1
|
Priya, Kumar A, Kumar D. Molecular heterogeneity and MYC dysregulation in triple-negative breast cancer: genomic advances and therapeutic implications. 3 Biotech 2025; 15:33. [PMID: 39777154 PMCID: PMC11700964 DOI: 10.1007/s13205-024-04195-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a diverse range of molecular features that have been extensively studied. MYC plays a critical role in regulating metabolism, differentiation, proliferation, cell growth, and apoptosis. Dysregulation of MYC is associated with poor prognosis and contributes to the development and progression of breast cancer. A particularly intriguing aspect of TNBC is its association with tumors in BRCA1 mutation carriers, especially in younger women. MYC may also contribute to resistance to adjuvant treatments. For TNBC, targeting MYC-regulated pathways in combination with inhibitors of other carcinogenic pathways offers a promising therapeutic approach. Several signaling pathways regulate TNBC, and targeting these pathways could lead to effective therapeutic strategies for breast cancer. Advances in genomic tools, such as CRISPR-Cas9, next-generation sequencing, and whole-exome sequencing, are revolutionizing breast cancer diagnoses. These technologies have significantly enhanced our understanding of MYC oncogenesis, particularly through CRISPR-Cas9 and NGS. Targeting MYC and its partner MAX could provide valuable insights into TNBC. Moreover, the therapeutic potential of targeting MYC-driven signaling mechanisms and their interactions with other oncogenic pathways, including PI3K/AKT/mTOR and Wnt/β-catenin, is increasingly recognized. Next-generation sequencing and CRISPR-Cas9 represent significant breakthroughs in genomic tools that open new opportunities to explore MYC's role in TNBC and facilitate the development of personalized treatment plans. This review discusses the future clinical applications of personalized treatment strategies for patients with TNBC.
Collapse
Affiliation(s)
- Priya
- School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand 248007 India
| | - Arun Kumar
- Mahavir Cancer Sansthan and Research Centre, Patna, Bihar 801505 India
| | - Dhruv Kumar
- School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand 248007 India
| |
Collapse
|
2
|
Dhiwar PS, Matada GSP, Raghavendra NM, Ghara A, Singh E, Abbas N, Andhale GS, Shenoy GP, Sasmal P. Current updates on EGFR and HER2 tyrosine kinase inhibitors for the breast cancer. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2025]
|
3
|
Degu A, Yussuf A. Treatment outcomes among human epidermal growth factor receptor 2 positive breast cancer patients: A systematic review. J Oncol Pharm Pract 2021; 27:1468-1476. [PMID: 33789525 DOI: 10.1177/10781552211005530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND The incidence of human epidermal growth factor receptor 2 (HER 2) positive breast cancers is rapidly rising worldwide. Although there have been many studies on HER 2 breast cancer treatment and management in recent years, there is a lack of comprehensive reports on the treatment outcomes and disparities within the available literature. Hence, this review aimed to determine the treatment outcomes and their associated factors among patients with HER2-positive breast cancer. METHODS A computer-based systematic literature search was conducted using PubMed, EMBASE, and Google scholar databases of articles published from 2000 to 2020. The following key terms (HER 2 positive breast cancer, predictor, determinant, associated factor) and Medical Subject Headings (MeSH) terms (breast neoplasms, treatment outcome, and risk factors) were used to search the English language published articles. RESULTS In most studies, trastuzumab was the most commonly used treatment regimen used in combination with chemotherapeutic agents. Generally, most of the studies (15 studies) showed that the overall survival outcome was relatively higher after treatment among HER2 positive breast cancer patients. Nonetheless, two studies showed that the absence of significant change in the overall survival despite adequate treatment was given to the study participants. In addition, three studies demonstrated a partial response after treating HER2-positive breast cancer patients. CONCLUSION Generally, the overall survival outcome was relatively higher after treatment among HER2 positive breast cancer patients. The addition of trastuzumab in most of the studies has shown improvement in the overall survival and the disease-free survival rate of the study patients.
