1
|
Gayathri S, Aravind MK, Gowda VK, Varalakshmi P, Chatterjee C, Matheshwaran S, Efthymiou S, Houlden H, Ashokkumar B. Brown-Vialetto-Van Laere syndrome patients with unusual phenotypes from Indian ethnicity: Functional analysis of clinical variants in SLC52A2 and SLC52A3 genes. Brain Dev 2025; 47:104355. [PMID: 40168907 DOI: 10.1016/j.braindev.2025.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/17/2025] [Accepted: 03/19/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND BVVLS (Brown-Vialetto-Van Laere syndrome), a rare genetic condition characterized by progressive neuropathy, is caused by defects in SLC52A2 and SLC52A3 genes coding for hRFVT-2 and hRFVT-3. METHODS Five BVVLS cases were screened for disease-causing variants using exome sequencing and their functional contributions were evaluated by in silico analysis, riboflavin transport assay and confocal imaging. RESULTS Probands enrolled in this study were presented with unusual phenotypes like syndactyly, polydactyly, pedal edema and chronic osteomyelitis. Genetic testing disclosed heterozygous variants in all five cases including c.229G>A p.E77K, c.384G>A p.S128S, c.1245C>T p.G415G and c.843del p.L282Cfs*8 in SLC52A2 gene and c.833C>T p.T278M, c.907A>G p.I303V and c.62A>G p.N21S in SLC52A3 gene. Among them, p.L282Cfs*8 was diagnosed here for first-time, whereas p.E77K and p.S128S were reported previously with a variation at nucleotide position. Functional analysis of the variant p.E77K, p.S128S, p.T278M and p.I303V evidenced impairment in riboflavin transport, whereas p.G415G and p.L282Cfs*8 showed no significant changes. Despite of having reduction in riboflavin uptake, the presence of same polymorphic variant (p.T278M and p.I303V) in asymptomatic father suggests it as not likely associated with disease phenotypes. Meantime, membranous expression of hRFVT-2 variants p.S128S and p.E77K were abrogated and mostly internalized in cytoplasmic regions of transfected cells, whereas no change was observed with other variants than wild-type. CONCLUSION These results show for the first-time that BVVLS associated hRFVT-2 variants p.S128S and p.E77K affected riboflavin transport function due to abrogation in membranous localization and/or activity of the transporter. The polymorphic variants p.T278M and p.I303V of hRFVT-3 are unlikely to be implicated functionally in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Santhalingam Gayathri
- School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | | | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Perumal Varalakshmi
- School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Chitral Chatterjee
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, India
| | - Saravanan Matheshwaran
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, India
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK
| | | |
Collapse
|
2
|
Zhao H, Zhu D, Gao Y, Wang B. Bile Acids Modulate Hepatic Glycolipid Metabolism via the Microbiota-Gut-Liver Axis in Lambs. J Nutr 2025:S0022-3166(25)00290-1. [PMID: 40368303 DOI: 10.1016/j.tjnut.2025.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Bile acids are essential molecules that facilitate lipid emulsification and function as signaling molecules mediating host-microbiota interactions. They shape the gut microbial structure and function, playing a critical role in metabolic regulation via the gut-liver axis. OBJECTIVES This study aimed to investigate the effects of exogenous bile acids, primarily hyocholic acid (HCA), on the microbiota-gut-liver metabolism in male Tan-lambs fed a high-grain diet. METHODS Thirty six-mo-old male Tan lambs (Ovis aries) were randomly allocated into either a control group or an HCA-supplemented group (n = 15 per group). The trial lasted 84 d, including a 14-d adaptation period. On day 70, 6 lambs from each group were randomly selected for slaughtering. Rumen and ileal contents were collected for microbial profiling via 16S rRNA sequencing, and liver tissue samples were harvested for transcriptomic and metabolomic analyses. RESULTS The HCA intervention significant altered the composition and structure of ruminal and ileal bacteria. Notable increases were observed in Turicibacter species [linear discriminant analysis (LDA) score = 2.48; P < 0.05] and Muribaculaceae (LDA score = 3.75; P < 0.05) in the rumen, and Eubacterium fissicatena group (LDA score = 2.50; P < 0.05) in the ileum. Key hepatic genes and metabolites targeted by HCA were identified, including ENPP3, RFK, Ifi203, LIPG, CYP1A1, and CYP4A11, nordeoxycholic acid (log-fold change = 6.30; P < 0.005), α-muricholic acid (log-fold change = 5.60; P < 0.001), and β-muricholic acid (log-fold change = 5.60; P < 0.001). CONCLUSIONS Exogenous bile acids regulate the microbiota-gut-liver axis, influencing hepatic glycolipid metabolism in sheep. Specifically, nordeoxycholic acid demonstrates potential as a dietary intervention to promote metabolic homeostasis in ruminants. These findings highlight the potential of HCA and nordeoxycholic acid as functional feed additives or prebiotic agents for improving metabolic health in ruminants and potentially other species.
Collapse
Affiliation(s)
- Hailong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Daiwei Zhu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yuyang Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Bing Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
3
|
Wang K, Chen H, Cheng L, Zhao J, Huang B, Wu D, He X, Zhou Y, Yuan Y, Zhou F, Jiang J, Chen L, Jiang D. Structure and transport mechanism of human riboflavin transporters. Nat Commun 2025; 16:4078. [PMID: 40307217 PMCID: PMC12044054 DOI: 10.1038/s41467-025-59255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
Riboflavin (vitamin B2) is the precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which act as key cofactors of many enzymes, thus has essential roles in cell growth and functions. Animals cannot synthesize riboflavin in situ, the intake, distribution and metabolism of which are mediated by three riboflavin transporters (RFVT1-3). Many mutations in RFVTs cause severe consequences. How RFVTs recognize and transport riboflavin remains largely unknown. Here we describe the cryo-electron microscopy structures of human RFVT2 and RFVT3 in complex with riboflavin in outward-occluded and inward-open states, respectively. Riboflavin is recognized by a conserved binding pocket in the central cavity of RFVTs, whereas two acidic residues in RFVT3 determine its pH-dependent activity. By combining the structural, computational and functional analyses, this study demonstrates the structural basis of riboflavin recognition and provides a structural framework for the mechanistic comprehension of riboflavin recognition, transport, and pathology in human RFVTs.
Collapse
Affiliation(s)
- Ke Wang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Huiwen Chen
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Lili Cheng
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China
| | - Bo Huang
- Beijing StoneWise Technology Co Ltd., Beijing, China
| | - Di Wu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin He
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Yumeng Zhou
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Yaxuan Yuan
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Feng Zhou
- Beijing StoneWise Technology Co Ltd., Beijing, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, Harbin, China.
| | - Ligong Chen
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| | - Daohua Jiang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Sun WX, Chen TY, Song MM, Gao YJ, Xu SY. Energy metabolism disorders in migraine: triggers, pathways, and therapeutic repurposing. Front Neurol 2025; 16:1561000. [PMID: 40242623 PMCID: PMC12002086 DOI: 10.3389/fneur.2025.1561000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Many migraine triggers, such as stress, sleep deprivation, fatigue, strenuous exercise, and fasting, are potentially linked to disturbances in brain energy metabolism, mitochondrial function, and oxidative stress. Alongside efforts to avoid modifiable factors, prophylactic migraine treatments that target brain energy metabolism have garnered increasing attention. However, the current evidence supporting the use of energy-modulating drugs in migraine treatment guidelines remains weak. This narrative review explores the relationship between energy metabolism and cortical spreading depression susceptibility, metabolic alterations in migraine (including glucose and insulin metabolism, insulin resistance, lipid metabolism, and energy metabolism imaging markers), oxidative stress and antioxidant defenses, mitochondrial dysfunction, and the role of energy metabolism-targeted medications in migraine management. Nutrients may help improve mitochondrial function, thereby alleviating brain energy metabolism deficits and oxidative stress in migraine.
Collapse
Affiliation(s)
- Wen-xiu Sun
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ting-yan Chen
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mao-mei Song
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ying-jie Gao
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sui-yi Xu
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Neurology, Headache Center, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
5
|
Frost Z, Bakhit S, Amaefuna CN, Powers RV, Ramana KV. Recent Advances on the Role of B Vitamins in Cancer Prevention and Progression. Int J Mol Sci 2025; 26:1967. [PMID: 40076592 PMCID: PMC11900642 DOI: 10.3390/ijms26051967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Water-soluble B vitamins, mainly obtained through dietary intake of fruits, vegetables, grains, and dairy products, act as co-factors in various biochemical processes, including DNA synthesis, repair, methylation, and energy metabolism. These vitamins include B1 (Thiamine), B2 (Riboflavin), B3 (Niacin), B5 (Pantothenic Acid), B6 (Pyridoxine), B7 (Biotin), B9 (Folate), and B12 (Cobalamin). Recent studies have shown that besides their fundamental physiological roles, B vitamins influence oncogenic metabolic pathways, including glycolysis (Warburg effect), mitochondrial function, and nucleotide biosynthesis. Although deficiencies in these vitamins are associated with several complications, emerging evidence suggests that excessive intake of specific B vitamins may also contribute to cancer progression and interfere with therapy due to impaired metabolic and genetic functions. This review discusses the tumor-suppressive and tumor-progressive roles of B vitamins in cancer. It also explores the recent evidence on a comprehensive understanding of the relationship between B vitamin metabolism and cancer progression and underscores the need for further research to determine the optimal balance of B vitamin intake for cancer prevention and therapy.
Collapse
Affiliation(s)
| | | | | | | | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
6
|
McCreery CV, Alessi D, Mollo K, Fasano A, Zomorrodi AR. Investigating intestinal epithelium metabolic dysfunction in celiac disease using personalized genome-scale models. BMC Med 2025; 23:95. [PMID: 39984962 PMCID: PMC11846356 DOI: 10.1186/s12916-025-03854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 01/08/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Celiac disease (CeD) is an autoimmune condition characterized by an aberrant immune response triggered by the ingestion of gluten, which damages epithelial cells lining the small intestine. Small intestinal epithelial cells (sIECs) play key roles in the enzymatic digestion and absorption of nutrients, maintaining gut barrier integrity, and regulating immune response. Chronic inflammation and tissue damage associated with CeD disrupt the intricate network of metabolic processes in sIECs that support these functions, impairing their ability to perform their essential roles. However, the specific disrupted metabolic processes underlying sIECs dysfunction in CeD remain largely undefined. METHODS To address this knowledge gap, personalized, sex-specific genome-scale models of sIECs metabolism were constructed using transcriptional data from intestinal biopsies of 42 subjects with active CeD, CeD in remission (on a gluten-free diet), and non-CeD controls. These models were computationally simulated under relevant dietary conditions for each group of subjects to assess the activity of several metabolic tasks essential for sIECs function and to profile metabolite secretion into the bloodstream and intestinal lumen. RESULTS Significant alterations in the activity of 28 essential metabolic tasks were observed in active CeD and remission CeD, impacting critical processes integral to sIECs function such as oxidative stress regulation, nucleotide synthesis and DNA repair, energy production, and polyamine and amino acid metabolism. Additionally, altered secretion profiles of several metabolites, encompassing amino acids, vitamins, polyamines, lipids, and fatty acids, into the bloodstream were detected in active CeD and remission CeD patients. These findings were partially supported by comparisons with independent external datasets and further corroborated through extensive review of existing literature. Furthermore, a drug target analysis was performed, identifying 22 FDA-approved drugs that target genes encoding impaired sIECs metabolic functions in CeD, potentially helping to restore their normal activity. CONCLUSIONS This study unveils new insights into the metabolic reprogramming of sIECs in CeD, highlighting specific dysregulated metabolic processes that compromise cellular functions essential for gut health. These findings offer a foundation for developing therapeutic interventions targeting impaired metabolic processes in CeD.
