker of Parkinson's disease. Brain Commun 2020; 2:fcaa144. [PMID: 33376982 PMCID: PMC7751021 DOI: 10.1093/braincomms/fcaa144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/21/2020] [Accepted: 08/03/2020] [Indexed: 11/18/2022] Open
Abstract
In the last decade, animal studies highlighted the sensitivity of hearing function to lack of specific cochlear dopamine receptors, while several studies on humans reported association between hearing loss and Parkinson's disease, partially recovered after levodopa administration in de novo patients. Taken together, these observations suggest investigating the possible use of cochlear function outcome variables, particularly, otoacoustic emissions, as sensitive biomarkers of Parkinson's disease. Any lateralization of hearing dysfunction correlated with Parkinson's disease lateralization would (i) further confirm their association and (ii) provide a disease-specific differential outcome variable. Differential indicators are particularly useful for diagnostic purposes, because their effectiveness is not limited by physiological inter-subject fluctuations of the outcome variable. Recent advances in the acquisition and analysis techniques of otoacoustic emissions suggest using them for evaluating differential cochlear damage in the two ears. In this study, we quantitatively evaluated hearing function in a population of subjects with Parkinson's disease, to investigate the occurrence of hearing loss, and, particularly, whether hearing dysfunction shows lateralization correlated with motor symptoms. Pure tone audiometry and distortion product otoacoustic emissions were used as outcome variables in 80 patients (mean age 65 ± 9 years) and 41 controls (mean age 64 ± 10 years). An advanced customized acquisition and analysis system was developed and used for otoacoustic testing, which guarantees response stability independent of probe insertion depth, and has the sensitivity necessary to accurately assess the low levels of otoacoustic response typical of elderly subjects. To our knowledge, this is the first study introducing the distinction between ipsilateral and contralateral ear, with respect to the body side more affected by Parkinson's disease motor symptoms. Significant asymmetry was found in the auditory function, as both otoacoustic responses and audiometric hearing levels were worse in the ipsilateral ear. Significantly worse hearing function was also observed in patients with Parkinson's disease compared to controls, confirming previous studies. Several pathophysiological mechanisms may be hypothesized to explain asymmetric cochlear damage in Parkinson's disease, including the impairment of dopamine release and the involvement of extra-dopaminergic circuits, with the cholinergic pathway as a likely candidate. The observed asymmetry in the audiological response of patients with Parkinson's disease suggests that lateralization of hearing dysfunction could represent a specific non-motor signature of the disease. The possible diagnostic use of cochlear dysfunction asymmetry as a specific biomarker of Parkinson's disease deserves further investigation, needing a more precise quantitative assessment, which would require a larger sample size.
Collapse
Affiliation(s)
- Renata Sisto
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, 00078 Monte Porzio Catone (Rome), Italy
| | - Andrea Viziano
- Department of Physics, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
| | - Alessandro Stefani
- Department of Systems Medicine, Parkinson’s Disease Center, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
| | - Arturo Moleti
- Department of Physics, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
| | - Rocco Cerroni
- Department of Systems Medicine, Parkinson’s Disease Center, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, Parkinson’s Disease Center, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
| | - Elena Garasto
- Department of Systems Medicine, Parkinson’s Disease Center, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
| | - Mariangela Pierantozzi
- Department of Systems Medicine, Parkinson’s Disease Center, University of Rome ‘Tor Vergata’, 00133 Rome, Italy
| |
Collapse
|
24
|
Bowen M, Terreros G, Moreno-Gómez FN, Ipinza M, Vicencio S, Robles L, Delano PH. The olivocochlear reflex strength in awake chinchillas is relevant for behavioural performance during visual selective attention with auditory distractors. Sci Rep 2020; 10:14894. [PMID: 32913207 PMCID: PMC7483726 DOI: 10.1038/s41598-020-71399-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/03/2020] [Indexed: 11/06/2022] Open
Abstract
The auditory efferent system comprises descending projections from the cerebral cortex to subcortical nuclei, reaching the cochlear receptor through olivocochlear fibres. One of the functions attributed to this corticofugal system is to suppress irrelevant sounds during selective attention to visual stimuli. Medial olivocochlear neurons can also be activated by sounds through a brainstem reflex circuit. Whether the individual variability of this reflex is related to the cognitive capacity to suppress auditory stimuli is still controversial. Here we propose that the individual strength per animal of the olivocochlear reflex is correlated with the ability to suppress auditory distractors during visual attention in awake chinchillas. The olivocochlear reflex was elicited with a contralateral broad-band noise at ~ 60 dB and ipsilateral distortion product otoacoustic emissions were obtained at different frequencies (1-8 kHz). Fourteen chinchillas were evaluated in a behavioural protocol of visual attention with broad-band noise and chinchilla vocalizations as auditory distractors. Results show that the behavioural performance was affected by both distractors and that the magnitudes of the olivocochlear reflex evaluated at multiple frequencies were relevant for behavioural performance during visual discrimination with auditory distractors. These results stress the ecological relevance of the olivocochlear system for suppressing natural distractors.
Collapse
Affiliation(s)
- Macarena Bowen
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Fonoaudiología, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gonzalo Terreros
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Felipe N Moreno-Gómez
- Laboratorio de Bioacústica y Ecología del Comportamiento Animal, Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Macarena Ipinza
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Vicencio
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Robles
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paul H Delano
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Departamento de Otorrinolaringología, Hospital Clínico de la Universidad de Chile, Santiago, Chile.