Collapse
Affiliation(s)
- Amsalu Degu
- School of Pharmacy and Health Sciences, 54663United States International University-Africa, Nairobi, Kenya
| | - Asha Yussuf
- School of Pharmacy and Health Sciences, 54663United States International University-Africa, Nairobi, Kenya
| |
Collapse
|
4
|
Gefitinib reduces oocyte quality by disturbing meiotic progression. Toxicology 2021; 452:152705. [PMID: 33548356 DOI: 10.1016/j.tox.2021.152705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/16/2022]
Abstract
Gefitinib is a first-line anti-cancer drug for the treatment of advanced non-small cell lung cancer (NSCLC). It has been reported that gefitinib can generate several drug-related adverse effects, including nausea, peripheral edema, decreased appetite and rash. However, the reproductive toxicity of gefitinib has not been clearly defined until now. Here we assessed the effects of gefitinib on oocyte quality by examining the critical events and molecular changes of oocyte maturation. Gefitinib at 1, 2, 5 or 10 μM concentration was added to culture medium (M2). We found that gefitinib at its median peak concentration of 1 μM did not affect oocyte maturation, but 5 μM gefitinib severely blocked oocyte meiotic progression as indicated by decreased rates of germinal vesicle breakdown (GVBD) and polar body extrusion (PBE). We further showed that gefitinib treatment increased phosphorylation of CDK1 at the site of Try15, inhibited cyclin B1 entry into the nucleus, and disrupted normal spindle assembly, chromosome alignment and mitochondria dynamics, finally leading to the generation of aneuploidy and early apoptosis of oocytes. Our study reported here provides valuable evidence for reproductive toxicity of gefitinib administration employed for the treatment of cancer patients.
Collapse
|
5
|
Steven A, Friedrich M, Jank P, Heimer N, Budczies J, Denkert C, Seliger B. What turns CREB on? And off? And why does it matter? Cell Mol Life Sci 2020; 77:4049-4067. [PMID: 32347317 PMCID: PMC7532970 DOI: 10.1007/s00018-020-03525-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Altered expression and function of the transcription factor cyclic AMP response-binding protein (CREB) has been identified to play an important role in cancer and is associated with the overall survival and therapy response of tumor patients. This review focuses on the expression and activation of CREB under physiologic conditions and in tumors of distinct origin as well as the underlying mechanisms of CREB regulation by diverse stimuli and inhibitors. In addition, the clinical relevance of CREB is summarized, including its use as a prognostic and/or predictive marker as well as a therapeutic target.
Collapse
Affiliation(s)
- André Steven
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Michael Friedrich
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Paul Jank
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Nadine Heimer
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Jan Budczies
- Institute of Pathology, University Clinic Heidelberg, 69120, Heidelberg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
| |
Collapse
|
6
|
Gooding AJ, Schiemann WP. Epithelial-Mesenchymal Transition Programs and Cancer Stem Cell Phenotypes: Mediators of Breast Cancer Therapy Resistance. Mol Cancer Res 2020; 18:1257-1270. [PMID: 32503922 DOI: 10.1158/1541-7786.mcr-20-0067] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/20/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Epithelial-mesenchymal transition (EMT) programs play essential functions in normal morphogenesis and organogenesis, including that occurring during mammary gland development and glandular regeneration. Historically, EMT programs were believed to reflect a loss of epithelial gene expression signatures and morphologies that give way to those associated with mesenchymal cells and their enhanced migratory and invasive behaviors. However, accumulating evidence now paints EMT programs as representing a spectrum of phenotypic behaviors that also serve to enhance cell survival, immune tolerance, and perhaps even metastatic dormancy. Equally important, the activation of EMT programs in transformed mammary epithelial cells not only enhances their acquisition of invasive and metastatic behaviors, but also expands their generation of chemoresistant breast cancer stem cells (BCSC). Importantly, the net effect of these events results in the appearance of recurrent metastatic lesions that remain refractory to the armamentarium of chemotherapies and targeted therapeutic agents deployed against advanced stage breast cancers. Here we review the molecular and cellular mechanisms that contribute to the pathophysiology of EMT programs in human breast cancers and how these events impact their "stemness" and acquisition of chemoresistant phenotypes.
Collapse
Affiliation(s)
- Alex J Gooding
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
7
|
Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T. Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Transl Res 2018; 8:1483-1507. [PMID: 29978332 PMCID: PMC6133085 DOI: 10.1007/s13346-018-0551-3] [Citation(s) in RCA: 337] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The major current conventional types of metastatic breast cancer (MBC) treatments include surgery, radiation, hormonal therapy, chemotherapy, or immunotherapy. Introducing biological drugs, targeted treatment and gene therapy can potentially reduce the mortality and improve the quality of life in patients with MBC. However, combination of several types of treatment is usually recommended. Triple negative breast cancer (TNBC) accounts for 10-20% of all cases of breast carcinoma and is characterized by the low expression of progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor receptor 2 (HER2). Consequently, convenient treatments used for MBC that target these receptors are not effective for TNBC which therefore requires special treatment approaches. This review discusses the occurrence of MBC, the prognosis and predictive biomarkers of MBC, and focuses on the novel advanced tactics for treatment of MBC and TNBC. Nanotechnology-based combinatorial approach for the suppression of EGFR by siRNA and gifitinib is described.