Collapse
Affiliation(s)
- Chloe V McCreery
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Drew Alessi
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Katarina Mollo
- The Center for Celiac Research and Treatment, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Center for Celiac Research and Treatment, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Ali R Zomorrodi
- Mucosal Immunology and Biology Research Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- The Center for Celiac Research and Treatment, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
7
|
da Silva-Araújo ER, Toscano AE, Silva PBP, Pereira Dos Santos Junior J, Gouveia HJCB, da Silva MM, Souza VDS, de Freitas Silva SR, Manhães-de-Castro R. Effects of deficiency or supplementation of riboflavin on energy metabolism: a systematic review with preclinical studies. Nutr Rev 2025; 83:e332-e342. [PMID: 38719205 DOI: 10.1093/nutrit/nuae041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
CONTEXT Riboflavin (vitamin B2) is a water-soluble micronutrient considered to be a precursor of the nucleotides flavin adenine dinucleotide and flavin mononucleotide. This vitamin makes up mitochondrial complexes and participates as an enzymatic cofactor in several mechanisms associated with energy metabolism. OBJECTIVE This systematic review collected and discussed the most relevant results on the role of riboflavin in the energy metabolism of lipids, proteins, and carbohydrates. DATA SOURCES A systematic search was carried out in the PubMed-Medline, Scopus, Embase, and Web of Science databases using the PICOS (Population, Intervention, Comparison, Outcome, Study design) strategy. DATA EXTRACTION The screening of studies went through 2 stages following predefined eligibility criteria. The information extracted covered reference details, study design, population characteristics, experimental model, treatment parameters and dosage, route of administration, duration of treatment, and results found. DATA ANALYSIS The risk of bias was assessed using the SYRCLE Risk of Bias (RoB) tool for in vivo studies and the QUIN tool adapted for in vitro studies, utilizing 10 domains, including selection bias, performance bias, detection bias, attrition bias, reporting bias, and other biases, to evaluate the methodological quality of the included studies. CONCLUSION This review concludes that riboflavin regulates energy metabolism by activating primary metabolic pathways and is involved in energy balance homeostasis.
Collapse
Affiliation(s)
- Eulália Rebeca da Silva-Araújo
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Ana Elisa Toscano
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Brazil
- Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Recife, Brazil
| | - Paula Brielle Pontes Silva
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Joaci Pereira Dos Santos Junior
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Henrique José Cavalcanti Bezerra Gouveia
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Márcia Maria da Silva
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Vanessa da Silva Souza
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Brazil
| | | | - Raul Manhães-de-Castro
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Brazil
- Graduate Program in Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
8
|
Vo HVT, Kim N, Lee HJ. Vitamin Bs as Potent Anticancer Agents through MMP-2/9 Regulation. FRONT BIOSCI-LANDMRK 2025; 30:24072. [PMID: 39862072 DOI: 10.31083/fbl24072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 01/27/2025]
Abstract
In recent years, the role of coenzymes, particularly those from the vitamin B group in modulating the activity of metalloenzymes has garnered significant attention in cancer treatment strategies. Metalloenzymes play pivotal roles in various cellular processes, including DNA repair, cell signaling, and metabolism, making them promising targets for cancer therapy. This review explores the complex interplay between coenzymes, specifically vitamin Bs, and metalloenzymes in cancer pathogenesis and treatment. Vitamins are an indispensable part of daily life, essential for optimal health and well-being. Beyond their recognized roles as essential nutrients, vitamins have increasingly garnered attention for their multifaceted functions within the machinery of cellular processes. In particular, vitamin Bs have emerged as a pivotal regulator within this intricate network, exerting profound effects on the functionality of metalloenzymes. Their ability to modulate metalloenzymes involved in crucial cellular pathways implicated in cancer progression presents a compelling avenue for therapeutic intervention. Key findings indicate that vitamin Bs can influence the activity and expression of metalloenzymes, thereby affecting processes such as DNA repair and cell signaling, which are critical in cancer development and progression. Understanding the mechanisms by which these coenzymes regulate metalloenzymes holds great promise for developing novel anticancer strategies. This review summarizes current knowledge on the interactions between vitamin Bs and metalloenzymes, highlighting their potential as anticancer agents and paving the way for innovative, cell-targeted cancer treatments.
Collapse
Affiliation(s)
- Ha Vy Thi Vo
- Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
9
|
Li XL, Li QM, Zheng YZ, Hu D, Cai XY, Yin K, Qi YY, Cheng ZY, Ning X, Cai Y, Wu W, Lin TY, Xu T, Zhao LL. Di (2-ethylhexyl) phthalate reduces sperm motility by decreasing sperm tail energy supply. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117811. [PMID: 39879685 DOI: 10.1016/j.ecoenv.2025.117811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is widespread in the environment. It can impair sperm function through damaging the sperm development process. However, few studies have focused on the sperm tail that is directly related to sperm motility. In this study, we demonstrate that DEHP impedes the conversion of riboflavin in the mitochondrial sheath in the midsection of the sperm tail, resulting in reduced ATP (adenosine triphosphate) synthesis, thereby inhibiting sperm motility. The results of HPLC-MS/MS showed that DEHP metabolites were transported to the testes and epididium, indicating that MEHP (Mono-2-ethylexyl phthalate) could directly affect the espermatozoa of mature. Sperm motility analysis determined that sperm motility decreased with increasing DEHP concentration. The movement of sperm is mainly dependent on the tail motility, which is largely determined by tail structure and energy supply. Electron microscopy images illustrate that there are no observable changes in the basic kinematic structure of the sperm tail. However, DEHP causes a decrease in complex II activity of mitochondrial respiratory chain by interfering with the synthesis of the cofactor FAD (Flavin adenine dinucleotide), which leads to a decrease in ATP concentration. Therefore, DEHP exposure can reduce sperm motility by decreasing sperm tail energy supply. This study exemplifies the importance of the sperm tail in sperm dysfunction caused by environmental pollutants.
Collapse
Affiliation(s)
- Xiao-Lu Li
- Department of Toxicology, School of Public Health; Suzhou Hospital of Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Qi-Meng Li
- Department of Toxicology, School of Public Health; Suzhou Hospital of Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Yuan-Zhuo Zheng
- Department of Toxicology, School of Public Health; Suzhou Hospital of Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Die Hu
- Department of Toxicology, School of Public Health; Suzhou Hospital of Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Xiao-Yue Cai
- Department of Toxicology, School of Public Health; Suzhou Hospital of Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Ke Yin
- Department of Toxicology, School of Public Health; Suzhou Hospital of Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Yin-Yin Qi
- Department of Toxicology, School of Public Health; Suzhou Hospital of Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Zi Yu Cheng
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Xia Ning
- Department of Toxicology, School of Public Health; Suzhou Hospital of Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Yang Cai
- Department of Toxicology, School of Public Health; Suzhou Hospital of Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Wei Wu
- Department of Toxicology, School of Public Health; Suzhou Hospital of Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Ting-Yuan Lin
- Department of Toxicology, School of Public Health; Suzhou Hospital of Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Tao Xu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China.
| | - Ling-Li Zhao
- Department of Toxicology, School of Public Health; Suzhou Hospital of Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China.
| |
Collapse
|
10
|
Silva-Araújo ERD, Toscano AE, Pontes PB, Campos FDACES, Souza LMF, Dos Santos Júnior JP, Ramírez VF, Torner L, Manhães-de-Castro R. Neonatal high-dose riboflavin treatment channels energy expenditure towards sensorimotor and somatic development and reduces rodent growth and weight gain by modulating NRF-1 in the hypothalamus. Physiol Behav 2024; 287:114693. [PMID: 39255868 DOI: 10.1016/j.physbeh.2024.114693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/07/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Metabolic adaptations early in life can drive energy expenditure towards brain and physical development, with less emphasis on body mass gain and somatic growth. Dietary or pharmacological manipulations can influence these processes, but to date, the effects provided by riboflavin have not been studied. The study aimed to evaluate the effects of neonatal treatment with different doses of riboflavin on sensorimotor and somatic development in rodents. Based on this, the following experimental groups were formed: Control (C, 0 mg/kg), Riboflavin 1 (R1, 1 mg/kg), Riboflavin 2 (R2, 10 mg/kg) and Riboflavin 3 (R3, 100 mg/kg). Treatment with 100 mg/kg riboflavin anticipated the reflex ontogeny of righting, cliff aversion, negative geotaxis, and free-fall righting. Intervention with 10 and 100 mg/kg of riboflavin anticipated the reflex maturation of vibrissae placement. Eye-opening, upper incisor eruption, and lower incisor eruption reached maturational age more quickly for animals treated with 100 mg/kg, while caudal growth and body weight gain were reduced from the second week of treatment, for groups R2 and R3. Pearson's correlation analysis indicated a positive association between the administration of high doses of riboflavin and murine growth in the first week of treatment. There was, however, a negative association between treatment with a high dose of riboflavin and growth in the second week of administration, coinciding with a reduction in body weight gain in the R3 group. Treatment with 100 mg/kg of riboflavin also reduced energy expenditure parameters in the open field and catwalk. Although high-dose treatment stimulates the physiological plasticity of the CNS and reduces weight gain, hepatic parameters were preserved, highlighting the participation of the liver in the supply of fatty acids for neural maturation. Furthermore, hypothalamic NRF-1 expression was increased in the R3 group inversely to the reduction in weight gain. Our results suggest that high-dose riboflavin stimulates sensorimotor and somatic development and reduces the energy invested in growth, body weight gain, and locomotor activity, possibly involving NRF-1 gene modulation in the hypothalamus.
Collapse
Affiliation(s)
- Eulália Rebeca da Silva-Araújo
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Ana Elisa Toscano
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco, 55608-680, Brazil.
| | - Paula Brielle Pontes
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | | | - Laíza Maria Ferreira Souza
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Joaci Pereira Dos Santos Júnior
- Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program of Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| | - Valeria Fraga Ramírez
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Raul Manhães-de-Castro
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife-Pernambuco, 50670-901, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil; Graduate Program of Nutrition, Center for Health Sciences, Federal University of Pernambuco, Recife, Pernambuco, 50670-420, Brazil
| |
Collapse
|
11
|
Sychterz C, Shen H, Zhang Y, Sinz M, Rostami‐Hodjegan A, Schmidt BJ, Gaohua L, Galetin A. A close examination of BCRP's role in lactation and methods for predicting drug distribution into milk. CPT Pharmacometrics Syst Pharmacol 2024; 13:1856-1869. [PMID: 39292199 PMCID: PMC11578132 DOI: 10.1002/psp4.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Breastfeeding is the most complete nutritional method of feeding infants, but several impediments affect the decision to breastfeed, including questions of drug safety for medications needed during lactation. Despite recent FDA guidance, few labels provide clear dosing advice during lactation. Physiologically based pharmacokinetic modeling (PBPK) is well suited to mechanistically explore pharmacokinetics and dosing paradigms to fill gaps in the absence of extensive clinical studies and complement existing real-world data. For lactation-focused PBPK (Lact-PBPK) models, information on system parameters (e.g., expression of drug transporters in mammary epithelial cells) is sparse. The breast cancer resistance protein (BCRP) is expressed on the apical side of mammary epithelial cells where it actively transports drugs/substrates into milk (reported milk: plasma ratios range from 2 to 20). A critical review of BCRP and its role in lactation was conducted. Longitudinal changes in BCRP mRNA expression have been identified in women with a maximum reached around 5 months postpartum. Limited data are available on the ontogeny of BCRP in infant intestine; however, data indicate lower BCRP abundance in infants compared to adults. Current status of incorporation of drug transporter information in Lact-PBPK models to predict active secretion of drugs into breast milk and consequential exposure of breast-fed infants is discussed. In addition, this review highlights novel clinical tools for evaluation of BCRP activity, namely a potential non-invasive BCRP biomarker (riboflavin) and liquid biopsy that could be used to quantitatively elucidate the role of this transporter without the need for administration of drugs and to inform Lact-PBPK models.
Collapse
Affiliation(s)
- Caroline Sychterz
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | - Hong Shen
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | | | | | - Amin Rostami‐Hodjegan
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
- Certara Predictive Technologies, Certara UKSheffieldUK
| | | | - Lu Gaohua
- Bristol Myers SquibbPrincetonNew JerseyUSA
| | - Aleksandra Galetin
- Division of Pharmacy and Optometry, Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
| |
Collapse
|
12
|
Deng F, Hämäläinen K, Lehtisalo M, Neuvonen M, Niemi M. Ticagrelor modestly raises plasma riboflavin concentration in humans and inhibits riboflavin transport by BCRP and MRP4. Clin Pharmacol Ther 2024; 116:1222-1226. [PMID: 39039844 DOI: 10.1002/cpt.3384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
Riboflavin (vitamin B2) has been proposed as a biomarker for breast cancer resistance protein (BCRP) activity. In recent studies in mice, cynomolgus monkeys, and humans, BCRP-inhibiting drugs increased the plasma concentration of riboflavin. We showed recently that ticagrelor inhibits BCRP and raises the plasma concentrations of the BCRP substrate rosuvastatin in healthy volunteers. In the same drug-drug interaction study, we now investigated whether ticagrelor affects the plasma concentrations of riboflavin. Intake of 90 mg ticagrelor increased the ratio between the peak plasma riboflavin concentration and the fasting riboflavin concentration before ticagrelor administration by 1.20-fold (90% confidence interval, 1.10-1.32; P = 0.006) compared to placebo. In vitro, riboflavin was transported by BCRP and multidrug-resistance-associated protein 4 (MRP4) but no clear transport was observed by MRP2, MRP3, or the P-glycoprotein. Moreover, ticagrelor inhibited the transport of riboflavin in BCRP- and MRP4-expressing membrane vesicles with unbound 50% inhibitory concentrations of 0.020 and 1.1 μM, respectively. Based on vesicle and tissue protein expression data, the small intestinal MRP4-mediated efflux clearance of riboflavin (1.2-1.4 nL/min/mg) was estimated to be similar to that mediated by BCRP (0.23-1.3 nL/min/mg). As MRP4 is expressed in the basolateral membrane of enterocytes, it may facilitate the absorption of riboflavin and impair the utility of riboflavin as a biomarker of intestinal BCRP. To conclude, ticagrelor modestly raises the plasma concentration of riboflavin probably by inhibiting intestinal BCRP. Inhibition of intestinal MRP4 may have reduced the absorption of riboflavin and limited the effect of ticagrelor on riboflavin levels.
