1
|
Van de Wiele C, Ustmert S, De Spiegeleer B, De Jonghe PJ, Sathekge M, Alex M. Apoptosis Imaging in Oncology by Means of Positron Emission Tomography: A Review. Int J Mol Sci 2021; 22:ijms22052753. [PMID: 33803180 PMCID: PMC7963162 DOI: 10.3390/ijms22052753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/02/2022] Open
Abstract
To date, a wide variety of potential PET-apoptosis imaging radiopharmaceuticals targeting apoptosis-induced cell membrane asymmetry and acidification, as well as caspase 3 activation (substrates and inhibitors) have been developed with the purpose of rapidly assessing the response to treatment in cancer patients. Many of these probes were shown to specifically bind to their apoptotic target in vitro and their uptake to be enhanced in the in vivo-xenografted tumours in mice treated by means of chemotherapy, however, to a significantly variable degree. This may, in part, relate to the tumour model used given the fact that different tumour cell lines bear a different sensitivity to a similar chemotherapeutic agent, to differences in the chemotherapeutic concentration and exposure time, as well as to the different timing of imaging performed post-treatment. The best validated cell membrane acidification and caspase 3 targeting radioligands, respectively 18F-ML-10 from the Aposense family and the radiolabelled caspase 3 substrate 18F-CP18, have also been injected in healthy individuals and shown to bear favourable dosimetric and safety characteristics. However, in contrast to, for instance, the 99mTc-HYNIC-Annexin V, neither of both tracers was taken up to a significant degree by the bone marrow in the healthy individuals under study. Removal of white and red blood cells from the bone marrow through apoptosis plays a major role in the maintenance of hematopoietic cell homeostasis. The major apoptotic population in normal bone marrow are immature erythroblasts. While an accurate estimate of the number of immature erythroblasts undergoing apoptosis is not feasible due to their unknown clearance rate, their number is likely substantial given the ineffective quote of the erythropoietic process described in healthy subjects. Thus, the clinical value of both 18F-ML-10 and 18F-CP18 for apoptosis imaging in cancer patients, as suggested by a small number of subsequent clinical phase I/II trials in patients suffering from primary or secondary brain malignancies using 18F-ML-10 and in an ongoing trial in patients suffering from cancer of the ovaries using 18F-CP18, remains to be proven and warrants further investigation.
Collapse
Affiliation(s)
- Christophe Van de Wiele
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
- Department of Diagnostic Sciences, University Ghent, 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-5663-4120
| | - Sezgin Ustmert
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
| | - Bart De Spiegeleer
- Department of Analytical Chemistry, DRUQUAR, University Ghent, 9000 Ghent, Belgium;
| | - Pieter-Jan De Jonghe
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0084, South Africa;
| | - Maes Alex
- Department of Nuclear Medicine AZ Groeninge, 8500 Kortrijk, Belgium; (S.U.); (P.-J.D.J.); (M.A.)
- Department of Morphology and Imaging, University Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Kumar N, Roopa, Bhalla V, Kumar M. Beyond zinc coordination: Bioimaging applications of Zn(II)-complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Bruce JI, O’Connell PJ, Taylor PG, Smith DP, Adkin RC, Pearson VK. Synthesis of Organosilicon Ligands for Europium (III) and Gadolinium (III) as Potential Imaging Agents. Molecules 2020; 25:molecules25184253. [PMID: 32947960 PMCID: PMC7570700 DOI: 10.3390/molecules25184253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Abstract
The relaxivity of MRI contrast agents can be increased by increasing the size of the contrast agent and by increasing concentration of the bound gadolinium. Large multi-site ligands able to coordinate several metal centres show increased relaxivity as a result. In this paper, an “aza-type Michael” reaction is used to prepare cyclen derivatives that can be attached to organosilicon frameworks via hydrosilylation reactions. A range of organosilicon frameworks were tested including silsesquioxane cages and dimethylsilylbenzene derivatives. Michael donors with strong electron withdrawing groups could be used to alkylate cyclen on three amine centres in a single step. Hydrosilylation successfully attached these to mono-, di-, and tri-dimethylsilyl-substituted benzene derivatives. The europium and gadolinium complexes were formed and studied using luminescence spectroscopy and relaxometry. This showed the complexes to contain two bound water moles per lanthanide centre and T1 relaxation time measurements demonstrated an increase in relaxivity had been achieved, in particular for the trisubstituted scaffold 1,3,5-tris((pentane-sDO3A)dimethylsilyl)benzene-Gd3. This showed a marked increase in the relaxivity (13.1 r1p/mM−1s−1).
