1
|
Marczuk-Rojas JP, Salmerón A, Alcayde A, Isanbaev V, Carretero-Paulet L. Plastid DNA is a major source of nuclear genome complexity and of RNA genes in the orphan crop moringa. BMC PLANT BIOLOGY 2024; 24:437. [PMID: 38773387 PMCID: PMC11110229 DOI: 10.1186/s12870-024-05158-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Unlike Transposable Elements (TEs) and gene/genome duplication, the role of the so-called nuclear plastid DNA sequences (NUPTs) in shaping the evolution of genome architecture and function remains poorly studied. We investigate here the functional and evolutionary fate of NUPTs in the orphan crop Moringa oleifera (moringa), featured by the highest fraction of plastid DNA found so far in any plant genome, focusing on (i) any potential biases in their distribution in relation to specific nuclear genomic features, (ii) their contribution to the emergence of new genes and gene regions, and (iii) their impact on the expression of target nuclear genes. RESULTS In agreement with their potential mutagenic effect, NUPTs are underrepresented among structural genes, although their overall transcription levels and broadness were only lower when involved exonic regions; the occurrence of plastid DNA generally did not result in a broader expression, except among those affected in introns by older NUPTs. In contrast, we found a strong enrichment of NUPTs among specific superfamilies of retrotransposons and several classes of RNA genes, including those participating in the protein biosynthetic machinery (i.e., rRNA and tRNA genes) and a specific class of regulatory RNAs. A significant fraction of NUPT RNA genes was found to be functionally expressed, thus potentially contributing to the nuclear pool. CONCLUSIONS Our results complete our view of the molecular factors driving the evolution of nuclear genome architecture and function, and support plastid DNA in moringa as a major source of (i) genome complexity and (ii) the nuclear pool of RNA genes.
Collapse
Affiliation(s)
- Juan Pablo Marczuk-Rojas
- Department of Biology and Geology, University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
- "Pabellón de Historia Natural-Centro de Investigación de Colecciones Científicas de la Universidad de Almería" (PHN-CECOUAL), University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| | - Antonio Salmerón
- Department of Mathematics and Center for the Development and Transfer of Mathematical Research to Industry (CDTIME), University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| | - Alfredo Alcayde
- Department of Engineering, University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| | - Viktor Isanbaev
- Department of Engineering, University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain
| | - Lorenzo Carretero-Paulet
- Department of Biology and Geology, University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain.
- "Pabellón de Historia Natural-Centro de Investigación de Colecciones Científicas de la Universidad de Almería" (PHN-CECOUAL), University of Almería, Ctra. Sacramento s/n, Almería, 04120, Spain.
| |
Collapse
|
2
|
Tang P, Ni Y, Li J, Lu Q, Liu C, Guo J. The Complete Mitochondrial Genome of Paeonia lactiflora Pall. (Saxifragales: Paeoniaceae): Evidence of Gene Transfer from Chloroplast to Mitochondrial Genome. Genes (Basel) 2024; 15:239. [PMID: 38397228 PMCID: PMC10888214 DOI: 10.3390/genes15020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Paeonia lactiflora (P. lactiflora), a perennial plant renowned for its medicinal roots, provides a unique case for studying the phylogenetic relationships of species based on organelle genomes, as well as the transference of DNA across organelle genomes. In order to investigate this matter, we sequenced and characterized the mitochondrial genome (mitogenome) of P. lactiflora. Similar to the chloroplast genome (cpgenome), the mitogenome of P. lactiflora extends across 181,688 base pairs (bp). Its unique quadripartite structure results from a pair of extensive inverted repeats, each measuring 25,680 bp in length. The annotated mitogenome includes 27 protein-coding genes, 37 tRNAs, 8 rRNAs, and two pseudogenes (rpl5, rpl16). Phylogenetic analysis was performed to identify phylogenetic trees consistent with Paeonia species phylogeny in the APG Ⅳ system. Moreover, a total of 12 MTPT events were identified and 32 RNA editing sites were detected during mitogenome analysis of P. lactiflora. Our research successfully compiled and annotated the mitogenome of P. lactiflora. The study provides valuable insights regarding the taxonomic classification and molecular evolution within the Paeoniaceae family.