Collapse
Affiliation(s)
- Sumayah Al-Mahmood
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | - Justin Sapiezynski
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | - Olga B Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA.
- Rutgers Cancer Institute, New Brunswick, NJ, 08903, USA.
- Environmental and Occupational Health Sciences Institute, Rutgers, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
8
|
Mercatali L, La Manna F, Miserocchi G, Liverani C, De Vita A, Spadazzi C, Bongiovanni A, Recine F, Amadori D, Ghetti M, Ibrahim T. Tumor-Stroma Crosstalk in Bone Tissue: The Osteoclastogenic Potential of a Breast Cancer Cell Line in a Co-Culture System and the Role of EGFR Inhibition. Int J Mol Sci 2017; 18:ijms18081655. [PMID: 28758931 PMCID: PMC5578045 DOI: 10.3390/ijms18081655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Although bone metastases represent a major challenge in the natural history of breast cancer (BC), the complex interactions involved have hindered the development of robust in vitro models. The aim of this work is the development of a preclinical model of cancer and bone stromal cells to mimic the bone microenvironment. We studied the effects on osteoclastogenesis of BC cells and Mesenchymal stem cells (MSC) cultured alone or in combination. We also analyzed: (a) whether the blockade of the Epithelial Growth Factor Receptor (EGFR) pathway modified their influence on monocytes towards differentiation, and (b) the efficacy of bone-targeted therapy on osteoclasts. We evaluated the osteoclastogenesis modulation of human peripheral blood monocytes (PBMC) indirectly induced by the conditioned medium (CM) of the human BC cell line SCP2, cultured singly or with MSC. Osteoclastogenesis was evaluated by TRAP analysis. The effect of the EGFR blockade was assessed by treating the cells with gefitinib, and analyzed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Western Blot (WB). We observed that SCP2 co-cultured with MSC increased the differentiation of PBMC. This effect was underpinned upon pre-treatment of the co-culture with gefitinib. Co-culture of SCP2 with MSC increased the expression of both the bone-related marker Receptor Activator of Nuclear Factor κB (RANK) and EGFR in BC cells. These upregulations were not affected by the EGFR blockade. The effects of the CM obtained by the cells treated with gefitinib in combination with the treatment of the preosteoclasts with the bone-targeted agents and everolimus enhanced the inhibition of the osteoclastogenesis. Finally, we developed a fully human co-culture system of BC cells and bone progenitor cells. We observed that the interaction of MSC with cancer cells induced in the latter molecular changes and a higher power of inducing osteoclastogenesis. We found that blocking EGFR signaling could be an efficacious strategy for breaking the interactions between cancer and bone cells in order to inhibit bone metastasis.
Collapse
Affiliation(s)
- Laura Mercatali
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Federico La Manna
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Giacomo Miserocchi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Chiara Liverani
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Alessandro De Vita
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Federica Recine
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Dino Amadori
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| | - Martina Ghetti
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
- Biomedical and Neuromotor Sciences Department, University of Bologna, 40123 Bologna, Italy.
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy.