Collapse
Affiliation(s)
- Feng Deng
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Kreetta Hämäläinen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Minna Lehtisalo
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
13
|
Shastak Y, Pelletier W. Exploring the role of riboflavin in swine well-being: a literature review. Porcine Health Manag 2024; 10:46. [PMID: 39482748 PMCID: PMC11526614 DOI: 10.1186/s40813-024-00399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/20/2024] [Indexed: 11/03/2024] Open
Abstract
Riboflavin (vitamin B2) is an essential B-vitamin crucial for the metabolism, development, and overall well-being of porcine species. As pig production intensifies, understanding the micronutrient needs of swine, particularly riboflavin, becomes increasingly vital. Riboflavin acts as a precursor for coenzymes involved in key redox reactions essential for energy production, growth, and immune regulation. Ariboflavinosis can disrupt metabolic functions, leading to impaired growth, reproductive issues, decreased feed efficiency, compromised immune function, ocular problems, and liver dysfunction. To ensure optimal growth and health, pig diets are consistently supplemented with riboflavin-enriched supplements. This review explores the diverse functions of riboflavin in swine metabolism, focusing on biochemical basics, metabolic pathways, riboflavin uptake and distribution, consequences of deficiency, and benefits of adequate intake. It emphasizes the need for optimized riboflavin supplementation strategies tailored to different production stages and environmental conditions. According to recommendations from four major breeding companies, the dietary riboflavin levels for swine are advised to range between 7.5 and 15 mg/kg for piglets, 3.5 to 8.0 mg/kg for finishing gilts and barrows, 4 to 10 mg/kg for gestating sows, and 5 to 10 mg/kg for lactating sows. Advances in precision nutrition, microbial production of riboflavin, and the development of functional feed additives are potential innovations to enhance swine health, growth performance, and sustainability. Comprehensive studies on the long-term effects of subclinical riboflavin deficiency and the broader health and welfare implications of supplementation are also needed. Addressing knowledge gaps and embracing future trends and innovations will be key to optimizing riboflavin supplementation and advancing the swine industry.
Collapse
Affiliation(s)
- Yauheni Shastak
- BASF SE, Nutrition & Health Division, 67063, Ludwigshafen am Rhein, Germany.
| | - Wolf Pelletier
- BASF SE, Nutrition & Health Division, 67063, Ludwigshafen am Rhein, Germany
| |
Collapse
|
14
|
Peach JT, Puntscher H, Höger H, Marko D, Warth B. Rats exposed to Alternaria toxins in vivo exhibit altered liver activity highlighted by disruptions in riboflavin and acylcarnitine metabolism. Arch Toxicol 2024; 98:3477-3489. [PMID: 38951189 PMCID: PMC11402861 DOI: 10.1007/s00204-024-03810-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Natural toxins produced by Alternaria fungi include the mycotoxins alternariol, tenuazonic acid and altertoxins I and II. Several of these toxins have shown high toxicity even at low levels including genotoxic, mutagenic, and estrogenic effects. However, the metabolic effects of toxin exposure from Alternaria are understudied, especially in the liver as a key target. To gain insight into the impact of Alternaria toxin exposure on the liver metabolome, rats (n = 21) were exposed to either (1) a complex culture extract with defined toxin profiles from Alternaria alternata (50 mg/kg body weight), (2) the isolated, highly genotoxic altertoxin-II (ATX-II) (0.7 mg/kg of body weight) or (3) a solvent control. The complex mixture contained a spectrum of Alternaria toxins including a controlled dose of ATX-II, matching the concentration of the isolated ATX-II. Liver samples were collected after 24 h and analyzed via liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Authentic reference standards (> 100) were used to identify endogenous metabolites and exogenous compounds from the administered exposures in tandem with SWATH-acquired MS/MS data which was used for non-targeted analysis/screening. Screening for metabolites produced by Alternaria revealed several compounds solely isolated in the liver of rats exposed to the complex culture, confirming results from a previously performed targeted biomonitoring study. This included the altersetin and altercrasin A that were tentatively identified. An untargeted metabolomics analysis found upregulation of acylcarnitines in rats receiving the complex Alternaria extract as well as downregulation of riboflavin in rats exposed to both ATX-II and the complex mixture. Taken together, this work provides a mechanistic view of Alternari toxin exposure and new suspect screening insights into hardly characterized Alternaria toxins.
Collapse
Affiliation(s)
- Jesse T Peach
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Hannes Puntscher
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Harald Höger
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria.
| |
Collapse
|
15
|
Roy PK, Paul A, Khandibharad S, Kolhe SD, Farooque QSS, Singh S, Singh S. Mechanistic and structural insights into vitamin B 2 metabolizing enzyme riboflavin kinase from Leishmania donovani. Int J Biol Macromol 2024; 278:134392. [PMID: 39098675 DOI: 10.1016/j.ijbiomac.2024.134392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Leishmania donovani relies on specific vitamins and cofactors crucial for its survival and pathogenesis. Tailoring therapies to disrupt these pathways offers a promising strategy for the treatment of Visceral Leishmaniasis. Current treatment regimens are limited due to drug resistance and high costs. The dependency of Leishmania parasites on Vitamin B2 and its metabolic products is not known. In this study, we have biochemically and biophysically characterized a Vitamin B2 metabolism enzyme, riboflavin kinase from L. donovani (LdRFK) which converts riboflavin (vitamin B2) into flavin mononucleotide (FMN). Sequence comparison with human counterpart reflects 31.58 % identity only, thus opening up the possibility of exploring it as drug target. The rfk gene was cloned, expressed and the recombinant protein was purified. Kinetic parameters of LdRFK were evaluated with riboflavin and ATP as substrates which showed differential binding affinity when compared with the human RFK enzyme. Thermal and denaturant stability of the enzyme was evaluated. The rfk gene was overexpressed in the parasites and its role in growth and cell cycle was evaluated. In the absence of crystal structure, homology modelling and molecular dynamic simulation studies were performed to predict LdRFK structure. The data shows differences in substrate binding between human and parasite enzyme. This raises the possibility of exploring LdRFK for specific designing of antileishmanial molecules. Gene disruption studies can further validate its candidature as antileishmanial target.
Collapse
Affiliation(s)
- Pradyot Kumar Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Shweta Khandibharad
- Biotechnology Research and Innovation Council- National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Sanket Dattatray Kolhe
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Qureshi Sameer Shaikh Farooque
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India
| | - Shailza Singh
- Biotechnology Research and Innovation Council- National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
16
|
Lee H, Hong J. Modulation of Photosensitizing Responses in Cell Culture Environments by Different Medium Components. Int J Mol Sci 2024; 25:10016. [PMID: 39337504 PMCID: PMC11432084 DOI: 10.3390/ijms251810016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Many cell culture experiments are performed under light to evaluate the photodynamic or photosensitizing efficacy of various agents. In this study, the modulation of photosensitizing responses and phototoxicity under cell culture conditions by different medium components was investigated. The significant levels of reactive oxygen species (ROS) generated from DMEM, RPMI 1640, and MEM were observed under the irradiation of fluorescent light (FL) and white and blue LEDs, indicating that these media have their own photosensitizing properties; DMEM showed the most potent property. Phenol red-free DMEM (Pf-D) exhibited a stronger photosensitizing property than normal DMEM by 1.31 and 1.25 times under FL and blue LEDs, respectively; phenol red and riboflavin-free DMEM (PRbf-D) did not show any photosensitizing properties. The inhibitory effect on light transmission was more pronounced in DMEM than in RPMI, and the interference effect on green LED light was greatest at 57.8 and 27.4%, respectively; the effect disappeared in Pf-D. The media containing riboflavin induced strong phototoxicity in HaCaT keratinocytes by generating H2O2 under light irradiation, which was quenched by sodium pyruvate in the media. The presence of serum in the media was also reduced the phototoxicity; H2O2 levels in the media decreased serum content dependently. The phototoxicity of erythrosine B and protoporphyrin IX under FL was more sensitively pronounced in PRbf-D than in DMEM. The present results indicate that several medium components, including riboflavin, phenol red, sodium pyruvate, and serum, could modulate photosensitizing responses in a cell culture system by inducing photosensitizing activation and by interfering with irradiation efficacy and ROS generation.
Collapse
Affiliation(s)
| | - Jungil Hong
- Department of Food Science and Technology, College of Science and Convergence Technology, Seoul Women’s University, Hwarang-ro 621, Nowon-gu, Seoul 01797, Republic of Korea;
| |
Collapse
|
17
|
Demetriou K, Nisbet J, Coman D, Ewing AD, Phillips L, Smith S, Lipke M, Inwood A, Spicer J, Atthow C, Wilgen U, Robertson T, McWhinney A, Swenson R, Espley B, Snowdon B, McGill JJ, Summers KM. Molecular genetic analysis of candidate genes for glutaric aciduria type II in a cohort of patients from Queensland, Australia. Mol Genet Metab 2024; 142:108516. [PMID: 38941880 DOI: 10.1016/j.ymgme.2024.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Glutaric aciduria type II (GAII) is a heterogeneous genetic disorder affecting mitochondrial fatty acid, amino acid and choline oxidation. Clinical manifestations vary across the lifespan and onset may occur at any time from the early neonatal period to advanced adulthood. Historically, some patients, in particular those with late onset disease, have experienced significant benefit from riboflavin supplementation. GAII has been considered an autosomal recessive condition caused by pathogenic variants in the gene encoding electron-transfer flavoprotein ubiquinone-oxidoreductase (ETFDH) or in the genes encoding electron-transfer flavoprotein subunits A and B (ETFA and ETFB respectively). Variants in genes involved in riboflavin metabolism have also been reported. However, in some patients, molecular analysis has failed to reveal diagnostic molecular results. In this study, we report the outcome of molecular analysis in 28 Australian patients across the lifespan, 10 paediatric and 18 adult, who had a diagnosis of glutaric aciduria type II based on both clinical and biochemical parameters. Whole genome sequencing was performed on 26 of the patients and two neonatal onset patients had targeted sequencing of candidate genes. The two patients who had targeted sequencing had biallelic pathogenic variants (in ETFA and ETFDH). None of the 26 patients whose whole genome was sequenced had biallelic variants in any of the primary candidate genes. Interestingly, nine of these patients (34.6%) had a monoallelic pathogenic or likely pathogenic variant in a single primary candidate gene and one patient (3.9%) had a monoallelic pathogenic or likely pathogenic variant in two separate genes within the same pathway. The frequencies of the damaging variants within ETFDH and FAD transporter gene SLC25A32 were significantly higher than expected when compared to the corresponding allele frequencies in the general population. The remaining 16 patients (61.5%) had no pathogenic or likely pathogenic variants in the candidate genes. Ten (56%) of the 18 adult patients were taking the selective serotonin reuptake inhibitor antidepressant sertraline, which has been shown to produce a GAII phenotype, and another two adults (11%) were taking a serotonin-norepinephrine reuptake inhibitor antidepressant, venlafaxine or duloxetine, which have a mechanism of action overlapping that of sertraline. Riboflavin deficiency can also mimic both the clinical and biochemical phenotype of GAII. Several patients on these antidepressants showed an initial response to riboflavin but then that response waned. These results suggest that the GAII phenotype can result from a complex interaction between monoallelic variants and the cellular environment. Whole genome or targeted gene panel analysis may not provide a clear molecular diagnosis.
