1
|
Kirmizakis P, Cunningham M, Kumaresan D, Doherty R. Microbial fuel cells to monitor natural attenuation around groundwater plumes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2069-2084. [PMID: 39753844 PMCID: PMC11775044 DOI: 10.1007/s11356-024-35848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/22/2024] [Indexed: 01/29/2025]
Abstract
This research presents a straightforward and economically efficient design for a microbial fuel cell (MFC) that can be conveniently integrated into a borehole to monitor natural attenuation in groundwater. The design employs conventional, transparent, and reusable PVC bailers with graphite tape and granular activated carbon to create high surface area electrodes. These electrodes are connected across redox environments in nested boreholes through a wire and variable resistor setup. The amended electrodes were installed in pre-existing boreholes surrounding a groundwater plume near a former gasworks facility. Among all the MFC locations tested, the MFC at the plume fringe exhibited the highest electrical response and displayed significant variations in the differential abundance of key bacterial and archaeal taxa between the anode and cathode electrodes. The other MFC configurations in the plume center and uncontaminated groundwater showed little to no electrical response, suggesting minimal microbial activity. This straightforward approach enables informed decision-making regarding effectively monitoring, enhancing, or designing degradation strategies for groundwater plumes. It offers a valuable tool for understanding and managing contaminant degradation in such environments.
Collapse
Affiliation(s)
- Panagiotis Kirmizakis
- Center for Integrative Petroleum Research, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Mark Cunningham
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK
| | - Deepak Kumaresan
- School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK
| | - Rory Doherty
- School of Natural and Built Environment, Queen's University Belfast, Belfast, Northern Ireland, BT7 1NN, UK.
| |
Collapse
|
2
|
Gupta N, Koley A, Banerjee S, Ghosh A, Hoque RR, Balachandran S. Nanomaterial-mediated strategies for enhancing bioremediation of polycyclic aromatic hydrocarbons: A systematic review. HYBRID ADVANCES 2024; 7:None. [PMID: 39758813 PMCID: PMC11698305 DOI: 10.1016/j.hybadv.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 01/07/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive organic pollutants in the environment that are formed as an outcome of partial combustion of organic matter. PAHs pose a significant threat to ecological systems and human health due to their cytotoxic and genotoxic effects. Therefore, an immediate need for effective PAH remediation methods is crucial. Although nanomaterials are effective for remediation of PAHs, concerns regarding environmental compatibility and sustainability remains. Therefore, this study emphasizes integration of nanomaterials with bioremediation methods, which might offer a more sustainable and ecofriendly approach to PAHs remediation. A systematic search was conducted through scholarly databases from 2013 to 2023. A total of 360 articles were scrutinized, among which 26 articles were selected that resonated with the application of nano-bioremediation. These literatures comprise both comparative analysis of bioremediation only as well as nano-bioremediation. There is an elevation of 18.9 % in PAHs removal of liquid-phase samples, when comparing bioremediation (52.2 %) with nano-bioremediation (71.1 %). A consistent trend was observed in soil samples, with bioremediation and nano-bioremediation that successfully remove PAHs, with 60.8 % and 75.1 % respectively, indicating a 14.3 % improvement. Furthermore, the review elaborated on the various features of nanomaterials that led to their efficiency in the bioremediation of PAH. The review also discussed the strategies of nano-bioremediation namely nanomaterial-assisted microbial degradation, nanomaterial-assisted enzyme-enhanced microbial activity, nanomaterial-immobilized microbial cells, nanomaterial-facilitated electron transfer, and even some eco-green approaches to remediate PAHs, like biogenic nanomaterial for PAHs.