| |
Collapse
|
9
|
Segovia-Mendoza M, González-González ME, Barrera D, Díaz L, García-Becerra R. Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: preclinical and clinical evidence. Am J Cancer Res 2015; 5:2531-2561. [PMID: 26609467 PMCID: PMC4633889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 07/13/2015] [Indexed: 06/05/2023] Open
Abstract
An increasing number of tumors, including breast cancer, overexpress proteins of the epidermal growth factor receptor (EGFR) family. The interaction between family members activates signaling pathways that promote tumor progression and resistance to treatment. Human epidermal growth factor receptor type II (HER2) positive breast cancer represents a clinical challenge for current therapy. It has motivated the development of novel and more effective therapeutic EGFR family target drugs, such as tyrosine kinase inhibitors (TKIs). This review focuses on the effects of three TKIs mostly studied in HER2- positive breast cancer, lapatinib, gefitinib and neratinib. Herein, we discuss the mechanism of action, therapeutic advantages and clinical applications of these TKIs. To date, TKIs seem to be promising therapeutic agents for the treatment of HER2-overexpressing breast tumors, either as monotherapy or combined with other pharmacological agents.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránAvenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan 14080, México, D. F., México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Circuito Interior, Cuidad UniversitariaAv. Universidad 3000, Coyoacán 04510, México D. F, México
| | - María E González-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránAvenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan 14080, México, D. F., México
| | - David Barrera
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránAvenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan 14080, México, D. F., México
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránAvenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan 14080, México, D. F., México
| | - Rocío García-Becerra
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránAvenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, Tlalpan 14080, México, D. F., México
| |
Collapse
|
10
|
Ségaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol 2015; 4:1-12. [PMID: 26579483 PMCID: PMC4620971 DOI: 10.1016/j.jbo.2015.01.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/18/2015] [Indexed: 01/13/2023] Open
Abstract
Bone cancers are characterised by the development of tumour cells in bone sites, associated with a dysregulation of their environment. In the last two decades, numerous therapeutic strategies have been developed to target the cancer cells or tumour niche. As the crosstalk between these two entities is tightly controlled by the release of polypeptide mediators activating signalling pathways through several receptor tyrosine kinases (RTKs), RTK inhibitors have been designed. These inhibitors have shown exciting clinical impacts, such as imatinib mesylate, which has become a reference treatment for chronic myeloid leukaemia and gastrointestinal tumours. The present review gives an overview of the main molecular and functional characteristics of RTKs, and focuses on the clinical applications that are envisaged and already assessed for the treatment of bone sarcomas and bone metastases.
Collapse
Affiliation(s)
- Aude I Ségaliny
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France
| | - Marta Tellez-Gabriel
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France
| | - Marie-Françoise Heymann
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France ; CHU de Nantes, France
| | - Dominique Heymann
- INSERM, UMR 957, Equipe LIGUE Nationale Contre le Cancer 2012, Nantes 44035, France ; Université de Nantes, Nantes atlantique universités, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Nantes, France ; CHU de Nantes, France
| |
Collapse
|
11
|
Sanguedolce F, Bufo P. HER2 assessment by silver in situ hybridization: where are we now? Expert Rev Mol Diagn 2015; 15:385-98. [PMID: 25578771 DOI: 10.1586/14737159.2015.992416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
HER2 testing in breast and gastric cancer is critical not only as a prognostic tool but also as a predictive marker for response to the humanized monoclonal antibody trastuzumab. Currently, HER2 status is assessed on histological and cytological specimens by conventional validated methods such as immunohistochemistry and FISH, while bright-field in situ hybridization techniques, such as silver in situ hybridization and chromogenic in situ hybridization, may offer performance benefits over FISH. The major points are first, technical issues, advantages and disadvantages relevant to each methods, and their clinical implications and second, the well-known genetic heterogeneity of HER2, and the occurrence of polysomy of chromosome 17. This review aims to summarize the growing body of literature on the accuracy of bright-field in situ techniques, notably silver in situ hybridization, in assessing HER2 status, and to discuss the role of such methods in pathology practice.
Collapse
|
12
|
Lee HJ, Seo AN, Kim EJ, Jang MH, Kim YJ, Kim JH, Kim SW, Ryu HS, Park IA, Im SA, Gong G, Jung KH, Kim HJ, Park SY. Prognostic and predictive values of EGFR overexpression and EGFR copy number alteration in HER2-positive breast cancer. Br J Cancer 2014; 112:103-11. [PMID: 25349977 PMCID: PMC4453607 DOI: 10.1038/bjc.2014.556] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/23/2014] [Accepted: 10/02/2014] [Indexed: 12/24/2022] Open
Abstract
Background: Epidermal growth factor receptor (EGFR) is overexpressed in a subset of human epidermal growth factor receptor 2 (HER2)-positive breast cancers, and coexpression of HER2 and EGFR has been reported to be associated with poor clinical outcome. Moreover, interaction between HER2 and EGFR has been suggested to be a possible basis for trastuzumab resistance. Methods: We analysed the clinical significance of EGFR overexpression and EGFR gene copy number alterations in 242 HER2-positive primary breast cancers. In addition, we examined the correlations between EGFR overexpression, trastuzumab response and clinical outcome in 447 primary, and 112 metastatic HER2-positive breast cancer patients treated by trastuzumab. Results: Of the 242 primary cases, the level of EGFR overexpression was 2+ in 12.7% and 3+ in 11.8%. High EGFR gene copy number was detected in 10.3%. Epidermal growth factor receptor overexpression was associated with hormone receptor negativity and high Ki-67 proliferation index. In survival analyses, EGFR overexpression, but not high EGFR copy number, was associated with poor disease-free survival in all patients, and in the subgroup not receiving adjuvant trastuzumab. In 447 HER2-positive primary breast cancer patients treated with adjuvant trastuzumab, EGFR overexpression was also an independent poor prognostic factor. However, EGFR overexpression was not associated with trastuzumab response, progression-free survival or overall survival in the metastatic setting. Conclusions: Epidermal growth factor receptor overexpression, but not high EGFR copy number, is a poor prognostic factor in HER2-positive primary breast cancer. Epidermal growth factor receptor overexpression is a predictive factor for trastuzumab response in HER2-positive primary breast cancer, but not in metastatic breast cancer.