Collapse
Affiliation(s)
- Kalliope Demetriou
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Janelle Nisbet
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - David Coman
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; Wesley Medical Centre, Auchenflower, QLD 4066, Australia; University of Queensland, St Lucia, QLD 4072, Australia
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Liza Phillips
- Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Sally Smith
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Michelle Lipke
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Anita Inwood
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; University of Queensland, St Lucia, QLD 4072, Australia
| | - Janette Spicer
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Catherine Atthow
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia
| | - Urs Wilgen
- University of Queensland, St Lucia, QLD 4072, Australia; Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Thomas Robertson
- University of Queensland, St Lucia, QLD 4072, Australia; Anatomical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Avis McWhinney
- Chemical Pathology, Mater Pathology, Mater Hospital, Mater Hospital Brisbane, QLD 4101, Australia
| | - Rebecca Swenson
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Brayden Espley
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - Brianna Snowdon
- Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia
| | - James J McGill
- Queensland Lifespan Metabolic Medicine Service, Queensland Children's Hospital, South Brisbane, QLD 4101, Australia; Queensland Lifespan Metabolic Medicine Service, Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia; Chemical Pathology, Pathology Queensland, Royal Brisbane and Women's Hospital, Herston, QLD 4029, Australia; Chemical Pathology, Mater Pathology, Mater Hospital, Mater Hospital Brisbane, QLD 4101, Australia
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
18
|
Magliocca V, Lanciotti A, Ambrosini E, Travaglini L, D’Ezio V, D’Oria V, Petrini S, Catteruccia M, Massey K, Tartaglia M, Bertini E, Persichini T, Compagnucci C. Modeling riboflavin transporter deficiency type 2: from iPSC-derived motoneurons to iPSC-derived astrocytes. Front Cell Neurosci 2024; 18:1440555. [PMID: 39113759 PMCID: PMC11303166 DOI: 10.3389/fncel.2024.1440555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Riboflavin transporter deficiency type 2 (RTD2) is a rare neurodegenerative autosomal recessive disease caused by mutations in the SLC52A2 gene encoding the riboflavin transporters, RFVT2. Riboflavin (Rf) is the precursor of FAD (flavin adenine dinucleotide) and FMN (flavin mononucleotide), which are involved in different redox reactions, including the energetic metabolism processes occurring in mitochondria. To date, human induced pluripotent stem cells (iPSCs) have given the opportunity to characterize RTD2 motoneurons, which reflect the most affected cell type. Previous works have demonstrated mitochondrial and peroxisomal altered energy metabolism as well as cytoskeletal derangement in RTD2 iPSCs and iPSC-derived motoneurons. So far, no attention has been dedicated to astrocytes. Results and discussion Here, we demonstrate that in vitro differentiation of astrocytes, which guarantee trophic and metabolic support to neurons, from RTD2 iPSCs is not compromised. These cells do not exhibit evident morphological differences nor significant changes in the survival rate when compared to astrocytes derived from iPSCs of healthy individuals. These findings indicate that differently from what had previously been documented for neurons, RTD2 does not compromise the morpho-functional features of astrocytes.
Collapse
Affiliation(s)
- Valentina Magliocca
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- Department of Science, University “Roma Tre”, Rome, Italy
| | - Angela Lanciotti
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Lorena Travaglini
- Unit of Translational Cytogenetic Research, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Valentina D’Oria
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Catteruccia
- Unit of Neuromuscular and Neurodegenerative Disorders, Translational Pediatrics and Clinical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Translational Pediatrics and Clinical Genetics, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | |
Collapse
|
19
|
Aragão MÂ, Pires L, Santos-Buelga C, Barros L, Calhelha RC. Revitalising Riboflavin: Unveiling Its Timeless Significance in Human Physiology and Health. Foods 2024; 13:2255. [PMID: 39063339 PMCID: PMC11276209 DOI: 10.3390/foods13142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Since the early twentieth century, research on vitamins has revealed their therapeutic potential beyond their role as essential micronutrients. Riboflavin, known as vitamin B2, stands out for its unique characteristics. Despite numerous studies, riboflavin remains vital, with implications for human health. Abundantly present in various foods, riboflavin acts as a coenzyme in numerous enzymatic reactions crucial for human metabolism. Its role in energy production, erythrocyte synthesis, and vitamin metabolism underscores its importance in maintaining homeostasis. The impact of riboflavin extends to neurological function, skin health, and cardiovascular well-being, with adequate levels linked to reduced risks of various ailments. However, inadequate intake or physiological stress can lead to deficiency, a condition that poses serious health risks, including severe complications. This underscores the importance of maintaining sufficient levels of riboflavin for general wellness. The essential role of riboflavin in immune function further emphasises its significance for human health and vitality. This paper examines the diverse effects of riboflavin on health and stresses the importance of maintaining sufficient levels for overall well-being.
Collapse
Affiliation(s)
- M. Ângela Aragão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, s/n, 37007 Salamanca, Spain;
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.Â.A.); (L.P.); (L.B.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
20
|
Leo G, Leone P, Ataie Kachoie E, Tolomeo M, Galluccio M, Indiveri C, Barile M, Capaldi S. Structural insights into the bifunctional enzyme human FAD synthase. Structure 2024; 32:953-965.e5. [PMID: 38688286 DOI: 10.1016/j.str.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Human flavin adenine dinucleotide synthase (hFADS) is a bifunctional, multi-domain enzyme that exhibits both flavin mononucleotide adenylyltransferase and pyrophosphatase activities. Here we report the crystal structure of full-length hFADS2 and its C-terminal PAPS domain in complex with flavin adenine dinucleotide (FAD), and dissect the structural determinants underlying the contribution of each individual domain, within isoforms 1 and 2, to each of the two enzymatic activities. Structural and functional characterization performed on complete or truncated constructs confirmed that the C-terminal domain tightly binds FAD and catalyzes its synthesis, while the combination of the N-terminal molybdopterin-binding and KH domains is the minimal essential substructure required for the hydrolysis of FAD and other ADP-containing dinucleotides. hFADS2 associates in a stable C2-symmetric dimer, in which the packing of the KH domain of one protomer against the N-terminal domain of the other creates the adenosine-specific active site responsible for the hydrolytic activity.
Collapse
Affiliation(s)
- Giulia Leo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnology and Environment, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Elham Ataie Kachoie
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnology and Environment, University of Bari, via Orabona 4, 70126 Bari, Italy; Department of Biology, Ecology and Earth Sciences (DiBEST), Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, via P. Bucci 4c, 6c, 87036 Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department of Biology, Ecology and Earth Sciences (DiBEST), Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, via P. Bucci 4c, 6c, 87036 Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department of Biology, Ecology and Earth Sciences (DiBEST), Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, via P. Bucci 4c, 6c, 87036 Arcavacata di Rende, Italy; National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), via Amendola 122/O, 70126 Bari, Italy
| | - Maria Barile
- Department of Biosciences, Biotechnology and Environment, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | - Stefano Capaldi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|
21
|
Ji Y, Zhao J, Gong J, Sedlazeck FJ, Fan S. Unveiling novel genetic variants in 370 challenging medically relevant genes using the long read sequencing data of 41 samples from 19 global populations. Mol Genet Genomics 2024; 299:65. [PMID: 38972030 PMCID: PMC11955097 DOI: 10.1007/s00438-024-02158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/16/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND A large number of challenging medically relevant genes (CMRGs) are situated in complex or highly repetitive regions of the human genome, hindering comprehensive characterization of genetic variants using next-generation sequencing technologies. In this study, we employed long-read sequencing technology, extensively utilized in studying complex genomic regions, to characterize genetic alterations, including short variants (single nucleotide variants and short insertions and deletions) and copy number variations, in 370 CMRGs across 41 individuals from 19 global populations. RESULTS Our analysis revealed high levels of genetic variants in CMRGs, with 68.73% exhibiting copy number variations and 65.20% containing short variants that may disrupt protein function across individuals. Such variants can influence pharmacogenomics, genetic disease susceptibility, and other clinical outcomes. We observed significant differences in CMRG variation across populations, with individuals of African ancestry harboring the highest number of copy number variants and short variants compared to samples from other continents. Notably, 15.79% to 33.96% of short variants were exclusively detectable through long-read sequencing. While the T2T-CHM13 reference genome significantly improved the assembly of CMRG regions, thereby facilitating variant detection in these regions, some regions still lacked resolution. CONCLUSION Our results provide an important reference for future clinical and pharmacogenetic studies, highlighting the need for a comprehensive representation of global genetic diversity in the reference genome and improved variant calling techniques to fully resolve medically relevant genes.
Collapse
Affiliation(s)
- Yanfeng Ji
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Junfan Zhao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Jiao Gong
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Computer Science, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| | - Shaohua Fan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
22
|
Míčková K, Jelínek V, Tomášek O, Stopková R, Stopka P, Albrecht T. Proteomic analysis reveals dynamic changes in cloacal fluid composition during the reproductive season in a sexually promiscuous passerine. Sci Rep 2024; 14:14259. [PMID: 38902251 PMCID: PMC11190206 DOI: 10.1038/s41598-024-62244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Cryptic female choice (CFC) is a component of postcopulatory sexual selection that allows females to influence the fertilization success of sperm from different males. While its precise mechanisms remain unclear, they may involve the influence of the protein composition of the female reproductive fluids on sperm functionality. This study maps the protein composition of the cloacal fluid across different phases of female reproductive cycle in a sexually promiscuous passerine, the barn swallow. Similar to mammals, the protein composition in the female reproductive tract differed between receptive (when females copulate) and nonreceptive phases. With the change in the protein background, the enriched gene ontology terms also shifted. Within the receptive phase, distinctions were observed between proteomes sampled just before and during egg laying. However, three proteins exhibited increased abundance during the entire receptive phase compared to nonreceptive phases. These proteins are candidates in cryptic female choice, as all of them can influence the functionality of sperm or sperm-egg interaction. Our study demonstrates dynamic changes in the cloacal environment throughout the avian breeding cycle, emphasizing the importance of considering these fluctuations in studies of cryptic female choice.
Collapse
Affiliation(s)
- Kristýna Míčková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
| | - Václav Jelínek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
| | - Oldřich Tomášek
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Romana Stopková
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
- Institute of Vertebrate Biology, The Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
23
|
Cheng J, Yao J, Zhao S, Fu L, Zhang L, Jiang J. A riboflavin transporter deficiency presenting as pure red cell aplasia: a pediatric case report. Front Pediatr 2024; 12:1391245. [PMID: 38694724 PMCID: PMC11061399 DOI: 10.3389/fped.2024.1391245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Riboflavin transporter deficiency (RTD) is a rare genetic disorder that affects riboflavin transport, leading to impaired red blood cell production and resulting in pure red cell aplasia. Recognizing and understanding its clinical manifestations, diagnosis, and management is important. Case presentation A 2-year-old patient presented with pure red cell aplasia as the primary symptom of RTD. After confirming the diagnosis, rapid reversal of anemia was achieved after high-dose riboflavin treatment. Conclusion RTD often has an insidious onset, and neurological symptoms appear gradually as the disease progresses, making it prone to misdiagnosis. Genetic testing and bone marrow biopsy can confirm the diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Jiang
- Department of Hematology, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Da'dara AA, Gondane R, Skelly PJ. The riboflavin (vitamin B2) transporter protein (SmaRT) of the human intravascular parasitic trematode Schistosoma mansoni. Heliyon 2024; 10:e28271. [PMID: 38601580 PMCID: PMC11004526 DOI: 10.1016/j.heliyon.2024.e28271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Schistosomes are intravascular parasitic worms infecting >200 million people globally. Here we examine how the worms acquire an essential nutrient - vitamin B2 (riboflavin). We demonstrate that all intravascular life stages (schistosomula, adult males and females) take up radiolabeled riboflavin. This process is impeded in the presence of excess unlabeled riboflavin and at 4 °C. We have identified a transporter homolog in worms designated SmaRT (Schistosoma mansoni riboflavin transporter) that localizes to the tegument and internal tissues of adults. CHO-S cells transfected with plasmid encoding SmaRT import significantly more radiolabeled riboflavin compared to controls. Uptake of radiolabel is impeded when SmaRT-expressing cells are incubated in an excess of unlabeled riboflavin but not by an excess of an irrelevant metabolite. Uptake is mediated in a sodium-independent manner and over a wide range of pH values (pH 5.5-9). This is the first identification of a bone fide riboflavin transporter in any platyhelminth.