Collapse
Affiliation(s)
- Nitu Gupta
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | - Apurba Koley
- Department of Environmental Studies, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Sandipan Banerjee
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 165 00, Czech Republic
| | - Anudeb Ghosh
- Department of Environmental Studies, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Raza Rafiqul Hoque
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | | |
Collapse
|
3
|
Pakdel S, Agha ABA, Sharifi R, Habibi A, Gholami F. Diesel-degradation by indigenous bacteria of petroleum-contaminated soils. Int Microbiol 2024:10.1007/s10123-024-00616-5. [PMID: 39556157 DOI: 10.1007/s10123-024-00616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
Relying on native microorganisms is crucial for bioremediating petroleum-contaminated soils within this oil field. This study aimed to isolate native bacteria and investigate their ability to degrade petroleum hydrocarbons in contaminated soils. Flame ionization detector gas chromatography analyzed the capacity of Indigenous bacterial isolates to break down diesel fuel in an aquatic environment. Soil samples were collected from the Naft-Shahr area. Initially, 126 bacterial isolates were obtained from these soils, of which only 48 species could grow on a diesel-containing medium. Further analysis identified the top 8 isolates with high diesel removal potential. Results showed that the diesel removal percentage ranged from 26 to 76% at an initial diesel concentration of 3.7 g. L - 1 after 48 h, without adding any supplementary surface-active agent. Four top isolates were selected based on their degradation activity, removal yield, and biodegradation rate and were identified using 16S rRNA gene sequencing and phylogenetic analysis. Sequence alignment revealed that isolates B11Pet, B19Pet, B27Pet, and B48Pet belong to Staphylococcus gallinarum, Paenarthrobacter nitroguajacolicus, Arthrobacter citreus, and Bacillus thuringiensis, respectively. Among these, Bacillus thuringiensis (B48Pet), with a specific growth rate of 0.211 h⁻1, could uniformly remove all diesel hydrocarbon fractions at 58.81 mg. L⁻1. h⁻1. This strain, alone or in consortia, represents a promising strategy for the bioremediation of petroleum-contaminated soils.
Collapse
Affiliation(s)
- Samira Pakdel
- Department of Soil Science, Razi University, Kermanshah, Iran
| | | | | | - Alireza Habibi
- Faculty of Chemical and Petroleum Engineering, Razi University, Kermanshah, Iran
| | | |
Collapse
|
4
|
Yang S, Dong M, Lin L, Wu B, Huang Y, Guo J, Sun G, Zhou S, Xu M. Distribution and response of electroactive microorganisms to freshwater river pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124814. [PMID: 39209057 DOI: 10.1016/j.envpol.2024.124814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Electroactive microorganisms (EAMs) play a vital role in biogeochemical cycles by facilitating extracellular electron transfer. They demonstrate remarkable adaptability to river sediments that are characterized by pollution and poor water quality, significantly contributing to the sustainability of river ecosystems. However, the distribution and diversity of EAMs remain poorly understood. In this study, 16S rRNA gene high-throughput sequencing and real-time fluorescence quantitative PCR were used to assess EAMs in 160 samples collected from eight rivers within the Pearl River Delta of Southern China. The results indicated that specialized EAMs communities in polluted sediments exhibited variations in response to water quality and sediment depth. Compared to clean sediment, polluted sediments showed a 4.5% increase in the relative abundances of EAMs communities (59 genera), with 45- and 17-times higher abundances of Geobacter and cable bacteria. Additionally, the abundance of cable bacteria decreased with increasing sediment depth in polluted sediments, while the abundance of L. varians GY32 exhibited an opposite trend. Finally, the abundances of Geobacter, cable bacteria, and L. varians GY32 were positively correlated with the abundance of filamentous microorganisms (FMs) across all samples, with stronger interactions in polluted sediments. These findings suggest that EAMs demonstrate heightened sensitivity to polluted environments, particularly at the genus (species) level, and exhibit strong adaptability to conditions characterized by high levels of acid volatile sulfide, low dissolved oxygen, and elevated nitrate nitrogen. Therefore, environmental factors could be manipulated to optimize the growth and efficiency of EAMs for environmental engineering and natural restoration applications.