Collapse
Affiliation(s)
- H J Lee
- 1] Department of Pathology, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi 463-707, Korea [2] Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-746, Korea
| | - A N Seo
- Department of Pathology, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi 463-707, Korea
| | - E J Kim
- Department of Pathology, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi 463-707, Korea
| | - M H Jang
- Department of Pathology, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi 463-707, Korea
| | - Y J Kim
- 1] Department of Medical Oncology, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi 463-707, Korea [2] Department of Medical Oncology, Seoul National University College of Medicine, 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
| | - J H Kim
- 1] Department of Medical Oncology, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi 463-707, Korea [2] Department of Medical Oncology, Seoul National University College of Medicine, 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
| | - S-W Kim
- 1] Department of Surgery, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi 463-707, Korea [2] Department of Surgery, Seoul National University College of Medicine, 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
| | - H S Ryu
- Department of Pathology, Seoul National University College of Medicine, 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
| | - I A Park
- Department of Pathology, Seoul National University College of Medicine, 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
| | - S-A Im
- Department of Medical Oncology, Seoul National University College of Medicine, 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
| | - G Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-746, Korea
| | - K H Jung
- Department of Medical Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-746, Korea
| | - H J Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 138-746, Korea
| | - S Y Park
- 1] Department of Pathology, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi 463-707, Korea [2] Department of Pathology, Seoul National University College of Medicine, 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
| |
Collapse
|
13
|
Zhang X, Raghavan S, Ihnat M, Thorpe JE, Disch BC, Bastian A, Bailey-Downs LC, Dybdal-Hargreaves NF, Rohena CC, Hamel E, Mooberry SL, Gangjee A. The design and discovery of water soluble 4-substituted-2,6-dimethylfuro[2,3-d]pyrimidines as multitargeted receptor tyrosine kinase inhibitors and microtubule targeting antitumor agents. Bioorg Med Chem 2014; 22:3753-72. [PMID: 24890652 PMCID: PMC4089508 DOI: 10.1016/j.bmc.2014.04.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/16/2014] [Accepted: 04/25/2014] [Indexed: 12/13/2022]
Abstract
The design, synthesis and biological evaluations of fourteen 4-substituted 2,6-dimethylfuro[2,3-d]pyrimidines are reported. Four compounds (11-13, 15) inhibit vascular endothelial growth factor receptor-2 (VEGFR-2), platelet-derived growth factor receptor β (PDGFR-β), and target tubulin leading to cytotoxicity. Compound 11 has nanomolar potency, comparable to sunitinib and semaxinib, against tumor cell lines overexpressing VEGFR-2 and PDGFR-β. Further, 11 binds at the colchicine site on tubulin, depolymerizes cellular microtubules and inhibits purified tubulin assembly and overcomes both βIII-tubulin and P-glycoprotein-mediated drug resistance, and initiates mitotic arrest leading to apoptosis. In vivo, its HCl salt, 21, reduced tumor size and vascularity in xenograft and allograft murine models and was superior to docetaxel and sunitinib, without overt toxicity. Thus 21 affords potential combination chemotherapy in a single agent.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Sudhir Raghavan
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Michael Ihnat
- College of Pharmacy, University of Oklahoma Health Science Center, 1110 North Stonewall, Oklahoma City, OK 73117, United States
| | - Jessica E Thorpe
- College of Pharmacy, University of Oklahoma Health Science Center, 1110 North Stonewall, Oklahoma City, OK 73117, United States
| | - Bryan C Disch
- College of Pharmacy, University of Oklahoma Health Science Center, 1110 North Stonewall, Oklahoma City, OK 73117, United States
| | - Anja Bastian
- College of Pharmacy, University of Oklahoma Health Science Center, 1110 North Stonewall, Oklahoma City, OK 73117, United States
| | - Lora C Bailey-Downs
- College of Pharmacy, University of Oklahoma Health Science Center, 1110 North Stonewall, Oklahoma City, OK 73117, United States
| | - Nicholas F Dybdal-Hargreaves
- Department of Pharmacology, Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Cristina C Rohena
- Department of Pharmacology, Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Institutes of Health, 1050 Boyles Street, Frederick, MD 21702, United States
| | - Susan L Mooberry
- Department of Pharmacology, Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States.