Collapse
Affiliation(s)
- Akram A. Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Roshni Gondane
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| |
Collapse
|
25
|
Lysne V, Strandler HS. Riboflavin: a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr Res 2023; 67:10315. [PMID: 38187799 PMCID: PMC10770701 DOI: 10.29219/fnr.v67.10315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/26/2022] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Only a few studies have explored relationships between riboflavin intake and function and a few studies have examined the effects of supplements on various clinical or biochemical outcomes. None of these studies, however, make a useful contribution to understanding requirements in healthy populations. Thus, there is no strong evidence to change the recommendations. The requirement for riboflavin is estimated based on the relationship between intake and biochemical indices of riboflavin status, including urinary excretion and enzyme activities.
Collapse
Affiliation(s)
- Vegard Lysne
- Department of Health and Inequality, Norwegian Institute of Public Health, Oslo, Norway
| | | |
Collapse
|
26
|
Tummolo A, Carella R, De Giovanni D, Paterno G, Simonetti S, Tolomeo M, Leone P, Barile M. Micronutrient Deficiency in Inherited Metabolic Disorders Requiring Diet Regimen: A Brief Critical Review. Int J Mol Sci 2023; 24:17024. [PMID: 38069347 PMCID: PMC10707160 DOI: 10.3390/ijms242317024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Many inherited metabolic disorders (IMDs), including disorders of amino acid, fatty acid, and carbohydrate metabolism, are treated with a dietary reduction or exclusion of certain macronutrients, putting one at risk of a reduced intake of micronutrients. In this review, we aim to provide available evidence on the most common micronutrient deficits related to specific dietary approaches and on the management of their deficiency, in the meanwhile discussing the main critical points of each nutritional supplementation. The emerging concepts are that a great heterogeneity in clinical practice exists, as well as no univocal evidence on the most common micronutrient abnormalities. In phenylketonuria, for example, micronutrients are recommended to be supplemented through protein substitutes; however, not all formulas are equally supplemented and some of them are not added with micronutrients. Data on pyridoxine and riboflavin status in these patients are particularly scarce. In long-chain fatty acid oxidation disorders, no specific recommendations on micronutrient supplementation are available. Regarding carbohydrate metabolism disorders, the difficult-to-ascertain sugar content in supplementation formulas is still a matter of concern. A ketogenic diet may predispose one to both oligoelement deficits and their overload, and therefore deserves specific formulations. In conclusion, our overview points out the lack of unanimous approaches to micronutrient deficiencies, the need for specific formulations for IMDs, and the necessity of high-quality studies, particularly for some under-investigated deficits.
Collapse
Affiliation(s)
- Albina Tummolo
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy; (R.C.); (D.D.G.); (G.P.)
| | - Rosa Carella
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy; (R.C.); (D.D.G.); (G.P.)
| | - Donatella De Giovanni
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy; (R.C.); (D.D.G.); (G.P.)
| | - Giulia Paterno
- Department of Metabolic Diseases, Clinical Genetics and Diabetology, Giovanni XXIII Children Hospital, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy; (R.C.); (D.D.G.); (G.P.)
| | - Simonetta Simonetti
- Regional Centre for Neonatal Screening, Department of Clinical Pathology and Neonatal Screening, Children’s Hospital “Giovanni XXIII”, Azienda Ospedaliero-Universitaria Consorziale, 70126 Bari, Italy;
| | - Maria Tolomeo
- Department of Biosciences, Biotechnology and Environment, University of Bari “A. Moro”, via Orabona 4, 70125 Bari, Italy; (M.T.); (P.L.)
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, via P. Bucci 4C, 87036 Arcavacata di Rende, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnology and Environment, University of Bari “A. Moro”, via Orabona 4, 70125 Bari, Italy; (M.T.); (P.L.)
| | - Maria Barile
- Department of Biosciences, Biotechnology and Environment, University of Bari “A. Moro”, via Orabona 4, 70125 Bari, Italy; (M.T.); (P.L.)
| |
Collapse
|
27
|
Piano I, Votta A, Colucci P, Corsi F, Vitolo S, Cerri C, Puppi D, Lai M, Maya-Vetencourt JF, Leigheb M, Gabellini C, Ferraro E. Anti-inflammatory reprogramming of microglia cells by metabolic modulators to counteract neurodegeneration; a new role for Ranolazine. Sci Rep 2023; 13:20138. [PMID: 37978212 PMCID: PMC10656419 DOI: 10.1038/s41598-023-47540-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Microglia chronic activation is a hallmark of several neurodegenerative diseases, including the retinal ones, possibly contributing to their etiopathogenesis. However, some microglia sub-populations have anti-inflammatory and neuroprotective functions, thus making arduous deciphering the role of these cells in neurodegeneration. Since it has been proposed that functionally different microglia subsets also rely on different metabolic routes, we hypothesized that modulating microglia metabolism might be a tool to enhance their anti-inflammatory features. This would have a preventive and therapeutic potential in counteracting neurodegenerative diseases. For this purpose, we tested various molecules known to act on cell metabolism, and we revealed the anti-inflammatory effect of the FDA-approved piperazine derivative Ranolazine on microglia cells, while confirming the one of the flavonoids Quercetin and Naringenin, both in vitro and in vivo. We also demonstrated the synergistic anti-inflammatory effect of Quercetin and Idebenone, and the ability of Ranolazine, Quercetin and Naringenin to counteract the neurotoxic effect of LPS-activated microglia on 661W neuronal cells. Overall, these data suggest that using the selected molecules -also in combination therapies- might represent a valuable approach to reduce inflammation and neurodegeneration while avoiding long term side effects of corticosteroids.
Collapse
Affiliation(s)
- Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Arianna Votta
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | - Sara Vitolo
- Department of Biology, University of Pisa, Pisa, Italy
| | - Chiara Cerri
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Dario Puppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Michele Lai
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - José Fernando Maya-Vetencourt
- Department of Biology, University of Pisa, Pisa, Italy
- Centre for Synaptic Neuroscience, Italian Institute of Technology (IIT), Genova, Italy
| | - Massimiliano Leigheb
- Orthopaedics and Traumatology Unit, "Maggiore della Carità" Hospital, Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy
| | | | | |
Collapse
|
28
|
Murgia C, Dehlia A, Guthridge MA. New insights into the nutritional genomics of adult-onset riboflavin-responsive diseases. Nutr Metab (Lond) 2023; 20:42. [PMID: 37845732 PMCID: PMC10580530 DOI: 10.1186/s12986-023-00764-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Riboflavin, or vitamin B2, is an essential nutrient that serves as a precursor to flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN). The binding of the FAD and/or FMN cofactors to flavoproteins is critical for regulating their assembly and activity. There are over 90 proteins in the human flavoproteome that regulate a diverse array of biochemical pathways including mitochondrial metabolism, riboflavin transport, ubiquinone and FAD synthesis, antioxidant signalling, one-carbon metabolism, nitric oxide signalling and peroxisome oxidative metabolism. The identification of patients with genetic variants in flavoprotein genes that lead to adult-onset pathologies remains a major diagnostic challenge. However, once identified, many patients with adult-onset inborn errors of metabolism demonstrate remarkable responses to riboflavin therapy. We review the structure:function relationships of mutant flavoproteins and propose new mechanistic insights into adult-onset riboflavin-responsive pathologies and metabolic dysregulations that apply to multiple biochemical pathways. We further address the vexing issue of how the inheritance of genetic variants in flavoprotein genes leads to an adult-onset disease with complex symptomologies and varying severities. We also propose a broad clinical framework that may not only improve the current diagnostic rates, but also facilitate a personalized approach to riboflavin therapy that is low cost, safe and lead to transformative outcomes in many patients.
Collapse
Affiliation(s)
- Chiara Murgia
- The School of Agriculture, Food and Ecosystem Sciences (SAFES), Faculty of Science, The University of Melbourne, Parkville, Australia.
| | - Ankush Dehlia
- School of Life and Environmental Sciences, Deakin University, Burwood, Australia
| | - Mark A Guthridge
- School of Life and Environmental Sciences, Deakin University, Burwood, Australia
| |
Collapse
|
29
|
Nisco A, Carvalho TMA, Tolomeo M, Di Molfetta D, Leone P, Galluccio M, Medina M, Indiveri C, Reshkin SJ, Cardone RA, Barile M. Increased demand for FAD synthesis in differentiated and stem pancreatic cancer cells is accomplished by modulating FLAD1 gene expression: the inhibitory effect of Chicago Sky Blue. FEBS J 2023; 290:4679-4694. [PMID: 37254652 DOI: 10.1111/febs.16881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
FLAD1, along with its FAD synthase (FADS, EC 2.7.7.2) product, is crucial for flavin homeostasis and, due to its role in the mitochondrial respiratory chain and nuclear epigenetics, is closely related to cellular metabolism. Therefore, it is not surprising that it could be correlated with cancer. To our knowledge, no previous study has investigated FLAD1 prognostic significance in pancreatic ductal adenocarcinoma (PDAC). Thus, in the present work, the FAD synthesis process was evaluated in two PDAC cell lines: (a) PANC-1- and PANC-1-derived cancer stem cells (CSCs), presenting the R273H mutation in the oncosuppressor p53, and (b) MiaPaca2 and MiaPaca2-derived CSCs, presenting the R248W mutation in p53. As a control, HPDE cells expressing wt-p53 were used. FADS expression/activity increase was found with malignancy and even more with stemness. An increased FAD synthesis rate in cancer cell lines is presumably demanded by the increase in the FAD-dependent lysine demethylase 1 protein amount as well as by the increased expression levels of the flavoprotein subunit of complex II of the mitochondrial respiratory chain, namely succinate dehydrogenase. With the aim of proposing FADS as a novel target for cancer therapy, the inhibitory effect of Chicago Sky Blue on FADS enzymatic activity was tested on the recombinant 6His-hFADS2 (IC50 = 1.2 μm) and PANC-1-derived CSCs' lysate (IC50 = 2-10 μm). This molecule was found effective in inhibiting the growth of PANC-1 and even more of its derived CSC line, thus assessing its role as a potential chemotherapeutic drug.
Collapse
Affiliation(s)
- Alessia Nisco
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Tiago M A Carvalho
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Maria Tolomeo
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Michele Galluccio
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), University of Zaragoza, Spain
| | - Cesare Indiveri
- Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Maria Barile
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| |
Collapse
|
30
|
Narne P, Phanithi PB. Role of NAD + and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2023; 43:1719-1768. [PMID: 36180651 PMCID: PMC11412205 DOI: 10.1007/s10571-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
Collapse
Affiliation(s)
- Parimala Narne
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| |
Collapse
|
31
|
Zhang Y, Shipkova PA, Warrack BM, Nelson DM, Wang L, Huo R, Chen J, Panfen E, Chen XQ, Fancher RM, Ruan Q, Christopher LJ, Xue Y, Sinz M, Shen H. Metabolomic Profiling and Drug Interaction Characterization Reveal Riboflavin As a Breast Cancer Resistance Protein-Specific Endogenous Biomarker That Demonstrates Prediction of Transporter Activity In Vivo. Drug Metab Dispos 2023; 51:851-861. [PMID: 37055191 DOI: 10.1124/dmd.123.001284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023] Open
Abstract
Advancement of endogenous biomarkers for drug transporters as a tool for assessing drug-drug interactions (DDIs) depends on initial identification of biomarker candidates and relies heavily on biomarker validation and its response to reference inhibitors in vivo. To identify endogenous biomarkers of breast cancer resistance protein (BCRP), we applied metabolomic approaches to profile plasma from Bcrp-/-, multidrug resistance protein (Mdr)1a/1b-/-, and Bcrp/Mdr1a/1b-/- mice. Approximately 130 metabolites were significantly altered in Bcrp and P-glycoprotein (P-gp) knockout mice, indicating numerous metabolite-transporter interactions. We focused on BCRP-specific substrates and identified riboflavin, which was significantly elevated in the plasma of Bcrp single- and Bcrp/P-gp double- but not P-gp single-knockout mice. Dual BCRP/P-gp inhibitor elacridar caused a dose-dependent increase of the area under the plasma concentration-time curve (AUC) of riboflavin in mice (1.51- and 1.93-fold increases by 30 and 150 mg/kg elacridar, respectively). In three cynomolgus monkeys, we observed approximately 1.7-fold increases in the riboflavin concentrations caused by ML753286 (10 mg/kg), which correlated well with the increase of sulfasalazine, a known BCRP probe in monkeys. However, the BCRP inhibitor had no effect on isobutyryl carnitine, arginine, or 2-arachidonoyl glycerol levels. Additionally, clinical studies on healthy volunteers indicated low intrasubject and intermeal variability of plasma riboflavin concentrations. In vitro experiments using membrane vesicles demonstrated riboflavin as a select substrate of monkey and human BCRP over P-gp. Collectively, this proof-of-principle study indicates that riboflavin is a suitable endogenous probe for BCRP activity in mice and monkeys and that future investigation of riboflavin as a blood-based biomarker of human BCRP is warranted. SIGNIFICANCE STATEMENT: Our results identified riboflavin as an endogenous biomarker candidate of BCRP. Its selectivity, sensitivity, and predictivity regarding BCRP inhibition have been explored. The findings of this study highlight riboflavin as an informative BCRP plasma biomarker in animal models. The utility of this biomarker requires further validation by evaluating the effects of BCRP inhibitors of different potencies on riboflavin plasma concentrations in humans. Ultimately, riboflavin may shed light on the risk assessment of BCRP DDIs in early clinical trials.