- Biomedical Neuroscience Institute, BNI. Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Centro Avanzado de Ingeniería Eléctrica y Electrónica, AC3E, Universidad Técnica Federico Santa María, Valparaíso, Chile.
| |
Collapse
|
25
|
Riecke L, Marianu IA, De Martino F. Effect of Auditory Predictability on the Human Peripheral Auditory System. Front Neurosci 2020; 14:362. [PMID: 32351361 PMCID: PMC7174672 DOI: 10.3389/fnins.2020.00362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
Auditory perception is facilitated by prior knowledge about the statistics of the acoustic environment. Predictions about upcoming auditory stimuli are processed at various stages along the human auditory pathway, including the cortex and midbrain. Whether such auditory predictions are processed also at hierarchically lower stages-in the peripheral auditory system-is unclear. To address this question, we assessed outer hair cell (OHC) activity in response to isochronous tone sequences and varied the predictability and behavioral relevance of the individual tones (by manipulating tone-to-tone probabilities and the human participants' task, respectively). We found that predictability alters the amplitude of distortion-product otoacoustic emissions (DPOAEs, a measure of OHC activity) in a manner that depends on the behavioral relevance of the tones. Simultaneously recorded cortical responses showed a significant effect of both predictability and behavioral relevance of the tones, indicating that their experimental manipulations were effective in central auditory processing stages. Our results provide evidence for a top-down effect on the processing of auditory predictability in the human peripheral auditory system, in line with previous studies showing peripheral effects of auditory attention.
Collapse
Affiliation(s)
- Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Irina-Andreea Marianu
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
26
|
Paradoxical and labile medial olivocochlear functioning as a potential marker of auditory processing disorder in a child with learning disabilities. Eur Ann Otorhinolaryngol Head Neck Dis 2020; 137:339-342. [PMID: 32247718 DOI: 10.1016/j.anorl.2020.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The medial olivocochlear system (MOCS) is composed of fibres projecting directly onto outer hair cells and plays a role in improving the signal-to-noise ratio. The MOCS can be evaluated by measuring suppression of the otoacoustic emissions evoked by contralateral acoustic stimulation. Dyslexic children present an increased probability of auditory processing disorder (APD). These children may present paradoxical MOCS dysfunction. CASE REPORT We report the case of a dyslexic child with APD, who was severely disabled in a noisy environment. Audiometric tests were normal, and the central auditory assessment showed labile MOCS functioning that was not only ineffective, but also potentially deleterious, possibly accounting for this child's hearing impairment in a noisy environment. DISCUSSION This case illustrates the importance of audiological assessment and objective investigation of MOCS function in children with a learning disability, especially with hearing difficulties in the presence of noise, in whom auditory training can be beneficial.
Collapse
|
27
|
Hartmann T, Weisz N. Auditory cortical generators of the Frequency Following Response are modulated by intermodal attention. Neuroimage 2019; 203:116185. [PMID: 31520743 DOI: 10.1016/j.neuroimage.2019.116185] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 11/20/2022] Open
Abstract
The efferent auditory system suggests that brainstem auditory regions could also be sensitive to top-down processes. In electrophysiology, the Frequency Following Response (FFR) to speech stimuli has been used extensively to study brainstem areas. Despite seemingly straight-forward in addressing the issue of attentional modulations of brainstem regions by means of the FFR, the existing results are inconsistent. Moreover, the notion that the FFR exclusively represents subcortical generators has been challenged. We aimed to gain a more differentiated perspective on how the generators of the FFR are modulated by either attending to the visual or auditory input while neural activity was recorded using magnetoencephalography (MEG). In a first step our results confirm the strong contribution of also cortical regions to the FFR. Interestingly, of all regions exhibiting a measurable FFR response, only the right primary auditory cortex was significantly affected by intermodal attention. By showing a clear cortical contribution to the attentional FFR effect, our work significantly extends previous reports that focus on surface level recordings only. It underlines the importance of making a greater effort to disentangle the different contributing sources of the FFR and serves as a clear precaution of simplistically interpreting the FFR as brainstem response.
Collapse
Affiliation(s)
- Thomas Hartmann
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron Universität Salzburg, Hellbrunnerstraße 34/II, 5020, Salzburg, Austria.
| | - Nathan Weisz
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron Universität Salzburg, Hellbrunnerstraße 34/II, 5020, Salzburg, Austria.
| |
Collapse
|
28
|
Liu X, Zhang O, Chen A, Hu K, Ehret G, Yan J. Corticofugal Augmentation of the Auditory Brainstem Response With Respect to Cortical Preference. Front Syst Neurosci 2019; 13:39. [PMID: 31496941 PMCID: PMC6713121 DOI: 10.3389/fnsys.2019.00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022] Open
Abstract
Physiological studies documented highly specific corticofugal modulations making subcortical centers focus processing on sounds that the auditory cortex (AC) has experienced to be important. Here, we show the effects of focal conditioning (FC) of the primary auditory cortex (FCAI) on auditory brainstem response (ABR) amplitudes and latencies in house mice. FCAI significantly increased ABR peak amplitudes (peaks I–V), decreased thresholds, and shortened peak latencies in responses to the frequency tuned by conditioned cortical neurons. The amounts of peak amplitude increases and latency decreases were specific for each processing level up to the auditory midbrain. The data provide new insights into possible corticofugal modulation of inner hair cell synapses and new corticofugal effects as neuronal enhancement of processing in the superior olivary complex (SOC) and lateral lemniscus (LL). Thus, our comprehensive ABR approach confirms the role of the AC as instructor of lower auditory levels and extends this role specifically to the cochlea, SOC, and LL. The whole pathway from the cochlea to the inferior colliculus appears, in a common mode, instructed in a very similar way.