Collapse
Affiliation(s)
- Shan Yang
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Meijun Dong
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Lizhou Lin
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Youda Huang
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jun Guo
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guoping Sun
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Shaofeng Zhou
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Meiying Xu
- Guangdong Environmental Protection Key Laboratory of Microbiology and Ecological Safety, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
5
|
Yemele OM, Zhao Z, Nkoh JN, Ymele E, Usman M. A systematic review of polycyclic aromatic hydrocarbon pollution: A combined bibliometric and mechanistic analysis of research trend toward an environmentally friendly solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171577. [PMID: 38521268 DOI: 10.1016/j.scitotenv.2024.171577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Pollution caused by polycyclic aromatic hydrocarbons (PAHs) is a significant concern. This concern has become more problematic given the rapid modification of PAHs in the environment during co-contamination to form substituted PAHs. This review aims to integrate bibliometric analysis with a rigorous study of mechanistic insights, resulting in a more comprehensive knowledge of evolving research trends on PAH remediation. The results show that research in this field has progressed over the years and peaked in 2022, potentially due to the redirection of resources toward emerging pollutants, hinting at the dynamic nature of environmental research priorities. During this year, 158,147 documents were published, representing 7 % of the total publications in the field between 2000 and 2023. The different remediation methods used for PAH remediation were identified and compared. Bioremediation, having >90 % removal efficiency, has been revealed to be the best technique because it is cost-effective and easy to operate at large scale in situ and ex-situ. The current challenges in PAH remediation have been detailed and discussed. Implementing innovative and sustainable technologies that target pollutant removal and valuable compound recovery is necessary to build a more robust future for water management.
Collapse
Affiliation(s)
- Olive Mekontchou Yemele
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jackson Nkoh Nkoh
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; Department of Chemistry, University of Buea, PO Box 63, Buea, Cameroon
| | - Ervice Ymele
- Department of Chemistry, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Muhammad Usman
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
6
|
Pérez-Sirvent C, Bech J. Special issue "Spatial assessment of soil and plant contamination". ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8823-8827. [PMID: 37973774 DOI: 10.1007/s10653-023-01760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Affiliation(s)
- Carmen Pérez-Sirvent
- Emeritus Professor of Crystallography and Mineralogy, University of Murcia, Murcia, Spain.
| | - Jaume Bech
- Emeritus Professor of Soil Science, University of Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Kumari S, Gautam K, Seth M, Anbumani S, Manickam N. Bioremediation of polycyclic aromatic hydrocarbons in crude oil by bacterial consortium in soil amended with Eisenia fetida and rhamnolipid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82517-82531. [PMID: 37326724 DOI: 10.1007/s11356-023-28082-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
The present study investigated the concerted effort of Eisenia fetida and rhamnolipid JBR-425 in combination with a five-member bacterial consortium exhibiting elevated degradation levels of low and high molecular weight polycyclic aromatic hydrocarbons (PAH) from soil contaminated with Digboi crude oil. Application of bacterial consortium (G2) degraded 30-89% of selected PAH from the artificial soil after a 45-day post-exposure, in which chrysene showed the highest level of degradation with 89% and benzo(a)pyrene is the lowest with 30%, respectively. Moreover, an acute exposure study observed that earthworm biomass decreased, and mortality rates increased with increasing crude oil concentrations (0.25 to 2%). Earthworms with a 100% survival rate at 1% crude oil exposure suggest the tolerance potential and its mutual involvement in the bioremediation of crude oil with selected bacterial consortia. Bacterial consortium assisted with E. fetida (G3) showed 98% chrysene degradation with a slight change in benzo(a)pyrene degradation (35%) in crude oil spiked soil. Besides, the most dominant PAH in crude oil found in the current work, fluoranthene, undergoes 93% and 70% degradation in G3 and G5 groups, respectively. However, rhamnolipid JBR-425 coupled with the bacterial consortium (G5) has resulted in 97% degradation of chrysene and 33% for benzo(a)pyrene. Overall, bacterial consortium assisted with earthworm group has shown better degradation of selected PAH than bacterial consortium with biosurfactant. Catalase (CAT), glutathione reductase (GST) activity and MDA content was found to be reduced in earthworms after sub-lethal exposure, suggesting oxidative stress prevalence via reactive oxygen species (ROS). Hence, the findings of the present work suggest that the application of a bacterial consortium, along with earthworm E. fetida, has huge potential for field restoration of contaminated soil with PAH and ecosystem sustainability.
Collapse
Affiliation(s)
- Smita Kumari
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Basic and Applied Sciences, School of Engineering and Sciences, G D Goenka University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow, 226008, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Monika Seth
- Ecotoxicology Laboratory, Regulatory Toxicology Group, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow, 226008, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, C.R. Krishnamurti (CRK) Campus, CSIR-Indian Institute of Toxicology Research, Lucknow, 226008, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|