Collapse
Affiliation(s)
- James I. Bruce
- School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK; (P.J.O.); (P.G.T.); (D.P.T.S.)
- Correspondence:
| | - Patrick J. O’Connell
- School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK; (P.J.O.); (P.G.T.); (D.P.T.S.)
| | - Peter G. Taylor
- School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK; (P.J.O.); (P.G.T.); (D.P.T.S.)
| | - David P.T. Smith
- School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK; (P.J.O.); (P.G.T.); (D.P.T.S.)
| | - Roy C. Adkin
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK; (R.C.A.); (V.K.P.)
| | - Victoria K. Pearson
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK; (R.C.A.); (V.K.P.)
| |
Collapse
|
4
|
Abstract
One major characteristic of programmed cell death (apoptosis) results in the increased expression of phosphatidylserine (PS) on the outer membrane of dying cells. Consequently, PS represents an excellent target for non-invasive imaging of apoptosis by single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Annexin V is a 36 kDa protein which binds with high affinity to PS in the presence of Ca2+ ions. This makes radiolabeled annexins valuable apoptosis imaging agents for clinical and biomedical research applications for monitoring apoptosis in vivo. However, the use of radiolabeled annexin V for in vivo imaging of cell death has been met with a variety of challenges which have prevented its translation into the clinic. These difficulties include: complicated and time-consuming radiolabeling procedures, sub-optimal biodistribution, inadequate pharmacokinetics leading to poor tumour-to-blood contrast ratios, reliance upon Ca2+ concentrations in vivo, low tumor tissue penetration, and an incomplete understanding of what constitutes the best imaging protocol following induction of apoptosis. Therefore, new concepts and improved strategies for the development of PS-binding radiotracers are needed. Radiolabeled PS-binding peptides and various Zn(II) complexes as phosphate chemosensors offer an innovative strategy for radionuclide-based molecular imaging of apoptosis with PET and SPECT. Radiolabeled peptides and Zn(II) complexes provide several advantages over annexin V including better pharmacokinetics due to their smaller size, better availability, simpler synthesis and radiolabeling strategies as well as facilitated tissue penetration due to their smaller size and faster blood clearance profile allowing for optimized image contrast. In addition, peptides can be structurally modified to improve metabolic stability along with other pharmacokinetic and pharmacodynamic properties. The present review will summarize the current status of radiolabeled annexins, peptides and Zn(II) complexes developed as radiotracers for imaging apoptosis through targeting PS utilizing PET and SPECT imaging.