Collapse
Affiliation(s)
- Xiuping Liu
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Oliver Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Amber Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kaili Hu
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Günter Ehret
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| | - Jun Yan
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
29
|
Abstract
Cholinergic efferent neurons originating in the brainstem innervate the acoustico-lateralis organs (inner ear, lateral line) of vertebrates. These release acetylcholine (ACh) to inhibit hair cells through activation of calcium-dependent potassium channels. In the mammalian cochlea, ACh shunts and suppresses outer hair cell (OHC) electromotility, reducing the essential amplification of basilar membrane motion. Consequently, medial olivocochlear neurons that inhibit OHCs reduce the sensitivity and frequency selectivity of afferent neurons driven by cochlear vibration of inner hair cells (IHCs). The cholinergic synapse on hair cells involves an unusual ionotropic ACh receptor, and a near-membrane postsynaptic cistern. Lateral olivocochlear (LOC) neurons modulate type I afferents by still-to-be-defined synaptic mechanisms. Olivocochlear neurons can be activated by a reflex arc that includes the auditory nerve and projections from the cochlear nucleus. They are also subject to modulation by higher-order central auditory interneurons. Through its actions on cochlear hair cells, afferent neurons, and higher centers, the olivocochlear system protects against age-related and noise-induced hearing loss, improves signal coding in noise under certain conditions, modulates selective attention to sensory stimuli, and influences sound localization.
Collapse
Affiliation(s)
- Paul Albert Fuchs
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2195
| | - Amanda M Lauer
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2195
| |
Collapse
|
30
|
Colmenárez-Raga AC, Díaz I, Pernia M, Pérez-González D, Delgado-García JM, Carro J, Plaza I, Merchán MA. Reversible Functional Changes Evoked by Anodal Epidural Direct Current Electrical Stimulation of the Rat Auditory Cortex. Front Neurosci 2019; 13:356. [PMID: 31031588 PMCID: PMC6473088 DOI: 10.3389/fnins.2019.00356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/28/2019] [Indexed: 12/26/2022] Open
Abstract
Rat auditory cortex was subjected to 0.1 mA anodal direct current in seven 10-min sessions on alternate days. Based on the well-known auditory cortex control of olivocochlear regulation through corticofugal projections, auditory brainstem responses (ABRs) were recorded as an indirect test of the effectiveness and reversibility of the multisession protocol of epidural stimulation. Increases of 20-30 dB ABR auditory thresholds shown after epidural stimulation reverted back to control levels 10 min after a single session. However, increases in thresholds revert 4 days after multisession stimulation. Less changes in wave amplitudes and threshold shifts were shown in ABR recorded contralaterally to the electrically stimulated side of the brain. To assess tissue effects of epidural electric stimulation on the brain cortex, well characterized functional anatomical markers of glial cells (GFAP/astrocytes and Iba1/microglial cells) and neurons (c-Fos) were analyzed in alternate serial sections by quantitative immunocytochemistry. Restricted astroglial and microglial reactivity was observed within the cytoarchitectural limits of the auditory cortex. However, interstitial GFAP overstaining was also observed in the ventricular surface and around blood vessels, thus supporting a potential global electrolytic stimulation of the brain. These results correlate with extensive changes in the distribution of c-Fos immunoreactive neurons among layers along sensory cortices after multisession stimulation. Quantitative immunocytochemical analysis supported this idea by showing a significant increase in the number of positive neurons in supragranular layers and a decrease in layer 6 with no quantitative changes detected in layer 5. Our data indicate that epidural stimulation of the auditory cortex induces a reversible decrease in hearing sensitivity due to local, restricted epidural stimulation. A global plastic response of the sensory cortices, also reported here, may be related to electrolytic effects of electric currents.
Collapse
Affiliation(s)
| | - Iván Díaz
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - Marianny Pernia
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - David Pérez-González
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | | | - Juan Carro
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - Ignacio Plaza
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - Miguel A. Merchán
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| |
Collapse
|
31
|
Liu X, Zhang O, Qi J, Chen A, Hu K, Yan J. The onset and post-onset auditory responses of cochlear nucleus neurons are modulated differently by cortical activation. Hear Res 2019; 373:96-102. [DOI: 10.1016/j.heares.2018.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 01/14/2023]
|
32
|
Dragicevic CD, Marcenaro B, Navarrete M, Robles L, Delano PH. Oscillatory infrasonic modulation of the cochlear amplifier by selective attention. PLoS One 2019; 14:e0208939. [PMID: 30615632 PMCID: PMC6322828 DOI: 10.1371/journal.pone.0208939] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/26/2018] [Indexed: 11/18/2022] Open
Abstract
Evidence shows that selective attention to visual stimuli modulates the gain of cochlear responses, probably through auditory-cortex descending pathways. At the cerebral cortex level, amplitude and phase changes of neural oscillations have been proposed as a correlate of selective attention. However, whether sensory receptors are also influenced by the oscillatory network during attention tasks remains unknown. Here, we searched for oscillatory attention-related activity at the cochlear receptor level in humans. We used an alternating visual/auditory selective attention task and measured electroencephalographic activity simultaneously to distortion product otoacoustic emissions (a measure of cochlear receptor-cell activity). In order to search for cochlear oscillatory activity, the otoacoustic emission signal, was included as an additional channel in the electroencephalogram analyses. This method allowed us to evaluate dynamic changes in cochlear oscillations within the same range of frequencies (1–35 Hz) in which cognitive effects are commonly observed in electroencephalogram works. We found the presence of low frequency (<10 Hz) brain and cochlear amplifier oscillations during selective attention to visual and auditory stimuli. Notably, switching between auditory and visual attention modulates the amplitude and the temporal order of brain and inner ear oscillations. These results extend the role of the oscillatory activity network during cognition in neural systems to the receptor level.