Collapse
Affiliation(s)
- Pan Tang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Yang Ni
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Jingling Li
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Qianqi Lu
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Chang Liu
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
3
|
Reis AC, de Sousa SM. Cytogenetic characterization of Mimosa pudica L (Fabaceae): heterochromatin distribution, rDNA mapping and genome size. THE NUCLEUS 2022. [DOI: 10.1007/s13237-022-00387-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
4
|
Mata-Sucre Y, Sader M, Van-Lume B, Gagnon E, Pedrosa-Harand A, Leitch IJ, Lewis GP, Souza G. How diverse is heterochromatin in the Caesalpinia group? Cytogenomic characterization of Erythrostemon hughesii Gagnon & G.P. Lewis (Leguminosae: Caesalpinioideae). PLANTA 2020; 252:49. [PMID: 32918627 DOI: 10.1007/s00425-020-03453-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/27/2020] [Indexed: 05/25/2023]
Abstract
Cytogenomic characterization of Erythrostemon hughesii reveals a heterogeneity of repeats in its subtelomeric heterochromatin. Comparative analyses with other Caesalpinia group species reveal a significant reduction in the abundance of Ty3-gypsy/Chromovirus Tekay retrotransposons during its evolution. In numerically stable karyotypes, repetitive DNA variability is one of the main causes of genome and chromosome variation and evolution. Species from the Caesalpinia group (Leguminosae) are karyotypically characterized by 2n = 24, with small chromosomes and highly variable CMA+ heterochromatin banding patterns that correlate with environmental variables. Erythrostemon hughesii differs from other species of the group examined to date for having subtelomeric CMA+ bands; this contrasts with most species in the group which have proximal bands. Here we analyse the repeatome of E. hughesii using genome skimming and chromosomal mapping approaches to characterize the identity of the most abundant repetitive elements and their physical location. The repetitive fraction of E. hughesii comprises 28.73% of the genome. The most abundant elements were retrotransposons (RT) with long terminal repeats (LTR-RT; 9.76%) and satellite DNAs (7.83%). Within the LTR-RTs, the most abundant lineages were: Ty1/copia-Ale (1%), Ty3/gypsy CRM (0.88%) and Ty3/gypsy Athila (0.75%). Using fluorescent in situ hybridization four satellite DNAs and several LTR-RT elements were shown to be present in most subtelomeric CMA+ bands. These results highlight how the repeatome in E. hughesii, a species from Oaxaca state in Mexico, is clearly distinct from Northeast Brazilian species of the Caesalpinia group, mainly due to its high diversity of repeats in its subtelomeric heterochromatic bands and low amount of LTR-RT Ty3/gypsy-Tekay elements. Comparative sequence analysis of Tekay elements from different species is congruent with a clade-specific origin of this LTR-RT after the divergence of the Caesalpinia group. We hypothesize that repeat-rich heterochromatin may play a role in leading to faster genomic divergence between individuals, increasing speciation and diversification.
Collapse
Affiliation(s)
- Yennifer Mata-Sucre
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Mariela Sader
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Brena Van-Lume
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Edeline Gagnon
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5NZ, UK
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Ilia J Leitch
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, TW9 3AB, Surrey, UK
| | - Gwilym P Lewis
- Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, TW9 3AB, Surrey, UK
| | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitaria, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
5
|
de Assis R, Baba VY, Cintra LA, Gonçalves LSA, Rodrigues R, Vanzela ALL. Genome relationships and LTR-retrotransposon diversity in three cultivated Capsicum L. (Solanaceae) species. BMC Genomics 2020; 21:237. [PMID: 32183698 PMCID: PMC7076952 DOI: 10.1186/s12864-020-6618-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/24/2020] [Indexed: 01/08/2023] Open
Abstract
Background Plant genomes are rich in repetitive sequences, and transposable elements (TEs) are the most accumulated of them. This mobile fraction can be distinguished as Class I (retrotransposons) and Class II (transposons). Retrotransposons that are transposed using an intermediate RNA and that accumulate in a “copy-and-paste” manner were screened in three genomes of peppers (Solanaceae). The present study aimed to understand the genome relationships among Capsicum annuum, C. chinense, and C. baccatum, based on a comparative analysis of the function, diversity and chromosome distribution of TE lineages in the Capsicum karyotypes. Due to the great commercial importance of pepper in natura, as a spice or as an ornamental plant, these genomes have been widely sequenced, and all of the assemblies are available in the SolGenomics group. These sequences were used to compare all repetitive fractions from a cytogenomic point of view. Results The qualification and quantification of LTR-retrotransposons (LTR-RT) families were contrasted with molecular cytogenetic data, and the results showed a strong genome similarity between C. annuum and C. chinense as compared to C. baccatum. The Gypsy superfamily is more abundant than Copia, especially for Tekay/Del lineage members, including a high representation in C. annuum and C. chinense. On the other hand, C. baccatum accumulates more Athila/Tat sequences. The FISH results showed retrotransposons differentially scattered along chromosomes, except for CRM lineage sequences, which mainly have a proximal accumulation associated with heterochromatin bands. Conclusions The results confirm a close genomic relationship between C. annuum and C. chinense in comparison to C. baccatum. Centromeric GC-rich bands may be associated with the accumulation regions of CRM elements, whereas terminal and subterminal AT- and GC-rich bands do not correspond to the accumulation of the retrotransposons in the three Capsicum species tested.