Collapse
|
5
|
Zhang D, Jin Q, Jiang C, Gao M, Ni Y, Zhang J. Imaging Cell Death: Focus on Early Evaluation of Tumor Response to Therapy. Bioconjug Chem 2020; 31:1025-1051. [PMID: 32150392 DOI: 10.1021/acs.bioconjchem.0c00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death plays a prominent role in the treatment of cancer, because most anticancer therapies act by the induction of cell death including apoptosis, necrosis, and other pathways of cell death. Imaging cell death helps to identify treatment responders from nonresponders and thus enables patient-tailored therapy, which will increase the likelihood of treatment response and ultimately lead to improved patient survival. By taking advantage of molecular probes that specifically target the biomarkers/biochemical processes of cell death, cell death imaging can be successfully achieved. In recent years, with the increased understanding of the molecular mechanism of cell death, a variety of well-defined biomarkers/biochemical processes of cell death have been identified. By targeting these established cell death biomarkers/biochemical processes, a set of molecular imaging probes have been developed and evaluated for early monitoring treatment response in tumors. In this review, we mainly present the recent advances in identifying useful biomarkers/biochemical processes for both apoptosis and necrosis imaging and in developing molecular imaging probes targeting these biomarkers/biochemical processes, with a focus on their application in early evaluation of tumor response to therapy.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
6
|
Qiu L, Wang W, Li K, Peng Y, Lv G, Liu Q, Gao F, Seimbille Y, Xie M, Lin J. Rational design of caspase-responsive smart molecular probe for positron emission tomography imaging of drug-induced apoptosis. Theranostics 2019; 9:6962-6975. [PMID: 31660080 PMCID: PMC6815954 DOI: 10.7150/thno.35084] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Purpose: Positron emission tomography (PET) imaging of apoptosis is very important for early evaluation of tumor therapeutic efficacy. A stimuli-responsive probe based on the peptide sequence Asp-Glu-Val-Asp (DEVD), [18F]DEVD-Cys(StBu)-PPG(CBT)-AmBF3 ([18F]1), for PET imaging of tumor apoptosis was designed and prepared. This study aimed to develop a novel smart probe using a convenient radiosynthesis method and to fully examine the sensitivity and specificity of the probe response to the tumor treatment. Methods: The radiolabelling precursor DEVD-Cys(StBu)-PPG(CBT)-AmBF3 (1) was synthesized through multistep reactions. The reduction together with caspase-controlled macrocyclization and self-assembly of 1 was characterized and validated in vitro. After [18F]fluorination in the buffer (pH= 2.5), the radiolabelling yield (RLY), radiochemical purity (RCP) and stability of the probe [18F]1 in PBS and mouse serum were investigated by radio-HPLC. The sensitivity and specificity of [18F]1 for detecting the drug-induced apoptosis was fully evaluated in vitro and in vivo. The effect of cold precursor 1 on the cell uptake and tumor imaging of [18F]1 was also assessed. The level of activated caspase-3 in Hela cells and tumors with or without apoptosis induction was analyzed and compared by western blotting and histological staining. Results: The whole radiosynthesis process of [18F]1 was around 25 min with RLY of 50%, RCP of over 99% and specific activity of 1.45 ± 0.4 Ci/µmol. The probe was very stable in both PBS and mouse serum within 4 h. It can be activated by caspase-3 and then undergo an intermolecular cyclization to form nanosized particles. The retained [18F]1 in DOX-treated HeLa cells was 2.2 folds of that in untreated cells. Within 1 h microPET imaging of the untreated Hela-bearing mice, the injection of [18F]1 resulted in the increase of the uptake ratio of tumor to muscle (T/M) only from 1.74 to 2.18, while in the DOX-treated Hela-bearing mice T/M increased from 1.88 to 10.52 and the co-injection of [18F]1 and 1 even led to the increase of T/M from 3.08 to 14.81. Conclusions: A caspase-responsive smart PET probe [18F]1 was designed and prepared in a kit-like manner. Co-injection of [18F]1 and 1 generated remarkably enhanced tumor uptake and signal-to-noise ratio in the tumor-bearing mice with drug-induced apoptosis, which correlated well with the expression level of activated caspase-3. This early readout of treatment response ensured that the probe [18F]1 could serve as a promising PET imaging probe for timely and noninvasive evaluation of tumor therapy.