Collapse
Affiliation(s)
| | - Bruno Marcenaro
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marcela Navarrete
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Robles
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paul H. Delano
- Neuroscience Department, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Otolaryngology Department, Clinical Hospital, Universidad de Chile, Santiago, Chile
- Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
33
|
Central Compensation in Auditory Brainstem after Damaging Noise Exposure. eNeuro 2018; 5:eN-CFN-0250-18. [PMID: 30123822 PMCID: PMC6096756 DOI: 10.1523/eneuro.0250-18.2018] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Noise exposure is one of the most common causes of hearing loss and peripheral damage to the auditory system. A growing literature suggests that the auditory system can compensate for peripheral loss through increased central neural activity. The current study sought to investigate the link between noise exposure, increases in central gain, synaptic reorganization, and auditory function. All axons of the auditory nerve project to the cochlear nucleus, making it a requisite nucleus for sound detection. As the first synapse in the central auditory system, the cochlear nucleus is well positioned to respond plastically to loss of peripheral input. To investigate noise-induced compensation in the central auditory system, we measured auditory brainstem responses (ABRs) and auditory perception and collected tissue from mice exposed to broadband noise. Noise-exposed mice showed elevated ABR thresholds, reduced ABR wave 1 amplitudes, and spiral ganglion neuron loss. Despite peripheral damage, noise-exposed mice were hyperreactive to loud sounds and showed nearly normal behavioral sound detection thresholds. Ratios of late ABR peaks (2–4) relative to the first ABR peak indicated that brainstem pathways were hyperactive in noise-exposed mice, while anatomical analysis indicated there was an imbalance between expression of excitatory and inhibitory proteins in the ventral cochlear nucleus. The results of the current study suggest that a reorganization of excitation and inhibition in the ventral cochlear nucleus may drive hyperactivity in the central auditory system. This increase in central gain can compensate for peripheral loss to restore some aspects of auditory function.
Collapse
|
34
|
Carney LH. Supra-Threshold Hearing and Fluctuation Profiles: Implications for Sensorineural and Hidden Hearing Loss. J Assoc Res Otolaryngol 2018; 19:331-352. [PMID: 29744729 PMCID: PMC6081887 DOI: 10.1007/s10162-018-0669-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/19/2018] [Indexed: 12/22/2022] Open
Abstract
An important topic in contemporary auditory science is supra-threshold hearing. Difficulty hearing at conversational speech levels in background noise has long been recognized as a problem of sensorineural hearing loss, including that associated with aging (presbyacusis). Such difficulty in listeners with normal thresholds has received more attention recently, especially associated with descriptions of synaptopathy, the loss of auditory nerve (AN) fibers as a result of noise exposure or aging. Synaptopathy has been reported to cause a disproportionate loss of low- and medium-spontaneous rate (L/MSR) AN fibers. Several studies of synaptopathy have assumed that the wide dynamic ranges of L/MSR AN fiber rates are critical for coding supra-threshold sounds. First, this review will present data from the literature that argues against a direct role for average discharge rates of L/MSR AN fibers in coding sounds at moderate to high sound levels. Second, the encoding of sounds at supra-threshold levels is examined. A key assumption in many studies is that saturation of AN fiber discharge rates limits neural encoding, even though the majority of AN fibers, high-spontaneous rate (HSR) fibers, have saturated average rates at conversational sound levels. It is argued here that the cross-frequency profile of low-frequency neural fluctuation amplitudes, not average rates, encodes complex sounds. As described below, this fluctuation-profile coding mechanism benefits from both saturation of inner hair cell (IHC) transduction and average rate saturation associated with the IHC-AN synapse. Third, the role of the auditory efferent system, which receives inputs from L/MSR fibers, is revisited in the context of fluctuation-profile coding. The auditory efferent system is hypothesized to maintain and enhance neural fluctuation profiles. Lastly, central mechanisms sensitive to neural fluctuations are reviewed. Low-frequency fluctuations in AN responses are accentuated by cochlear nucleus neurons which, either directly or via other brainstem nuclei, relay fluctuation profiles to the inferior colliculus (IC). IC neurons are sensitive to the frequency and amplitude of low-frequency fluctuations and convert fluctuation profiles from the periphery into a phase-locked rate profile that is robust across a wide range of sound levels and in background noise. The descending projection from the midbrain (IC) to the efferent system completes a functional loop that, combined with inputs from the L/MSR pathway, is hypothesized to maintain "sharp" supra-threshold hearing, reminiscent of visual mechanisms that regulate optical accommodation. Examples from speech coding and detection in noise are reviewed. Implications for the effects of synaptopathy on control mechanisms hypothesized to influence supra-threshold hearing are discussed. This framework for understanding neural coding and control mechanisms for supra-threshold hearing suggests strategies for the design of novel hearing aid signal-processing and electrical stimulation patterns for cochlear implants.
Collapse
Affiliation(s)
- Laurel H Carney
- Departments of Biomedical Engineering, Neuroscience, and Electrical & Computer Engineering, Del Monte Institute for Neuroscience, University of Rochester, 601 Elmwood Ave., Box 603, Rochester, NY, 14642, USA.
| |
Collapse
|
35
|
Lopez-Poveda EA. Olivocochlear Efferents in Animals and Humans: From Anatomy to Clinical Relevance. Front Neurol 2018; 9:197. [PMID: 29632514 PMCID: PMC5879449 DOI: 10.3389/fneur.2018.00197] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/13/2018] [Indexed: 11/13/2022] Open
Abstract
Olivocochlear efferents allow the central auditory system to adjust the functioning of the inner ear during active and passive listening. While many aspects of efferent anatomy, physiology and function are well established, others remain controversial. This article reviews the current knowledge on olivocochlear efferents, with emphasis on human medial efferents. The review covers (1) the anatomy and physiology of olivocochlear efferents in animals; (2) the methods used for investigating this auditory feedback system in humans, their limitations and best practices; (3) the characteristics of medial-olivocochlear efferents in humans, with a critical analysis of some discrepancies across human studies and between animal and human studies; (4) the possible roles of olivocochlear efferents in hearing, discussing the evidence in favor and against their role in facilitating the detection of signals in noise and in protecting the auditory system from excessive acoustic stimulation; and (5) the emerging association between abnormal olivocochlear efferent function and several health conditions. Finally, we summarize some open issues and introduce promising approaches for investigating the roles of efferents in human hearing using cochlear implants.