Collapse
Affiliation(s)
- Rafael de Assis
- Laboratório de Citogenética e Diversidade Vegetal, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Viviane Yumi Baba
- Departamento de Agronomia, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | - Leonardo Adabo Cintra
- Laboratório de Citogenética e Diversidade Vegetal, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil
| | | | - Rosana Rodrigues
- Laboratório de Melhoramento Genético Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil
| | - André Luís Laforga Vanzela
- Laboratório de Citogenética e Diversidade Vegetal, Universidade Estadual de Londrina, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
6
|
Ibiapino A, García MA, Ferraz ME, Costea M, Stefanović S, Guerra M. Allopolyploid origin and genome differentiation of the parasitic species Cuscuta veatchii (Convolvulaceae) revealed by genomic in situ hybridization. Genome 2019; 62:467-475. [PMID: 31071271 DOI: 10.1139/gen-2018-0184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Interspecific hybridization and genome duplication to form allopolyploids are major evolutionary events in angiosperms. In the parasitic genus Cuscuta (Convolvulaceae), molecular data suggested the existence of species of hybrid origin. One of them, C. veatchii, has been proposed as a hybrid between C. denticulata and C. nevadensis, both included in sect. Denticulatae. To test this hypothesis, a cytogenetic analysis was performed with CMA/DAPI staining and fluorescent in situ hybridization using 5S and 35S rDNA and genomic probes. Chromosomes of C. denticulata were small with a well-defined centromeric region, whereas C. nevadensis had larger, densely stained chromosomes, and less CMA+ heterochromatic bands. Cuscuta veatchii had 2n = 60 chromosomes, about 30 of them similar to those of C. denticulata and the remaining to C. nevadensis. GISH analysis confirmed the presence of both subgenomes in the allotetraploid C. veatchii. However, the number of rDNA sites and the haploid karyotype length in C. veatchii were not additive. The diploid parentals had already diverged in their chromosomes structure, whereas the reduction in the number of rDNA sites more probably occurred after hybridization. As phylogenetic data suggested a recent divergence of the progenitors, these species should have a high rate of karyotype evolution.