Collapse
Affiliation(s)
- Yueping Zhang
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Petia A Shipkova
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Bethanne M Warrack
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - David M Nelson
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Linna Wang
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Runlan Huo
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Jian Chen
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Erika Panfen
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Xue-Qing Chen
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - R Marcus Fancher
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Qian Ruan
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Lisa J Christopher
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Yongjun Xue
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Michael Sinz
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| | - Hong Shen
- Departments of Drug Metabolism and Pharmacokinetics (Y.Z., E.P., R.M.F., M.S., H.S.), Bioanalytical Research (P.A.S., B.M.W.), Translational Development (D.M.N.), Nonclinical Disposition and Bioanalysis (L.W., R.H., J.C., Q.R., L.J.C., Y.X.), and Discovery Pharmaceutics (X.-Q.C.), Bristol Myers Squibb Research and Development, Princeton, New Jersey
| |
Collapse
|
32
|
Peng H, Xie M, Zhong X, Su Y, Qin X, Xu Q, Zhou S. Riboflavin ameliorates pathological cardiac hypertrophy and fibrosis through the activation of short-chain acyl-CoA dehydrogenase. Eur J Pharmacol 2023:175849. [PMID: 37331684 DOI: 10.1016/j.ejphar.2023.175849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
Short-chain acyl-CoA dehydrogenase (SCAD), the rate-limiting enzyme for fatty acid β-oxidation, has a negative regulatory effect on pathological cardiac hypertrophy and fibrosis. FAD, a coenzyme of SCAD, participates in the electron transfer of SCAD-catalyzed fatty acid β-oxidation, which plays a crucial role in maintaining the balance of myocardial energy metabolism. Insufficient riboflavin intake can lead to symptoms similar to short-chain acyl-CoA dehydrogenase (SCAD) deficiency or flavin adenine dinucleotide (FAD) gene abnormality, which can be alleviated by riboflavin supplementation. However, whether riboflavin can inhibit pathological cardiac hypertrophy and fibrosis remains unclear. Therefore, we observed the effect of riboflavin on pathological cardiac hypertrophy and fibrosis. In vitro experiments, riboflavin increased SCAD expression and the content of ATP, decreased the free fatty acids content and improved PE-induced cardiomyocytes hypertrophy and AngⅡ-induced cardiac fibroblasts proliferation by increasing the content of FAD, which were attenuated by knocking down the expression of SCAD using small interfering RNA. In vivo experiments, riboflavin significantly increased the expression of SCAD and the energy metabolism of the heart to improve TAC induced pathological myocardial hypertrophy and fibrosis in mice. The results demonstrate that riboflavin improves pathological cardiac hypertrophy and fibrosis by increasing the content of FAD to activate SCAD, which may be a new strategy for treating pathological cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Huan Peng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China.
| | - Min Xie
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Xiaoyi Zhong
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Yongshao Su
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Xue Qin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Qingping Xu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Sigui Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China.
| |
Collapse
|
33
|
Denniss RJ, Barker LA. Brain Trauma and the Secondary Cascade in Humans: Review of the Potential Role of Vitamins in Reparative Processes and Functional Outcome. Behav Sci (Basel) 2023; 13:bs13050388. [PMID: 37232626 DOI: 10.3390/bs13050388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
An estimated sixty-nine million people sustain a traumatic brain injury each year. Trauma to the brain causes the primary insult and initiates a secondary biochemical cascade as part of the immune and reparative response to injury. The secondary cascade, although a normal physiological response, may also contribute to ongoing neuroinflammation, oxidative stress and axonal injury, continuing in some cases years after the initial insult. In this review, we explain some of the biochemical mechanisms of the secondary cascade and their potential deleterious effects on healthy neurons including secondary cell death. The second part of the review focuses on the role of micronutrients to neural mechanisms and their potential reparative effects with regards to the secondary cascade after brain injury. The biochemical response to injury, hypermetabolism and excessive renal clearance of nutrients after injury increases the demand for most vitamins. Currently, most research in the area has shown positive outcomes of vitamin supplementation after brain injury, although predominantly in animal (murine) models. There is a pressing need for more research in this area with human participants because vitamin supplementation post-trauma is a potential cost-effective adjunct to other clinical and therapeutic treatments. Importantly, traumatic brain injury should be considered a lifelong process and better evaluated across the lifespan of individuals who experience brain injury.
Collapse
Affiliation(s)
- Rebecca J Denniss
- Department of Psychology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Lynne A Barker
- Centre for Behavioural Science and Applied Psychology, Department of Psychology, Sociology and Politics, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
34
|
Gaddameedi JD, Chou T, Geller BS, Rangarajan A, Swaminathan TA, Dixon D, Long K, Golder CJ, Vuong VA, Banuelos S, Greenhouse R, Snyder MP, Lipchik AM, Gruber JJ. Acetyl-Click Screening Platform Identifies Small-Molecule Inhibitors of Histone Acetyltransferase 1 (HAT1). J Med Chem 2023; 66:5774-5801. [PMID: 37027002 PMCID: PMC10243098 DOI: 10.1021/acs.jmedchem.3c00039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
HAT1 is a central regulator of chromatin synthesis that acetylates nascent histone H4. To ascertain whether targeting HAT1 is a viable anticancer treatment strategy, we sought to identify small-molecule inhibitors of HAT1 by developing a high-throughput HAT1 acetyl-click assay. Screening of small-molecule libraries led to the discovery of multiple riboflavin analogs that inhibited HAT1 enzymatic activity. Compounds were refined by synthesis and testing of over 70 analogs, which yielded structure-activity relationships. The isoalloxazine core was required for enzymatic inhibition, whereas modifications of the ribityl side chain improved enzymatic potency and cellular growth suppression. One compound (JG-2016 [24a]) showed relative specificity toward HAT1 compared to other acetyltransferases, suppressed the growth of human cancer cell lines, impaired enzymatic activity in cellulo, and interfered with tumor growth. This is the first report of a small-molecule inhibitor of the HAT1 enzyme complex and represents a step toward targeting this pathway for cancer therapy.
Collapse
Affiliation(s)
- Jitender D. Gaddameedi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201
| | - Tristan Chou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94309
| | - Benjamin S. Geller
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94309
| | - Amithvikram Rangarajan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94309
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158
| | - Tarun A. Swaminathan
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Danielle Dixon
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Katherine Long
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Caiden J. Golder
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Van A. Vuong
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Selene Banuelos
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94309
| | - Robert Greenhouse
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, 94309
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94309
| | - Andrew M. Lipchik
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201
| | - Joshua J. Gruber
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| |
Collapse
|
35
|
Zheng W, He Y, Guo Y, Yue T, Zhang H, Li J, Zhou B, Zeng X, Li L, Wang B, Cao J, Chen L, Li C, Li H, Cui C, Bai C, Baimakangzhuo, Qi X, Ouzhuluobu, Su B. Large-scale genome sequencing redefines the genetic footprints of high-altitude adaptation in Tibetans. Genome Biol 2023; 24:73. [PMID: 37055782 PMCID: PMC10099689 DOI: 10.1186/s13059-023-02912-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Tibetans are genetically adapted to high-altitude environments. Though many studies have been conducted, the genetic basis of the adaptation remains elusive due to the poor reproducibility for detecting selective signatures in the Tibetan genomes. RESULTS Here, we present whole-genome sequencing (WGS) data of 1001 indigenous Tibetans, covering the major populated areas of the Qinghai-Tibetan Plateau in China. We identify 35 million variants, and more than one-third of them are novel variants. Utilizing the large-scale WGS data, we construct a comprehensive map of allele frequency and linkage disequilibrium and provide a population-specific genome reference panel, referred to as 1KTGP. Moreover, with the use of a combined approach, we redefine the signatures of Darwinian-positive selection in the Tibetan genomes, and we characterize a high-confidence list of 4320 variants and 192 genes that have undergone selection in Tibetans. In particular, we discover four new genes, TMEM132C, ATP13A3, SANBR, and KHDRBS2, with strong signals of selection, and they may account for the adaptation of cardio-pulmonary functions in Tibetans. Functional annotation and enrichment analysis indicate that the 192 genes with selective signatures are likely involved in multiple organs and physiological systems, suggesting polygenic and pleiotropic effects. CONCLUSIONS Overall, the large-scale Tibetan WGS data and the identified adaptive variants/genes can serve as a valuable resource for future genetic and medical studies of high-altitude populations.
Collapse
Affiliation(s)
- Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Jun Li
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000, China
| | - Bin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuerui Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Liya Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Bin Wang
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000, China
| | - Jingxin Cao
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000, China
| | - Li Chen
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000, China
| | - Chunxia Li
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000, China
| | - Hongyan Li
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000, China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Caijuan Bai
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Baimakangzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000, China.
| | - Ouzhuluobu
- Fukang Obstetrics, Gynecology and Children Branch Hospital, Tibetan Fukang Hospital, Lhasa, 850000, China.
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
36
|
Prasun P, Evans A, Cork E, Houten SM, Webb BD. A novel deleterious ETFA promoter variant causative of multiple acyl-CoA dehydrogenase deficiency. Am J Med Genet A 2023; 191:1089-1093. [PMID: 36579410 DOI: 10.1002/ajmg.a.63104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/30/2022]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder of fatty acid, amino acid, and choline metabolism. We describe a patient identified through newborn screening in which the diagnosis of MADD was confirmed based on metabolic profiling, but clinical molecular sequencing of ETFA, ETFB, and ETFDH was normal. In order to identify the genetic etiology of MADD, we performed whole genome sequencing and identified a novel homozygous promoter variant in ETFA (c.-85G > A). Subsequent studies showed decreased ETFA protein expression in lymphoblasts. A promoter luciferase assay confirmed decreased activity of the mutant promoter. In both assays, the variant displayed considerable residual activity, therefore we speculate that our patient may have a late onset form of MADD (Type III). Our findings may be helpful in establishing a molecular diagnosis in other MADD patients with a characteristic biochemical profile but apparently normal molecular studies.
Collapse
Affiliation(s)
- Pankaj Prasun
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anthony Evans
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emalyn Cork
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sander M Houten
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bryn D Webb
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Division of Genetics and Metabolism, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
37
|
Rivero M, Boneta S, Novo N, Velázquez-Campoy A, Polo V, Medina M. Riboflavin kinase and pyridoxine 5′-phosphate oxidase complex formation envisages transient interactions for FMN cofactor delivery. Front Mol Biosci 2023; 10:1167348. [PMID: 37056721 PMCID: PMC10086132 DOI: 10.3389/fmolb.2023.1167348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Enzymes catalysing sequential reactions have developed different mechanisms to control the transport and flux of reactants and intermediates along metabolic pathways, which usually involve direct transfer of metabolites from an enzyme to the next one in a cascade reaction. Despite the fact that metabolite or substrate channelling has been widely studied for reactant molecules, such information is seldom available for cofactors in general, and for flavins in particular. Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) act as cofactors in flavoproteins and flavoenzymes involved in a wide range of physiologically relevant processes in all type of organisms. Homo sapiens riboflavin kinase (RFK) catalyses the biosynthesis of the flavin mononucleotide cofactor, and might directly interplay with its flavin client apo-proteins prior to the cofactor transfer. Non-etheless, none of such complexes has been characterized at molecular or atomic level so far. Here, we particularly evaluate the interaction of riboflavin kinase with one of its potential FMN clients, pyridoxine-5′-phosphate oxidase (PNPOx). The interaction capacity of both proteins is assessed by using isothermal titration calorimetry, a methodology that allows to determine dissociation constants for interaction in the micromolar range (in agreement with the expected transient nature of the interaction). Moreover, we show that; i) both proteins become thermally stabilized upon mutual interaction, ii) the tightly bound FMN product can be transferred from RFK to the apo-form of PNPOx producing an efficient enzyme, and iii) the presence of the apo-form of PNPOx slightly enhances RFK catalytic efficiency. Finally, we also show a computational study to predict likely RFK-PNPOx binding modes that can envisage coupling between the FMN binding cavities of both proteins for the potential transfer of FMN.