Collapse
Affiliation(s)
- Enrique A Lopez-Poveda
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.,Departamento de Cirugía, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
36
|
Olivocochlear efferents: Their action, effects, measurement and uses, and the impact of the new conception of cochlear mechanical responses. Hear Res 2017; 362:38-47. [PMID: 29291948 DOI: 10.1016/j.heares.2017.12.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/08/2017] [Accepted: 12/12/2017] [Indexed: 12/27/2022]
Abstract
The anatomy and physiology of olivocochlear (OC) efferents are reviewed. To help interpret these, recent advances in cochlear mechanics are also reviewed. Lateral OC (LOC) efferents innervate primary auditory-nerve (AN) fiber dendrites. The most important LOC function may be to reduce auditory neuropathy. Medial OC (MOC) efferents innervate the outer hair cells (OHCs) and act to turn down the gain of cochlear amplification. Cochlear amplification had been thought to act only through basilar membrane (BM) motion, but recent reports show that motion near the reticular lamina (RL) is amplified more than BM motion, and that RL-motion amplification extends to several octaves below the local characteristic frequency. Data on efferent effects on AN-fiber responses, otoacoustic emissions (OAEs) and human psychophysics are reviewed and reinterpreted in the light of the new cochlear-mechanical data. The possible origin of OAEs in RL motion is considered. MOC-effect measuring methods and MOC-induced changes in human responses are also reviewed, including that ipsilateral and contralateral sound can produce MOC effects with different patterns across frequency. MOC efferents help to reduce damage due to acoustic trauma. Many, but not all, reports show that subjects with stronger contralaterally-evoked MOC effects have better ability to detect signals (e.g. speech) in noise, and that MOC effects can be modulated by attention.
Collapse
|
37
|
Jorratt P, Delano PH, Delgado C, Dagnino-Subiabre A, Terreros G. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice. Front Cell Neurosci 2017; 11:357. [PMID: 29163062 PMCID: PMC5676050 DOI: 10.3389/fncel.2017.00357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/27/2017] [Indexed: 12/14/2022] Open
Abstract
The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC) neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs) through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR) is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO) mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT) mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.
Collapse
Affiliation(s)
- Pascal Jorratt
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paul H Delano
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Otorrinolaringología, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Carolina Delgado
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento Neurología y Neurocirugía, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Alexies Dagnino-Subiabre
- Laboratorio de Neurobiología del Stress, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Gonzalo Terreros
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| |
Collapse
|
38
|
Lamas V, Estévez S, Pernía M, Plaza I, Merchán MA. Stereotactically-guided Ablation of the Rat Auditory Cortex, and Localization of the Lesion in the Brain. J Vis Exp 2017. [PMID: 29053697 PMCID: PMC5752406 DOI: 10.3791/56429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The rat auditory cortex (AC) is becoming popular among auditory neuroscience investigators who are interested in experience-dependence plasticity, auditory perceptual processes, and cortical control of sound processing in the subcortical auditory nuclei. To address new challenges, a procedure to accurately locate and surgically expose the auditory cortex would expedite this research effort. Stereotactic neurosurgery is routinely used in pre-clinical research in animal models to engraft a needle or electrode at a pre-defined location within the auditory cortex. In the following protocol, we use stereotactic methods in a novel way. We identify four coordinate points over the surface of the temporal bone of the rat to define a window that, once opened, accurately exposes both the primary (A1) and secondary (Dorsal and Ventral) cortices of the AC. Using this method, we then perform a surgical ablation of the AC. After such a manipulation is performed, it is necessary to assess the localization, size, and extension of the lesions made in the cortex. Thus, we also describe a method to easily locate the AC ablation postmortem using a coordinate map constructed by transferring the cytoarchitectural limits of the AC to the surface of the brain.The combination of the stereotactically-guided location and ablation of the AC with the localization of the injured area in a coordinate map postmortem facilitates the validation of information obtained from the animal, and leads to a better analysis and comprehension of the data.
Collapse
Affiliation(s)
- Verónica Lamas
- Institute of Neuroscience of Castilla y León, University of Salamanca; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Department of Otolaryngology, Harvard Medical School;
| | - Sheila Estévez
- Institute of Neuroscience of Castilla y León, University of Salamanca
| | - Marianni Pernía
- Institute of Neuroscience of Castilla y León, University of Salamanca
| | - Ignacio Plaza
- Institute of Neuroscience of Castilla y León, University of Salamanca
| | - Miguel A Merchán
- Institute of Neuroscience of Castilla y León, University of Salamanca
| |
Collapse
|
39
|
Selective Attention to Visual Stimuli Using Auditory Distractors Is Altered in Alpha-9 Nicotinic Receptor Subunit Knock-Out Mice. J Neurosci 2017; 36:7198-209. [PMID: 27383594 DOI: 10.1523/jneurosci.4031-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/26/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED During selective attention, subjects voluntarily focus their cognitive resources on a specific stimulus while ignoring others. Top-down filtering of peripheral sensory responses by higher structures of the brain has been proposed as one of the mechanisms responsible for selective attention. A prerequisite to accomplish top-down modulation of the activity of peripheral structures is the presence of corticofugal pathways. The mammalian auditory efferent system is a unique neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear bundle, and it has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear neurons in selective attention paradigms. Here, we trained wild-type and α-9 nicotinic receptor subunit knock-out (KO) mice, which lack cholinergic transmission between medial olivocochlear neurons and outer hair cells, in a two-choice visual discrimination task and studied the behavioral consequences of adding different types of auditory distractors. In addition, we evaluated the effects of contralateral noise on auditory nerve responses as a measure of the individual strength of the olivocochlear reflex. We demonstrate that KO mice have a reduced olivocochlear reflex strength and perform poorly in a visual selective attention paradigm. These results confirm that an intact medial olivocochlear transmission aids in ignoring auditory distraction during selective attention to visual stimuli. SIGNIFICANCE STATEMENT The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear system. It has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear neurons in selective attention paradigms. Here, we studied the behavioral consequences of adding different types of auditory distractors in a visual selective attention task in wild-type and α-9 nicotinic receptor knock-out (KO) mice. We demonstrate that KO mice perform poorly in the selective attention paradigm and that an intact medial olivocochlear transmission aids in ignoring auditory distractors during attention.