Collapse
Affiliation(s)
- Amália Ibiapino
- a Laboratory of Plant Cytogenetics and Evolution - Federal University of Pernambuco, Department of Botany, Recife 50.372-970, PE, Brazil
| | - Miguel A García
- b Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.,c Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AE, United Kingdom
| | - Maria Eduarda Ferraz
- a Laboratory of Plant Cytogenetics and Evolution - Federal University of Pernambuco, Department of Botany, Recife 50.372-970, PE, Brazil
| | - Mihai Costea
- d Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Saša Stefanović
- b Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Marcelo Guerra
- a Laboratory of Plant Cytogenetics and Evolution - Federal University of Pernambuco, Department of Botany, Recife 50.372-970, PE, Brazil
| |
Collapse
|
7
|
de Souza TB, Chaluvadi SR, Johnen L, Marques A, González-Elizondo MS, Bennetzen JL, Vanzela ALL. Analysis of retrotransposon abundance, diversity and distribution in holocentric Eleocharis (Cyperaceae) genomes. ANNALS OF BOTANY 2018; 122:279-290. [PMID: 30084890 PMCID: PMC6070107 DOI: 10.1093/aob/mcy066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/18/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS Long terminal repeat-retrotransposons (LTR-RTs) comprise a large portion of plant genomes, with massive repeat blocks distributed across the chromosomes. Eleocharis species have holocentric chromosomes, and show a positive correlation between chromosome numbers and the amount of nuclear DNA. To evaluate the role of LTR-RTs in karyotype diversity in members of Eleocharis (subgenus Eleocharis), the occurrence and location of different members of the Copia and Gypsy superfamilies were compared, covering interspecific variations in ploidy levels (considering chromosome numbers), DNA C-values and chromosomal arrangements. METHODS The DNA C-value was estimated by flow cytometry. Genomes of Eleocharis elegans and E. geniculata were partially sequenced using Illumina MiSeq assemblies, which were a source for searching for conserved proteins of LTR-RTs. POL domains were used for recognition, comparing families and for probe production, considering different families of Copia and Gypsy superfamilies. Probes were obtained by PCR and used in fluorescence in situ hybridization (FISH) against chromosomes of seven Eleocharis species. KEY RESULTS A positive correlation between ploidy levels and the amount of nuclear DNA was observed, but with significant variations between samples with the same ploidy levels, associated with repetitive DNA fractions. LTR-RTs were abundant in E. elegans and E. geniculata genomes, with a predominance of Copia Sirevirus and Gypsy Athila/Tat clades. FISH using LTR-RT probes exhibited scattered and clustered signals, but with differences in the chromosomal locations of Copia and Gypsy. The diversity in LTR-RT locations suggests that there is no typical chromosomal distribution pattern for retrotransposons in holocentric chromosomes, except the CRM family with signals distributed along chromatids. CONCLUSIONS These data indicate independent fates for each LTR-RT family, including accumulation between and within chromosomes and genomes. Differential activity and small changes in LTR-RTs suggest a secondary role in nuclear DNA variation, when compared with ploidy changes.
Collapse
Affiliation(s)
- Thaíssa B de Souza
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Lucas Johnen
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - André Marques
- Laboratory of Genetic Resources, Campus Arapiraca, Federal University of Alagoas, Arapiraca, Brazil
| | | | | | - André L L Vanzela
- Laboratory of Cytogenetics and Plant Diversity, Department of General Biology, Center for Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
8
|
Rodrigues PS, Souza MM, Melo CAF, Pereira TNS, Corrêa RX. Karyotype diversity and 2C DNA content in species of the Caesalpinia group. BMC Genet 2018; 19:25. [PMID: 29642872 PMCID: PMC5896153 DOI: 10.1186/s12863-018-0610-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Leguminosae family is the third-largest family of angiosperms, and Caesalpinioideae is its second-largest subfamily. A great number of species (approximately 205) are found in the Caesalpinia group within this subfamily; together with these species' phenotypic plasticity and the similarities in their morphological descriptors, make this a complex group for taxonomic and phylogenetic studies. The objective of the present work was to evaluate the karyotypic diversity and the 2C DNA content variation in 10 species of the Caesalpinia group, representing six genera: Paubrasilia, Caesalpinia, Cenostigma, Poincianella, Erythrostemon and Libidibia. The GC-rich heterochromatin and 45S rDNA sites (which are used as chromosome markers) were located to evaluate the karyotype diversity in the clade. The variation in the 2C DNA content was determined through flow cytometry. RESULTS The fluorochrome banding indicated that the chromomycin A3+/4',6-diamidino-2-phenylindole- blocks were exclusively in the terminal regions of the chromosomes, coinciding with 45S rDNA sites in all analyzed species. Physical mapping of the species (through fluorescence in situ hybridization) revealed variation in the size of the hybridization signals and in the number and distribution of the 45S rDNA sites. All hybridization sites were in the terminal regions of the chromosomes. In addition, all species had a hybridization site in the fourth chromosome pair. The 2C DNA content ranged from 1.54 pg in Erythrostemon calycina to 2.82 pg in the Paubrasilia echinata large-leaf variant. The Pa. echinata small-leaf variant was isolated from the other leaf variants through Scoot-Knott clustering. CONCLUSIONS The chromosome diversity and the variation in the 2C DNA content reinforce that the actual taxonomy and clustering of the analyzed taxa requires more genera that were previously proposed. This fact indicates that taxonomy, phylogeny and cytoevolutionary inference related to the complex Caesalpinia group have to be done through integrative evaluation.