Collapse
Affiliation(s)
- Maribel Rivero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Sergio Boneta
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Nerea Novo
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Group of Biochemistry, Biophysics and Computational Biology “GBsC” (BIFI, Unizar) Joint Unit to CSIC, Zaragoza, Spain
| | - Victor Polo
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Química Física, Universidad de Zaragoza, Zaragoza, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology “GBsC” (BIFI, Unizar) Joint Unit to CSIC, Zaragoza, Spain
- *Correspondence: Milagros Medina,
| |
Collapse
|
38
|
Qin Y, Zhou J, Xiong X, Huang J, Li J, Wang Q, Yang H, Yin Y. Effect of riboflavin on intestinal development and intestinal epithelial cell function of weaned piglets. J Anim Physiol Anim Nutr (Berl) 2023; 107:518-528. [PMID: 35534939 DOI: 10.1111/jpn.13725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Abstract
Riboflavin is a water-soluble vitamin involved in the metabolism of protein, fats and carbohydrates as a coenzyme. Pigs, mainly weaned piglets, are prone to riboflavin deficiency. Therefore, this study devoted to explore the effects of riboflavin on intestinal development and function of weaned piglets. A total of 21 piglets, weaned at day 21 of age, were randomly divided into three treatments. The experiment lasted 28 days. The three treatment groups were administered with 0 mg/kg (L_VB2), 3.5 mg/kg (M_VB2) and 17.5 (H_VB2) mg/kg riboflavin by addition into the dry matter basal diets of each group. During the 28-day trial, the feed conversion ratio of the M_VB2 group was lowest (p < 0.05). Duodenum villus height (VH) and the ratio of VH to crypt depth (VH:CD) in L_VB2 group was significantly lower compared with that in M_VB2 group and H_VB2 group (p < 0.05). In the L_VB2 group the number of Ki67 cells in the crypts of the duodenum was increased significantly (p < 0.05). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis using transcriptomic data showed that pathways related to apoptosis were significantly enriched in the L_VB2 group (p < 0.01). In addition, pathways related to inflammatory factors were significantly enriched in the H_VB2 group. The total antioxidant capacity (p < 0.05) and glutathione peroxidase (GSH-PX) activity (p < 0.05) of the L_VB2 group were lowest. In summary, riboflavin levels may regulate the intestinal morphology of piglet duodenum by affecting the renewal and differentiation of intestinal epithelial cells.
Collapse
Affiliation(s)
- Yan Qin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jing Zhou
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xia Xiong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Jing Huang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
39
|
Ghosh B, Roy N, Mandal S, Ali S, Bomzan P, Roy D, Salman Haydar M, Dakua VK, Upadhyay A, Biswas D, Paul KK, Roy MN. Host-Guest Encapsulation of RIBO with TSC4X: Synthesis, Characterization, and Its Application by Physicochemical and Computational Investigations. ACS OMEGA 2023; 8:6778-6790. [PMID: 36844564 PMCID: PMC9948204 DOI: 10.1021/acsomega.2c07396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In our present work, we synthesized a new encapsulated complex denoted as RIBO-TSC4X, which was derived from an important vitamin riboflavin (RIBO) and p-sulfonatothiacalix[4]arene(TSC4X). The synthesized complex RIBO-TSC4X was then characterized by utilizing several spectroscopic techniques such as 1H-NMR, FT-IR, PXRD, SEM, and TGA. Job's plot has been employed to show the encapsulation of RIBO (guest) with TSC4X (host) having a 1:1 molar ratio. The molecular association constant of the complex entity (RIBO-TSC4X) was found to be 3116.29 ± 0.17 M-1, suggesting the formation of a stable complex. The augment in aqueous solubility of the RIBO-TSC4X complex compared to pure RIBO was investigated by UV-vis spectroscopy, and it was viewed that the newly synthesized complex has almost 30 times enhanced solubility over pure RIBO. The enhancement of thermal stability upto 440 °C for the RIBO-TSC4X complex was examined by TG analysis. This research also forecasts RIBO's release behavior in the presence of CT-DNA, and at the same time, BSA binding study was also carried out. The synthesized RIBO-TSC4X complex exhibited comparatively better free radical scavenging activity, thereby minimizing oxidative injury of the cell as evident from a series of antioxidant and anti-lipid peroxidation assay. Furthermore, the RIBO-TSC4X complex showed peroxidase-like biomimetic activity, which is very useful for several enzyme catalyst reactions.
Collapse
Affiliation(s)
- Biswajit Ghosh
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Niloy Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Saikat Mandal
- Department
of Chemistry, National Institute of Technology, Durgapur 713209, India
| | - Salim Ali
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Pranish Bomzan
- Department
of Chemistry, Gorubathan Government College, Kalimpong 735231, India
| | - Debadrita Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| | - Md Salman Haydar
- Department
of Botany, University of North Bengal, Darjeeling 734013, India
| | - Vikas Kumar Dakua
- Department
of Chemistry, Alipurduar University, Alipurduar 736122, West Bengal, India
| | - Anupam Upadhyay
- Department
of Chemistry, Alipurduar University, Alipurduar 736122, West Bengal, India
| | - Debabrata Biswas
- Department
of Chemistry, Alipurduar University, Alipurduar 736122, West Bengal, India
| | - Kausik Kumar Paul
- Department
of Chemistry, Alipurduar University, Alipurduar 736122, West Bengal, India
| | - Mahendra Nath Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, West Bengal, India
| |
Collapse
|
40
|
Yuan C, Zhang K, Wang Z, Ma X, Liu H, Zhao J, Lu W, Wang J. Dietary flaxseed oil and vitamin E improve semen quality via propionic acid metabolism. Front Endocrinol (Lausanne) 2023; 14:1139725. [PMID: 37124753 PMCID: PMC10140321 DOI: 10.3389/fendo.2023.1139725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/15/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Flaxseed oil (FO) and vitamin E (VE) both have antioxidant effects on sperm. The present study investigated the effects of dietary supplementation with FO and/or VE on semen quality. Methods 16 fertile Simmental bulls were selected and randomly divided into 4 groups (n = 4): the control group (control diet), FO group (control diet containing 24 g/kg FO), VE group (control diet containing 150 mg/kg VE) and FOVE group (control diet containing 150 mg/kg VE and 24 g/kg FO), and the trial lasted 10 weeks. Results The results showed that the addition of FO independently can increase sperm motion parameters, the levels of catalase (CAT), glutathione peroxidase (GSH-Px), testosterone (T) and estradiol (E2), while reduce oxidative stress in seminal plasma (P < 0.05). Supplement of VE independently can increased the motility, motility parameters, CAT and superoxide dismutase (SOD) levels, and reduce oxidative stress in seminal plasma (P < 0.05). There was an interaction effect of FO × VE on motility and reactive oxygen species (ROS), while GSH-Px and ROS were affected by week × VE 2-way interaction, levels of T and E2 were also affected by the dietary FO × week interaction (P < 0.05). The triple interaction effects of FO, VE and week were significant for malondialdehyde (MDA) (P < 0.05). Compared with the control group, sperm from the FOVE group had a significantly higher in vitro fertilization (IVF) rate, and subsequent embryos had increased developmental ability with reduced ROS levels at the eight-cell stage, then increased adenosine triphosphate (ATP) content and gene expression levels of CAT, CDX2, Nanog, and SOD at the blastocyst stage (P < 0.05). Metabolomic and transcriptomic results indicated that dietary supplementation of FO and VE increased the expression of the metabolite aconitic acid, as well as the expression of ABAT and AHDHA genes. Conclusion With in-silico analysis, it can be concluded that the effects of dietary FO and VE on improving semen quality and embryo development may be related to increased aconitic acid via the ABAT and AHDHA genes involved in the propionic acid metabolism pathway.
Collapse
Affiliation(s)
- Chongshan Yuan
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Kaiyan Zhang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhe Wang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Xin Ma
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Hongyu Liu
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
| | - Jing Zhao
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- *Correspondence: Jing Zhao, ; Wenfa Lu, ; Jun Wang,
| | - Wenfa Lu
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- *Correspondence: Jing Zhao, ; Wenfa Lu, ; Jun Wang,
| | - Jun Wang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China
- *Correspondence: Jing Zhao, ; Wenfa Lu, ; Jun Wang,
| |
Collapse
|
41
|
Wan Z, Zheng J, Zhu Z, Sang L, Zhu J, Luo S, Zhao Y, Wang R, Zhang Y, Hao K, Chen L, Du J, Kan J, He H. Intermediate role of gut microbiota in vitamin B nutrition and its influences on human health. Front Nutr 2022; 9:1031502. [PMID: 36583209 PMCID: PMC9792504 DOI: 10.3389/fnut.2022.1031502] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Vitamin B consists of a group of water-soluble micronutrients that are mainly derived from the daily diet. They serve as cofactors, mediating multiple metabolic pathways in humans. As an integrated part of human health, gut microbiota could produce, consume, and even compete for vitamin B with the host. The interplay between gut microbiota and the host might be a crucial factor affecting the absorbing processes of vitamin B. On the other hand, vitamin B supplementation or deficiency might impact the growth of specific bacteria, resulting in changes in the composition and function of gut microbiota. Together, the interplay between vitamin B and gut microbiota might systemically contribute to human health. In this review, we summarized the interactions between vitamin B and gut microbiota and tried to reveal the underlying mechanism so that we can have a better understanding of its role in human health.
Collapse
Affiliation(s)
- Zhijie Wan
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | | | | | - Lan Sang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Jinwei Zhu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Shizheng Luo
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yixin Zhao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Ruirui Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yicui Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Kun Hao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Liang Chen
- Nutrilite Health Institute, Shanghai, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
42
|
Aljaadi AM, Devlin AM, Green TJ. Riboflavin intake and status and relationship to anemia. Nutr Rev 2022; 81:114-132. [PMID: 36018769 DOI: 10.1093/nutrit/nuac043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Riboflavin in its coenzyme forms, flavin mononucleotide and flavin adenine dinucleotide, is essential for multiple redox reactions necessary for energy production, antioxidant protection, and metabolism of other B vitamins, such as niacin, pyridoxine, and folate. Erythrocyte glutathione reductase activity coefficient (EGRac) is a biomarker of riboflavin status; ratios ≥1.40 are commonly interpreted as indicating biochemical deficiency. Most research on riboflavin status comes from low-income countries and rural settings, which reported high rates of riboflavin deficiency and inadequate intake. However, some studies suggest that riboflavin deficiency, based on the functional indicator EGRac, is also of concern in middle- and high-income countries. Biochemical riboflavin deficiency that does not cause clinical symptoms may contribute to anemia, particularly among women and children. Riboflavin enhances iron absorption, and riboflavin deficiency decreases iron mobilization from stores. The current knowledge on riboflavin's role in metabolic processes and its biochemical status is summarized in this review, and the available evidence on the role of riboflavin in anemia among different populations is discussed.
Collapse
Affiliation(s)
- Abeer M Aljaadi
- with the Clinical Nutrition Department, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Angela M Devlin
- with the Department of Pediatrics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, Canada
| | - Tim J Green
- is with the Women and Kids Theme, South Australian Health and Medical Research Institute, and Discipline of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
43
|
Fu J, Han Z, Wu Z, Xia Y, Yang G, Yin Y, Ren W. GABA regulates IL-1β production in macrophages. Cell Rep 2022; 41:111770. [PMID: 36476877 DOI: 10.1016/j.celrep.2022.111770] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/31/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Neurotransmitters have been well documented to determine immune cell fates; however, whether and how γ-amino butyric acid (GABA) shapes the function of innate immune cells is still obscure. Here, we demonstrate that GABA orchestrates macrophage maturation and inflammation. GABA treatment during macrophage maturation inhibits interleukin (IL)-1β production from inflammatory macrophages. Mechanistically, GABA enhances succinate-flavin adenine dinucleotide (FAD)-lysine specific demethylase1 (LSD1) signaling to regulate histone demethylation of Bcl2l11 and Dusp2, reducing formation of the NLRP3-ASC-Caspase-1 complex. The GABA-succinate axis reduces succinylation of mitochondrial proteins to promote oxidative phosphorylation (OXPHOS). We also find that GABA alleviates lipopolysaccharides (LPS)-induced sepsis as well as high-fat-diet-induced obesity in mice. Our study shows that GABA regulates pro-inflammatory macrophage responses associated with metabolic reprogramming and protein succinylation, suggesting a strategy for treating macrophage-related inflammatory diseases.