| |
Collapse
|
14
|
Yan M, Parker BA, Schwab R, Kurzrock R. HER2 aberrations in cancer: implications for therapy. Cancer Treat Rev 2014; 40:770-80. [PMID: 24656976 DOI: 10.1016/j.ctrv.2014.02.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 02/08/2023]
Abstract
Although anti-HER2 (human epidermal growth factor receptor 2) therapy is currently approved for breast, gastric, and gastroesophageal cancers overexpressing the HER2 protein or amplified for the HER2 gene, HER2 aberrations (gene amplification, gene mutations, and protein overexpression) are reported in other diverse malignancies. Indeed, about 1-37% of tumors of the following types harbor HER2 aberrations: bladder, cervix, colon, endometrium, germ cell, glioblastoma, head and neck, liver, lung, ovarian, pancreas, and salivary duct. Four HER2-targeted therapies have been approved for HER2-positive breast cancer: two antibodies (trastuzumab and pertuzumab), an antibody-drug conjugate (ado-trastuzumab emtansine), and a small molecule kinase inhibitor (lapatinib). In addition, afatinib, a small molecule kinase inhibitor that causes irreversible inhibition of EGFR (epidermal growth factor receptor) and HER2, was recently approved for EGFR-mutated non-small cell lung cancer. A large number of novel HER2-targeted agents are also in clinical trials. Herein we discuss the state of the art in understanding and targeting HER2 across anatomic tumor types.
Collapse
Affiliation(s)
- Min Yan
- Division of Hematology and Oncology, University of California, Moores Cancer Center, United States.
| | - Barbara A Parker
- Division of Hematology and Oncology, University of California, Moores Cancer Center, United States
| | - Richard Schwab
- Division of Hematology and Oncology, University of California, Moores Cancer Center, United States
| | - Razelle Kurzrock
- Division of Hematology and Oncology, University of California, Moores Cancer Center, United States
| |
Collapse
|
15
|
Eroglu Z, Tagawa T, Somlo G. Human epidermal growth factor receptor family-targeted therapies in the treatment of HER2-overexpressing breast cancer. Oncologist 2014; 19:135-50. [PMID: 24436312 PMCID: PMC3926785 DOI: 10.1634/theoncologist.2013-0283] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/07/2013] [Indexed: 01/03/2023] Open
Abstract
Breast cancer characterized by overexpression of human epidermal growth factor receptor 2 (HER2) has been associated with more aggressive disease progression and a poorer prognosis. Although an improved understanding of breast cancer pathogenesis and the role of HER2 signaling has resulted in significant survival improvements in the past 20 years, resistance to HER2-targeted therapy remains a concern. A number of strategies to prevent or overcome resistance to HER2-targeted therapy in breast cancer are being evaluated. This article provides a comprehensive review of (a) the role of HER2 signaling in breast cancer pathogenesis, (b) potential receptor and downstream therapeutic targets in breast cancer to overcome resistance to HER2-targeted therapy, and (c) clinical trials evaluating agents targeting one or more members of the HER family and/or downstream pathways for the treatment of breast cancer, with a focus on metastatic disease.