Collapse
Affiliation(s)
- Polliana Silva Rodrigues
- Departamento de Ciências Biológicas, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, CEP, Ilhéus, BA, 45662-900, Brazil
| | - Margarete Magalhães Souza
- Departamento de Ciências Biológicas, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, CEP, Ilhéus, BA, 45662-900, Brazil
| | - Cláusio Antônio Ferreira Melo
- Departamento de Ciências Biológicas, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, CEP, Ilhéus, BA, 45662-900, Brazil
| | - Telma Nair Santana Pereira
- Centro de Ciências e Tecnologias Agropecuárias, Laboratório de Melhoramento Genético Vegetal, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | - Ronan Xavier Corrêa
- Departamento de Ciências Biológicas, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, CEP, Ilhéus, BA, 45662-900, Brazil.
| |
Collapse
|
9
|
Yuyama PM, Pereira LFP, dos Santos TB, Sera T, Vilas-Boas LA, Lopes FR, Carareto CMA, Vanzela ALL. FISH using a gag-like fragment probe reveals a common Ty3-gypsy-like retrotransposon in genome of Coffea species. Genome 2012; 55:825-33. [PMID: 23231601 DOI: 10.1139/gen-2012-0081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The genus Coffea possesses about 100 species, and the most economically important are Coffea canephora and Coffea arabica. The latter is predominantly self-compatible with 2n = 4x = 44, while the others of the genus are diploid with 2n = 2x = 22 and mostly self-incompatible. Studies using molecular markers have been useful to detect differences between genomes in Coffea; however, molecular and cytogenetic studies have produced only limited information on the karyotypes organization. We used DOP-PCR to isolate repetitive elements from genome of Coffea arabica var. typica. The pCa06 clone, containing a fragment of 775 bp length, was characterized by sequencing and used as a probe in chromosomes of C. arabica and six other species: C. canephora, Coffea eugenioides, Coffea kapakata, Coffea liberica var. dewevrei, Coffea racemosa, and Coffea stenophylla. This insert shows similarities with a gag protein of the Ty3-gypsy-like super-family. Dot blot and FISH analyses demonstrated that pCa06 is differentially accumulated between species and chromosomes. Signals appeared scattered and clustered on the chromosomes and were also associated with heterochromatic regions. While the literature shows that there is a high karyotype similarity between Coffea species, our results point out differences in the accumulation and dispersion of this Ty3-gypsy-like retrotransposon during karyotype differentiation of Coffea.
Collapse
Affiliation(s)
- Priscila Mary Yuyama
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Caixa Postal 6001, CEP 86051-990 Londrina, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Guarido PCP, de Paula AA, da Silva CRM, Rodriguez C, Vanzela ALL. Hypomethylation of cytosine residues in cold-sensitive regions of Cestrum strigilatum (Solanaceae). Genet Mol Biol 2012; 35:455-9. [PMID: 22888295 PMCID: PMC3389534 DOI: 10.1590/s1415-47572012005000026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/13/2012] [Indexed: 11/22/2022] Open
Abstract
Heterochromatin comprises a fraction of the genome usually with highly repeated DNA sequences and lacks of functional genes. This region can be revealed by using Giemsa C-banding, fluorochrome staining and cytomolecular tools. Some plant species are of particular interest through having a special type of heterochromatin denominated the cold-sensitive region (CSR). Independent of other chromosomal regions, when biological materials are subjected to low temperatures (about 0 °C), CSRs appear slightly stained and decondensed. In this study, we used Cestrum strigilatum (Solanaceae) to understand some aspects of CSR condensation associated with cytosine methylation levels, and to compare the behavior of different heterochromatin types of this species, when subjected to low temperatures.
Collapse
Affiliation(s)
- Paula Carolina Paes Guarido
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Adriano Alves de Paula
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | | | - André Luís Laforga Vanzela
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| |
Collapse
|