Collapse
Affiliation(s)
- Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ziyi Han
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zebiao Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yulong Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
44
|
Yamada K, Osawa Y, Kobayashi H, Bo R, Mushimoto Y, Hasegawa Y, Yamaguchi S, Taketani T. Clinical and molecular investigation of 37 Japanese patients with multiple acyl-CoA dehydrogenase deficiency: p.Y507D in ETFDH, a common Japanese variant, causes a mortal phenotype. Mol Genet Metab Rep 2022; 33:100940. [DOI: 10.1016/j.ymgmr.2022.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
|
45
|
Shichinohe N, Kobayashi D, Izumi A, Hatanaka K, Fujita R, Kinoshita T, Inoue N, Hamaue N, Wada K, Murakami Y. Sequential hydrolysis of FAD by ecto-5' nucleotidase CD73 and alkaline phosphatase is required for uptake of vitamin B 2 into cells. J Biol Chem 2022; 298:102640. [PMID: 36309091 PMCID: PMC9694112 DOI: 10.1016/j.jbc.2022.102640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
Extracellular hydrolysis of flavin-adenine dinucleotide (FAD) and flavin mononucleotide (FMN) to riboflavin is thought to be important for cellular uptake of vitamin B2 because FAD and FMN are hydrophilic and do not pass the plasma membrane. However, it is not clear whether FAD and FMN are hydrolyzed by cell surface enzymes for vitamin B2 uptake. Here, we show that in human cells, FAD, a major form of vitamin B2 in plasma, is hydrolyzed by CD73 (also called ecto-5' nucleotidase) to FMN. Then, FMN is hydrolyzed by alkaline phosphatase to riboflavin, which is efficiently imported into cells. We determined that this two-step hydrolysis process is impaired on the surface of glycosylphosphatidylinositol (GPI)-deficient cells due to the lack of these GPI-anchored enzymes. During culture of GPI-deficient cells with FAD or FMN, we found that hydrolysis of these forms of vitamin B2 was impaired, and intracellular levels of vitamin B2 were significantly decreased compared with those in GPI-restored cells, leading to decreased formation of vitamin B2-dependent pyridoxal 5'-phosphate and mitochondrial dysfunction. Collectively, these results suggest that inefficient uptake of vitamin B2 might account for mitochondrial dysfunction seen in some cases of inherited GPI deficiency.
Collapse
Affiliation(s)
- Natsuki Shichinohe
- Department of Food and Chemical Toxicology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Daisuke Kobayashi
- Department of Food and Chemical Toxicology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan,For correspondence: Yoshiko Murakami; Daisuke Kobayashi
| | - Ayaka Izumi
- Department of Food and Chemical Toxicology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Kazuya Hatanaka
- Department of Food and Chemical Toxicology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Rio Fujita
- Department of Food and Chemical Toxicology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Taroh Kinoshita
- Laboratory of Immunoglycobiology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan,Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Naoya Hamaue
- Department of Food and Chemical Toxicology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Keiji Wada
- Department of Food and Chemical Toxicology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Yoshiko Murakami
- Laboratory of Immunoglycobiology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan,For correspondence: Yoshiko Murakami; Daisuke Kobayashi
| |
Collapse
|
46
|
Tesfaye G, Negash N, Tessema M. Sensitive and selective determination of vitamin B2 in non-alcoholic beverage and milk samples at poly (glutamic acid)/zinc oxide nanoparticles modified carbon paste electrode. BMC Chem 2022; 16:69. [PMID: 36117181 PMCID: PMC9482753 DOI: 10.1186/s13065-022-00863-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The deficiency of vitamin B2 can lead to many health problems. Therefore, it is necessary to develop a sensitive, selective and fast method for the determination of vitamin B2 in food samples. In this work, a sensitive, selective and low-cost electrochemical sensor was developed using poly (glutamic acid) and Zinc oxide nanoparticles (ZnO NPs) for vitamin B2 in non-alcoholic beverage and milk samples.
Methods
The modification of the electrode surface was carried out by electropolymerization of glutamic acid on ZnO NPs–carbon paste electrode (ZnO NPS–CPE). The prepared electrodes were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and X-Ray diffraction (XRD). CV and square wave voltammetry (SWV) were used to investigate the electrochemical behavior of vitamin B2 at the modified electrode. The effect of various parameters such as amount of ZnO NPs, polymerization cycle, concentration of the monomer, pH, scan rate and accumulation time were optimized to obtain maximum sensitivity at the modified electrode.
Results
The developed sensor showed high electrocatalytic activity towards vitamin B2. Under the optimized conditions, the developed sensor showed a linear response in the range 0.005–10 µM with a low detection limit of (LOD) 0.0007 ± 0.00001 µM and high sensitivity of 21.53 µA/µM.
Conclusions
A reproducible, repeatable, stable and selective sensor was successfully applied for the quantification of vitamin B2 in beverage and milk samples with acceptable recoveries in the range of 88–101%.
Collapse
|
47
|
Palmieri F, Monné M, Fiermonte G, Palmieri L. Mitochondrial transport and metabolism of the vitamin B-derived cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD + , and related diseases: A review. IUBMB Life 2022; 74:592-617. [PMID: 35304818 PMCID: PMC9311062 DOI: 10.1002/iub.2612] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/19/2023]
Abstract
Multiple mitochondrial matrix enzymes playing key roles in metabolism require cofactors for their action. Due to the high impermeability of the mitochondrial inner membrane, these cofactors need to be synthesized within the mitochondria or be imported, themselves or one of their precursors, into the organelles. Transporters belonging to the protein family of mitochondrial carriers have been identified to transport the coenzymes: thiamine pyrophosphate, coenzyme A, FAD and NAD+ , which are all structurally similar to nucleotides and derived from different B-vitamins. These mitochondrial cofactors bind more or less tightly to their enzymes and, after having been involved in a specific reaction step, are regenerated, spontaneously or by other enzymes, to return to their active form, ready for the next catalysis round. Disease-causing mutations in the mitochondrial cofactor carrier genes compromise not only the transport reaction but also the activity of all mitochondrial enzymes using that particular cofactor and the metabolic pathways in which the cofactor-dependent enzymes are involved. The mitochondrial transport, metabolism and diseases of the cofactors thiamine pyrophosphate, coenzyme A, FAD and NAD+ are the focus of this review.
Collapse
Affiliation(s)
- Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Magnus Monné
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- Department of SciencesUniversity of BasilicataPotenzaItaly
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and BiopharmaceuticsUniversity of BariBariItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| |
Collapse
|
48
|
Tolomeo M, Chimienti G, Lanza M, Barbaro R, Nisco A, Latronico T, Leone P, Petrosillo G, Liuzzi GM, Ryder B, Inbar-Feigenberg M, Colella M, Lezza AMS, Olsen RKJ, Barile M. Retrograde response to mitochondrial dysfunctions associated to LOF variations in FLAD1 exon 2: unraveling the importance of RFVT2. Free Radic Res 2022; 56:511-525. [PMID: 36480241 DOI: 10.1080/10715762.2022.2146501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavin adenine dinucleotide (FAD) synthase (EC 2.7.7.2), encoded by human flavin adenine dinucleotide synthetase 1 (FLAD1), catalyzes the last step of the pathway converting riboflavin (Rf) into FAD. FLAD1 variations were identified as a cause of LSMFLAD (lipid storage myopathy due to FAD synthase deficiency, OMIM #255100), resembling Multiple Acyl-CoA Dehydrogenase Deficiency, sometimes treatable with high doses of Rf; no alternative therapeutic strategies are available. We describe here cell morphological and mitochondrial alterations in dermal fibroblasts derived from a LSMFLAD patient carrying a homozygous truncating FLAD1 variant (c.745C > T) in exon 2. Despite a severe decrease in FAD synthesis rate, the patient had decreased cellular levels of Rf and flavin mononucleotide and responded to Rf treatment. We hypothesized that disturbed flavin homeostasis and Rf-responsiveness could be due to a secondary impairment in the expression of the Rf transporter 2 (RFVT2), encoded by SLC52A2, in the frame of an adaptive retrograde signaling to mitochondrial dysfunction. Interestingly, an antioxidant response element (ARE) is found in the region upstream of the transcriptional start site of SLC52A2. Accordingly, we found that abnormal mitochondrial morphology and impairments in bioenergetics were accompanied by increased cellular reactive oxygen species content and mtDNA oxidative damage. Concomitantly, an active response to mitochondrial stress is suggested by increased levels of PPARγ-co-activator-1α and Peroxiredoxin III. In this scenario, the treatment with high doses of Rf might compensate for the secondary RFVT2 molecular defect, providing a molecular rationale for the Rf responsiveness in patients with loss of function variants in FLAD1 exon 2.HIGHLIGHTSFAD synthase deficiency alters mitochondrial morphology and bioenergetics;FAD synthase deficiency triggers a mitochondrial retrograde response;FAD synthase deficiency evokes nuclear signals that adapt the expression of RFVT2.
Collapse
Affiliation(s)
- Maria Tolomeo
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy.,Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Guglielmina Chimienti
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Martina Lanza
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Roberto Barbaro
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Nisco
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Bryony Ryder
- National Metabolic Service, Starship Children's Hospital, Auckland, New Zealand
| | - Michal Inbar-Feigenberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Matilde Colella
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Angela M S Lezza
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Department for Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Maria Barile
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
49
|
Colasuonno F, Marioli C, Tartaglia M, Bertini E, Compagnucci C, Moreno S. New Insights into the Neurodegeneration Mechanisms Underlying Riboflavin Transporter Deficiency (RTD): Involvement of Energy Dysmetabolism and Cytoskeletal Derangement. Biomedicines 2022; 10:biomedicines10061329. [PMID: 35740351 PMCID: PMC9219947 DOI: 10.3390/biomedicines10061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023] Open
Abstract
Riboflavin transporter deficiency (RTD) is a rare genetic disorder characterized by motor, sensory and cranial neuropathy. This childhood-onset neurodegenerative disease is caused by biallelic pathogenic variants in either SLC52A2 or SLC52A3 genes, resulting in insufficient supply of riboflavin (vitamin B2) and consequent impairment of flavoprotein-dependent metabolic pathways. Current therapy, empirically based high-dose riboflavin supplementation, ameliorates the progression of the disease, even though response to treatment is variable and partial. Recent studies have highlighted concurrent pathogenic contribution of cellular energy dysmetabolism and cytoskeletal derangement. In this context, patient specific RTD models, based on induced pluripotent stem cell (iPSC) technology, have provided evidence of redox imbalance, involving mitochondrial and peroxisomal dysfunction. Such oxidative stress condition likely causes cytoskeletal perturbation, associated with impaired differentiation of RTD motor neurons. In this review, we discuss the most recent findings obtained using different RTD models. Relevantly, the integration of data from innovative iPSC-derived in vitro models and invertebrate in vivo models may provide essential information on RTD pathophysiology. Such novel insights are expected to suggest custom therapeutic strategies, especially for those patients unresponsive to high-dose riboflavin treatments.
Collapse
Affiliation(s)
- Fiorella Colasuonno
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
- Department of Science, LIME, University Roma Tre, 00165 Rome, Italy
| | - Chiara Marioli
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
- Department of Science, LIME, University Roma Tre, 00165 Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (F.C.); (C.M.); (M.T.); (E.B.)
- Correspondence: (C.C.); (S.M.)
| | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, 00165 Rome, Italy
- Correspondence: (C.C.); (S.M.)
| |
Collapse
|
50
|
Synthesis of Mixed Dinucleotides by Mechanochemistry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103229. [PMID: 35630705 PMCID: PMC9147584 DOI: 10.3390/molecules27103229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
We report the synthesis of vitamin B1, B2, and B3 derived nucleotides and dinucleotides generated either through mechanochemical or solution phase chemistry. Under the explored conditions, adenosine and thiamine proved to be particularly amenable to milling conditions. Following optimization of the chemistry related to the formation pyrophosphate bonds, mixed dinucleotides of adenine and thiamine (vitamin B1), riboflavin (vitamin B2), nicotinamide riboside and 3-carboxamide 4-pyridone riboside (both vitamin B3 derivatives) were generated in good yields. Furthermore, we report an efficient synthesis of the MW+4 isotopologue of NAD+ for which deuterium incorporation is present on either side of the dinucleotidic linkage, poised for isotopic tracing experiments by mass spectrometry. Many of these mixed species are novel and present unexplored possibilities to simultaneously enhance or modulate cofactor transporters and enzymes of independent biosynthetic pathways.
Collapse
|