Collapse
|
7
|
Zeng Z, Belousoff MJ, Spiccia L, Bond AM, Torriero AAJ. Macrocycles Bearing Ferrocenyl Pendants and their Electrochemical Properties upon Binding to Divalent Transition Metal Cations. Chempluschem 2018; 83:728-738. [PMID: 31950627 DOI: 10.1002/cplu.201700550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/15/2018] [Indexed: 01/09/2023]
Abstract
Metal complexes of Cu2+ , Co2+ , Cd2+ , Zn2+ , and Ni2+ formed with the ligands [Fc(cyclen)] (1) and [Fc(cyclen)2 ] (2) (Fc=ferrocene, cyclen=1,4,7,10-tetraazacyclododecane) are synthesised and characterised. The X-ray structure of the Cu2+ complex of 2, Fc([Cu(cyclen)(CH3 CN)]2 (ClO4 )4 , is reported, and shows that the two positively charged Cu2+ -cyclen units have a coordination number of five, adopting a distorted trigonal-bipyramidal configuration. The Cu2+ -cyclen units are arranged in a trans-like configuration with respect to the Fc group, presumably to minimise electrostatic repulsion. The voltammetric oxidation of the free ligands 1 and 2 in a CH2 Cl2 /CH3 CN (1:4) solvent mixture yields two closely spaced oxidation processes. Both electron-transfer steps are associated with the ferrocenyl moiety, implying strong communication between the cyclen nitrogen atoms and the ferrocenyl group. In contrast, cyclic voltammograms display only a simple reversible one-electron process if 1 and 2 are complexed with Cd2+ , Cu2+ , Zn2+ , Ni2+ , or Co2+ . Binding of these metal ions produces a significant shift in the reversible midpoint potential (Em ). Except for Ni2+ , Em is linearly proportional to the charge density of the transition metal ion, demonstrating that 1 and 2 may undergo redox switching. The diffusion coefficients of Fc, DmFc, 1 and 2, and their metal ion complexes correlate well with their molecular weights.
Collapse
Affiliation(s)
- Zhanghua Zeng
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | | | - Leone Spiccia
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Angel A J Torriero
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| |
Collapse
|
8
|
Fernandes RS, de Aguiar Ferreira C, Soares DCF, Maffione AM, Townsend DM, Rubello D, de Barros ALB. The role of radionuclide probes for monitoring anti-tumor drugs efficacy: A brief review. Biomed Pharmacother 2017; 95:469-476. [PMID: 28865367 DOI: 10.1016/j.biopha.2017.08.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/17/2017] [Accepted: 08/20/2017] [Indexed: 02/06/2023] Open
Abstract
Despite recent advances in the development of new therapeutic agents and diagnostic imaging modalities, cancer is still one of the main causes of death worldwide. A better understanding of the molecular signature of cancer has promoted the development of a new generation of anti-cancer drugs and diagnostic agents that specifically target molecular components such as genes, ligands, receptors and signaling pathways. However, intrinsic heterogeneity of tumors has hampered the overall success of target therapies even among patients with similar tumor types but unpredictable different responses to therapy. In this sense, post-treatment response monitoring becomes indispensable and nuclear medicine imaging modalities could provide the tools for an early indication of therapeutic efficacy. Herein, we briefly discuss the current role of PET and SPECT imaging in monitoring cancer therapy together with an update on the current radiolabeled probes that are currently investigated for tumor therapy response assessment.
Collapse
Affiliation(s)
- Renata Salgado Fernandes
- Laboratório de radioisótopos, Departamento de análises Clinicas, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil
| | | | - Daniel Cristian Ferreira Soares
- Laboratório de Bioengenharia, Universidade Federal de Itajubá (UNIFEI), Rua Irmã Ivone Drumond, 200, Itabira, Minas Gerais, Brazil
| | - Anna Margherita Maffione
- Department of Nuclear Medicine, Radiology, Medical Physics and Clinical Pathology, Santa Maria della Misericordia Hospital, Rovigo, Italy
| | - Danyelle M Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, USA
| | - Domenico Rubello
- Department of Nuclear Medicine, Radiology, Medical Physics and Clinical Pathology, Santa Maria della Misericordia Hospital, Rovigo, Italy.
| | - André Luís Branco de Barros
- Laboratório de radioisótopos, Departamento de análises Clinicas, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|