Collapse
|
40
|
Intracortical microstimulation differentially activates cortical layers based on stimulation depth. Brain Stimul 2017; 10:684-694. [DOI: 10.1016/j.brs.2017.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/23/2017] [Accepted: 02/24/2017] [Indexed: 12/22/2022] Open
|
41
|
Medial olivocochlear function in children with poor speech-in-noise performance and language disorder. Int J Pediatr Otorhinolaryngol 2017; 96:116-121. [PMID: 28390599 DOI: 10.1016/j.ijporl.2017.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Contralateral masking of transient-evoked otoacoustic emissions is a phenomenon that suggests an inhibitory effect of the olivocochlear efferent auditory pathway. Many studies have been inconclusive in demonstrating a clear connection between this system and a behavioral speech-in-noise listening skill. The purpose of this study was to investigate the activation of a medial olivocochlear (MOC) efferent in children with poor speech-in-noise (PSIN) performance and children with language impairment and PSIN (SLI + PSIN). METHODS Transient evoked otoacoustic emissions (TEOAEs) with and without contralateral white noise were tested in 52 children (between 6 and 12 years). These children were arranged in three groups: typical development (TD) (n = 25), PSIN (n = 14) and SLI + PSI (n = 13). RESULTS PSIN and SLI + PSI groups presented reduced otoacoustic emission suppression in comparison with the TD group. CONCLUSION Our finding suggests differences in MOC function among children with typical development and children with poor SIN and language problems.
Collapse
|
42
|
Maruthy S, Kumar UA, Gnanateja GN. Functional Interplay Between the Putative Measures of Rostral and Caudal Efferent Regulation of Speech Perception in Noise. J Assoc Res Otolaryngol 2017; 18:635-648. [PMID: 28447225 DOI: 10.1007/s10162-017-0623-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 03/22/2017] [Indexed: 01/23/2023] Open
Abstract
Efferent modulation has been demonstrated to be very important for speech perception, especially in the presence of noise. We examined the functional relationship between two efferent systems: the rostral and caudal efferent pathways and their individual influences on speech perception in noise. Earlier studies have shown that these two efferent mechanisms were correlated with speech perception in noise. However, previously, these mechanisms were studied in isolation, and their functional relationship with each other was not investigated. We used a correlational design to study the relationship if any, between these two mechanisms in young and old normal hearing individuals. We recorded context-dependent brainstem encoding as an index of rostral efferent function and contralateral suppression of otoacoustic emissions as an index of caudal efferent function in groups with good and poor speech perception in noise. These efferent mechanisms were analysed for their relationship with each other and with speech perception in noise. We found that the two efferent mechanisms did not show any functional relationship. Interestingly, both the efferent mechanisms correlated with speech perception in noise and they even emerged as significant predictors. Based on the data, we posit that the two efferent mechanisms function relatively independently but with a common goal of fine-tuning the afferent input and refining auditory perception in degraded listening conditions.
Collapse
Affiliation(s)
- Sandeep Maruthy
- Electrophysiology Laboratory, Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysore, Karnataka, IN-570006, India
| | - U Ajith Kumar
- Electrophysiology Laboratory, Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysore, Karnataka, IN-570006, India
| | - G Nike Gnanateja
- Electrophysiology Laboratory, Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysore, Karnataka, IN-570006, India.
| |
Collapse
|
43
|
Ablation of the auditory cortex results in changes in the expression of neurotransmission-related mRNAs in the cochlea. Hear Res 2017; 346:71-80. [PMID: 28216123 DOI: 10.1016/j.heares.2017.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 01/02/2023]
Abstract
The auditory cortex (AC) dynamically regulates responses of the Organ of Corti to sound through descending connections to both the medial (MOC) and lateral (LOC) olivocochlear efferent systems. We have recently provided evidence that AC has a reinforcement role in the responses to sound of the auditory brainstem nuclei. In a molecular level, we have shown that descending inputs from AC are needed to regulate the expression of molecules involved in outer hair cell (OHC) electromotility control, such as prestin and the α10 nicotinic acetylcholine receptor (nAchR). In this report, we show that descending connections from AC to olivocochlear neurons are necessary to regulate the expression of molecules involved in cochlear afferent signaling. RT-qPCR was performed in rats at 1, 7 and 15 days after unilateral ablation of the AC, and analyzed the time course changes in gene transcripts involved in neurotransmission at the first auditory synapse. This included the glutamate metabolism enzyme glutamate decarboxylase 1 (glud1) and AMPA glutamate receptor subunits GluA2-4. In addition, gene transcripts involved in efferent regulation of type I spiral ganglion neuron (SGN) excitability mediated by LOC, such as the α7 nAchR, the D2 dopamine receptor, and the α1, and γ2 GABAA receptor subunits, were also investigated. Unilateral AC ablation induced up-regulation of GluA3 receptor subunit transcripts, whereas both GluA2 and GluA4 mRNA receptors were down-regulated already at 1 day after the ablation. Unilateral removal of the AC also resulted in up-regulation of the transcripts for α7 nAchR subunit, D2 dopamine receptor, and α1 GABAA receptor subunit at 1 day after the ablation. Fifteen days after the injury, AC ablations induced an up-regulation of glud1 transcripts.