Collapse
|
16
|
Steven A, Leisz S, Massa C, Iezzi M, Lattanzio R, Lamolinara A, Bukur J, Müller A, Hiebl B, Holzhausen HJ, Seliger B. HER-2/neu mediates oncogenic transformation via altered CREB expression and function. Mol Cancer Res 2013; 11:1462-77. [PMID: 24025972 DOI: 10.1158/1541-7786.mcr-13-0125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED The cyclic (c)AMP responsive element binding protein (CREB) plays a key role in many cellular processes, including differentiation, proliferation, and signal transduction. Furthermore, CREB overexpression was found in tumors of distinct origin and evidence suggests an association with tumorigenicity. To establish a mechanistic link between HER-2/neu-mediated transformation and CREB protein expression and function, in vitro models of HER-2/neu-overexpressing and HER-2/neu-negative/silenced counterparts as well as human mammary carcinoma lesions with defined HER-2/neu status were used. HER-2/neu overexpression resulted in the induction and activation of CREB protein in vitro and in vivo, whereas short hairpin RNA (shRNA)-mediated inhibition of HER-2/neu correlated with downregulated CREB activity. CREB activation in HER-2/neu-transformed cells enhanced distinct signal transduction pathways, whereas their inhibition negatively interfered with CREB expression and/or activation. CREB downregulation in HER-2/neu-transformed cells by shRNA and by the inhibitors KG-501 and lapatinib caused morphologic changes, reduced cell proliferation with G0-G1 cell-cycle arrest, which was rescued by CREB expression. This was accompanied by reduced cell migration, wound healing, an increased fibronectin adherence, invasion, and matrix metalloproteinase expression. In vivo shCREB-HER-2/neu(+) cells, but not control cells, exerted a significantly decreased tumorgenicity that was associated with decreased proliferative capacity, enhanced apoptosis, and increased frequency of T lymphocytes in peripheral blood mononuclear cells. Thus, CREB plays an important role in the HER-2/neu-mediated transformation by altering in vitro and in vivo growth characteristics. IMPLICATIONS These data suggest that CREB affects tumor immunogenicity and is a potential target for cancer therapy.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Targeted therapies of metastatic breast cancer: relationships with cancer stem cells. Biomed Pharmacother 2013; 67:543-55. [PMID: 23643355 DOI: 10.1016/j.biopha.2013.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/10/2013] [Indexed: 12/15/2022] Open
Abstract
In the last years, many targeted agents have been developed for metastatic breast cancer (MBC) treatment and are being tested in clinical trials. In spite of this, apart from epidermal growth factor receptor 2 (HER2) positive subset, no significant increase in the median overall survival (OS) has been reported. Similarly to conventional chemo- and radiotherapy, the cancer stem cell theory has been evoked to explain the frustrating results often obtained with this emerging category of drugs. This review examines the results in MBC of the approved targeted therapies or those currently under evaluation in experimental studies or in clinical trials, in the light of their relationships with breast CSCs and of the efforts to circumvent the development of resistance. In the next, there is the principal need to investigate if the effects on CSCs may be used to overcome cancer resistance and it will be opportune to consider whether molecular targeted therapies should be used alone or combined with conventional therapy, or with a different target drug specific for CSCs.
Collapse
|
18
|
Lee HE, Park KU, Yoo SB, Nam SK, Park DJ, Kim HH, Lee HS. Clinical significance of intratumoral HER2 heterogeneity in gastric cancer. Eur J Cancer 2013; 49:1448-57. [DOI: 10.1016/j.ejca.2012.10.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/14/2012] [Indexed: 12/19/2022]
|
19
|
Castillo-Pichardo L, Dharmawardhane SF. Grape polyphenols inhibit Akt/mammalian target of rapamycin signaling and potentiate the effects of gefitinib in breast cancer. Nutr Cancer 2013; 64:1058-69. [PMID: 23061908 DOI: 10.1080/01635581.2012.716898] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We recently reported that a combination of dietary grape polyphenols resveratrol, quercetin, and catechin (RQC), at low concentrations, was effective at inhibiting metastatic cancer progression. Herein, we investigate the molecular mechanisms of RQC in breast cancer and explore the potential of RQC as a potentiation agent for the epidermal growth factor receptor (EGFR) therapeutic gefitinib. Our in vitro experiments showed RQC induced apoptosis in gefitinib-resistant breast cancer cells via regulation of a myriad of proapoptotic proteins. Because the Akt/mammalian target of rapamycin (mTOR) signaling pathway is often elevated during development of anti-EGFR therapy resistance, the effect of RQC on the mTOR upstream effector Akt and the negative regulator AMP kinase (AMPK) was investigated. RQC was found to reduce Akt activity, induce the activation of AMPK, and inhibit mTOR signaling in breast cancer cells. Combined RQC and gefitinib decreased gefitinib resistant breast cancer cell viability to a greater extent than RQC or gefitinib alone. Moreover, RQC inhibited Akt and mTOR and activated AMPK even in the presence of gefitinib. Our in vivo experiments showed combined RQC and gefitinib was more effective than the individual treatments at inhibiting mammary tumor growth and metastasis in nude mice. Therefore, RQC treatment inhibits breast cancer progression and may potentiate anti-EGFR therapy by inhibition of Akt/mTOR signaling.