Collapse
|
44
|
Suthakar K, Ryugo DK. Descending projections from the inferior colliculus to medial olivocochlear efferents: Mice with normal hearing, early onset hearing loss, and congenital deafness. Hear Res 2017; 343:34-49. [DOI: 10.1016/j.heares.2016.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/20/2016] [Accepted: 06/24/2016] [Indexed: 11/24/2022]
|
45
|
Saldaña E. All the way from the cortex: a review of auditory corticosubcollicular pathways. THE CEREBELLUM 2016; 14:584-96. [PMID: 26142291 DOI: 10.1007/s12311-015-0694-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enrico Mugnaini has devoted part of his long and fruitful neuroscientific career to investigating the structural similarities between the cerebellar cortex and one of the first relay stations of the mammalian auditory pathway: the dorsal cochlear nucleus. The hypothesis of the cerebellar-like nature of the superficial layers of the dorsal cochlear nucleus received definitive support with the discovery and extensive characterization in his laboratory of unipolar brush cells, a neuron type unique to certain regions of the cerebellar cortex and to the granule cell domains of the cochlear nuclei. Paradoxically, a different line of research carried out in his laboratory revealed that, unlike the mammalian cerebellar cortex, the dorsal cochlear nucleus receives direct projections from the cerebral cortex, a fact that constitutes one of the main differences between the cerebellum and the dorsal cochlear nucleus. In an article published in 1995, Mugnaini's group described in detail the novel direct projections from the rat auditory neocortex to various subcollicular auditory centers, including the nucleus sagulum, the paralemniscal regions, the superior olivary complex, and the cochlear nuclei (Feliciano et al., Auditory Neuroscience 1995; 1:287-308). This review gives Enrico Mugnaini credit for his seminal contribution to the knowledge of auditory corticosubcollicular projections and summarizes how this growing field has evolved in the last 20 years.
Collapse
Affiliation(s)
- Enrique Saldaña
- Neurohistology Laboratory, Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, 37007, Salamanca, Spain. .,Department of Cell Biology and Pathology, Medical School, University of Salamanca, 37007, Salamanca, Spain. .,Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
46
|
Aedo C, Terreros G, León A, Delano PH. The Corticofugal Effects of Auditory Cortex Microstimulation on Auditory Nerve and Superior Olivary Complex Responses Are Mediated via Alpha-9 Nicotinic Receptor Subunit. PLoS One 2016; 11:e0155991. [PMID: 27195498 PMCID: PMC4873184 DOI: 10.1371/journal.pone.0155991] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023] Open
Abstract
Background and Objective The auditory efferent system is a complex network of descending pathways, which mainly originate in the primary auditory cortex and are directed to several auditory subcortical nuclei. These descending pathways are connected to olivocochlear neurons, which in turn make synapses with auditory nerve neurons and outer hair cells (OHC) of the cochlea. The olivocochlear function can be studied using contralateral acoustic stimulation, which suppresses auditory nerve and cochlear responses. In the present work, we tested the proposal that the corticofugal effects that modulate the strength of the olivocochlear reflex on auditory nerve responses are produced through cholinergic synapses between medial olivocochlear (MOC) neurons and OHCs via alpha-9/10 nicotinic receptors. Methods We used wild type (WT) and alpha-9 nicotinic receptor knock-out (KO) mice, which lack cholinergic transmission between MOC neurons and OHC, to record auditory cortex evoked potentials and to evaluate the consequences of auditory cortex electrical microstimulation in the effects produced by contralateral acoustic stimulation on auditory brainstem responses (ABR). Results Auditory cortex evoked potentials at 15 kHz were similar in WT and KO mice. We found that auditory cortex microstimulation produces an enhancement of contralateral noise suppression of ABR waves I and III in WT mice but not in KO mice. On the other hand, corticofugal modulations of wave V amplitudes were significant in both genotypes. Conclusion These findings show that the corticofugal modulation of contralateral acoustic suppressions of auditory nerve (ABR wave I) and superior olivary complex (ABR wave III) responses are mediated through MOC synapses.
Collapse
Affiliation(s)
- Cristian Aedo
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gonzalo Terreros
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alex León
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paul H Delano
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Otorrinolaringología, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| |
Collapse
|
47
|
Ubiali T, Sanfins MD, Borges LR, Colella-Santos MF. Contralateral Noise Stimulation Delays P300 Latency in School-Aged Children. PLoS One 2016; 11:e0148360. [PMID: 26849224 PMCID: PMC4744065 DOI: 10.1371/journal.pone.0148360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 01/19/2016] [Indexed: 11/18/2022] Open
Abstract
Background and Objective The auditory cortex modulates auditory afferents through the olivocochlear system, which innervates the outer hair cells and the afferent neurons under the inner hair cells in the cochlea. Most of the studies that investigated the efferent activity in humans focused on evaluating the suppression of the otoacoustic emissions by stimulating the contralateral ear with noise, which assesses the activation of the medial olivocochlear bundle. The neurophysiology and the mechanisms involving efferent activity on higher regions of the auditory pathway, however, are still unknown. Also, the lack of studies investigating the effects of noise on human auditory cortex, especially in peadiatric population, points to the need for recording the late auditory potentials in noise conditions. Assessing the auditory efferents in schoolaged children is highly important due to some of its attributed functions such as selective attention and signal detection in noise, which are important abilities related to the development of language and academic skills. For this reason, the aim of the present study was to evaluate the effects of noise on P300 responses of children with normal hearing. Methods P300 was recorded in 27 children aged from 8 to 14 years with normal hearing in two conditions: with and whitout contralateral white noise stimulation. Results P300 latencies were significantly longer at the presence of contralateral noise. No significant changes were observed for the amplitude values. Conclusion Contralateral white noise stimulation delayed P300 latency in a group of school-aged children with normal hearing. These results suggest a possible influence of the medial olivocochlear activation on P300 responses under noise condition.