Collapse
Affiliation(s)
- Linette Castillo-Pichardo
- Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | | |
Collapse
|
20
|
Ren H, Li J, Liu JJ, Guo HL, Jiang T. Anti-HER-2 anti-CD3 bi-specific antibodies inhibit growth of HCT-116 colorectal carcinoma cells in vitro and in vivo. Asian Pac J Cancer Prev 2013; 13:2795-8. [PMID: 22938461 DOI: 10.7314/apjcp.2012.13.6.2795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE This study is conducted to evaluate the effects of anti-HER-2 anti-CD3 bi-specific antibodies(BsAb) on HER-2/neuover-expressing human colorectal carcinoma cells. METHODS Growth was assessed by MTT assays after exposure of HCT-116 cells to Herceptin, anti-CD3 and BsAb antibodies. Immunocytochemistry was applied to test the HER-2 level of HCT-116. In a nude mouse model, HER-2 CD3 BsAb was combined with effector cells (peripheral blood lymph cells from normal human being) for observations on in Vivo growth of tumors. RESULTS Compared with the control group, using effector cells combined with anti-CD3 McAb, Herceptin or HER2 CD3 BsAb, tumor cell growth in vitro and in vivo was significantly inhibited (P<0.05), most remarkably in the HER2 CD3 BsAb case. The growth of xenografts with HER2 CD3 BsAb combined with effector cells was also significantly inhibited when compared with the anti-CD3 McAb or Herceptin groups (P<0.05). CONCLUSION HER-2/neu might be a useful target for immunotherapy in colorectal carcinoma, anti-HER2 anti-CD3 BsAb exerting clear anti-tumor effects.
Collapse
Affiliation(s)
- Hui Ren
- Department of General Surgery, the Second Hospital, Jilin University, Changchun, China.
| | | | | | | | | |
Collapse
|
21
|
Wu G, Stein L. A network module-based method for identifying cancer prognostic signatures. Genome Biol 2012; 13:R112. [PMID: 23228031 PMCID: PMC3580410 DOI: 10.1186/gb-2012-13-12-r112] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 11/21/2012] [Accepted: 12/10/2012] [Indexed: 12/12/2022] Open
Abstract
Discovering robust prognostic gene signatures as biomarkers using genomics data can be challenging. We have developed a simple but efficient method for discovering prognostic biomarkers in cancer gene expression data sets using modules derived from a highly reliable gene functional interaction network. When applied to breast cancer, we discover a novel 31-gene signature associated with patient survival. The signature replicates across 5 independent gene expression studies, and outperforms 48 published gene signatures. When applied to ovarian cancer, the algorithm identifies a 75-gene signature associated with patient survival. A Cytoscape plugin implementation of the signature discovery method is available at http://wiki.reactome.org/index.php/Reactome_FI_Cytoscape_Plugin.
Collapse
Affiliation(s)
- Guanming Wu
- Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Suite 800, Toronto, ON M5G 0A3, Canada
| | - Lincoln Stein
- Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Suite 800, Toronto, ON M5G 0A3, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, #4386, Medical Sciences Building, Toronto ON M5S 1A8, Canada
| |
Collapse
|
22
|
Ferrari P, Nicolini A. Breast cancer stem cells: new therapeutic approaches. BREAST CANCER MANAGEMENT 2012. [DOI: 10.2217/bmt.12.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
SUMMARY Breast cancer stem cells are defined as a small subset of cells within a cancer that constitutes a reservoir of self-sustaining cells; they are low-dividing, have a reduced ability to undergo apoptosis and a higher ability of DNA repair, making them more resistant to conventional radiation and chemotherapy. The recent better understanding of the mechanisms of resistance to therapy related to stem cells has opened new scenarios and perspectives for therapeutic approaches. Some drugs active against breast cancer stem cells have been used in cancer therapy for years, other approaches are currently under clinical trials and many drugs are still in a preclinical phase. Only controlled clinical trials will answer the question whether or not these new therapeutical approaches alone or combined with the ongoing treatments significantly improve the outcome of breast cancer patients.
Collapse
Affiliation(s)
- Paola Ferrari
- Unit of Oncology 1, Department of Oncology, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Andrea Nicolini
- Unit of Oncology 2, Department of Oncology, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| |
Collapse
|