Collapse
Affiliation(s)
- Thalita Ubiali
- Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
- * E-mail:
| | | | - Leticia Reis Borges
- Faculty of Medical Sciences, State University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
48
|
Jäger K, Kössl M. Corticofugal Modulation of DPOAEs in Gerbils. Hear Res 2015; 332:61-72. [PMID: 26619750 DOI: 10.1016/j.heares.2015.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/20/2015] [Accepted: 11/09/2015] [Indexed: 01/13/2023]
Abstract
Efferent auditory feedback on cochlear hair cells is well studied regarding olivocochlear brainstem mechanisms. Less is known about how the descending corticofugal system may shape efferent feedback and modulate cochlear mechanics. Distortion-product otoacoustic emissions (DPOAEs) are a suitable tool to assess outer hair cell function, as they are by-products of the nonlinear cochlear amplification process. The present project investigates the effects of cortical activity on cubic and quadratic DPOAEs in mongolian gerbils, Meriones unguiculatus, through cortical deactivation using the sodium-channel blocker lidocaine. Contralateral cortical microinjections of lidocaine can lead to either an increase or decrease of median DPOAE levels of up to 10.95 dB. The effects are reversible and comparable at all tested frequencies (0.5-40 kHz). They are not restricted to the preferred frequency of the cortical site of injection. Recovery times are between 20 and 120 min depending on stimulation levels and emission type. When the injection is performed in the ipsilateral hemisphere, DPOAE level shifts are lower in amplitude compared to those after injection in the contralateral hemisphere. No significant changes in DPOAE levels are obtained after saline microinjections. Results indicate that deactivation of auditory cortex activity through lidocaine has a considerable impact on peripheral auditory responses in form of DPOAEs, probably through cortico-olivocochlear pathways.
Collapse
Affiliation(s)
- K Jäger
- Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue Str. 13, 60438 Frankfurt, Germany.
| | - M Kössl
- Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue Str. 13, 60438 Frankfurt, Germany.
| |
Collapse
|
49
|
Terreros G, Delano PH. Corticofugal modulation of peripheral auditory responses. Front Syst Neurosci 2015; 9:134. [PMID: 26483647 PMCID: PMC4588004 DOI: 10.3389/fnsys.2015.00134] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/15/2015] [Indexed: 01/17/2023] Open
Abstract
The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body (MGB), inferior colliculus (IC), cochlear nucleus (CN) and superior olivary complex (SOC) reaching the cochlea through olivocochlear (OC) fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i) colliculo-thalamic-cortico-collicular; (ii) cortico-(collicular)-OC; and (iii) cortico-(collicular)-CN pathways. Recent experiments demonstrate that blocking ongoing auditory-cortex activity with pharmacological and physical methods modulates the amplitude of cochlear potentials. In addition, auditory-cortex microstimulation independently modulates cochlear sensitivity and the strength of the OC reflex. In this mini-review, anatomical and physiological evidence supporting the presence of a functional efferent network from the auditory cortex to the cochlear receptor is presented. Special emphasis is given to the corticofugal effects on initial auditory processing, that is, on CN, auditory nerve and cochlear responses. A working model of three parallel pathways from the auditory cortex to the cochlea and auditory nerve is proposed.
Collapse
Affiliation(s)
- Gonzalo Terreros
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile Santiago, Chile
| | - Paul H Delano
- Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile Santiago, Chile ; Departamento de Otorrinolaringología, Hospital Clínico de la Universidad de Chile Santiago, Chile
| |
Collapse
|
50
|
Boothalingam S, Allan C, Allen P, Purcell D. Cochlear Delay and Medial Olivocochlear Functioning in Children with Suspected Auditory Processing Disorder. PLoS One 2015; 10:e0136906. [PMID: 26317850 PMCID: PMC4552631 DOI: 10.1371/journal.pone.0136906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/09/2015] [Indexed: 11/18/2022] Open
Abstract
Behavioral manifestations of processing deficits associated with auditory processing disorder (APD) have been well documented. However, little is known about their anatomical underpinnings, especially cochlear processing. Cochlear delays, a proxy for cochlear tuning, measured using stimulus frequency otoacoustic emission (SFOAE) group delay, and the influence of the medial olivocochlear (MOC) system activation at the auditory periphery was studied in 23 children suspected with APD (sAPD) and 22 typically developing (TD) children. Results suggest that children suspected with APD have longer SFOAE group delays (possibly due to sharper cochlear tuning) and reduced MOC function compared to TD children. Other differences between the groups include correlation between MOC function and SFOAE delay in quiet in the TD group, and lack thereof in the sAPD group. MOC-mediated changes in SFOAE delay were in opposite directions between groups: increase in delay in TD vs. reduction in delay in the sAPD group. Longer SFOAE group delays in the sAPD group may lead to longer cochlear filter ringing, and potential increase in forward masking. These results indicate differences in cochlear and MOC function between sAPD and TD groups. Further studies are warranted to explore the possibility of cochlea as a potential site for processing deficits in APD.
Collapse
Affiliation(s)
- Sriram Boothalingam
- National Center for Audiology, Western University, London, ON, Canada
- * E-mail:
| | - Chris Allan
- National Center for Audiology, Western University, London, ON, Canada
| | - Prudence Allen
- National Center for Audiology, Western University, London, ON, Canada
- School of Communication Sciences and Disorders, Western University, London, ON, Canada
| | - David Purcell
- National Center for Audiology, Western University, London, ON, Canada
- School of Communication Sciences and Disorders, Western University, London, ON, Canada
| |
Collapse
|